Pre Nurture and Career Foundation Division

CLASS - VI

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	2	1	1	4	4	3	1	3	4	1
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	4	1	3	2	2	1	4	3	1	4
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	4	2	2	3	3	2	4	2	2	3
Que.	31	32	33	34	35	36	37	38	39	40
Ans.	4	2	3	2	1	2	3	3	1	2
Que.	41	42	43	44	45	46	47	48	49	50
Ans.	1	3	1	1	3	1	3	2	4	2
Que.	51	52	53	54	55	56	57	58	59	60
Ans.	4	4	3	3	1	4	2	3	3	2
Que.	61	62	63	64	65	66	67	68	69	70
Ans.	2	3	3	4	1	1	4	1	2	3
Que.	71	72	73	74	75	76	77	78	79	80
Ans.	4	3	3	3	1	3	1	1	4	2
Que.	81	82	83	84	85	86	87	88	89	90
Ans.	2	2	4	3	4	3	2	2	3	2
Que.	91	92	93	94	95	96	97	98	99	100
Ans.	3	2	4	3	4	3	3	3	2	3
Que.	101	102	103	104	105	106	107	108	109	110
Ans.	1	3	3	3	4	4	1	4	1	3
Que.	111	112	113	114	115	116	117	118	119	120
Ans.	2	2	3	1	3	3	3	4	2	1

HINT - SHEET

26. (2)

Sol. Lemon juice (acid) reacts with washing soda (base) and liberates carbon dioxide gas i.e., a new substance is formed. Thus, it is a chemical change. Whereas, addition of salt in lemon juice is a physical change as only salt gets dissolved in lemon juice, no chemical reaction takes place
27. (4)

Sol. Metal (X), iron reacts with blue coloured solution of copper sulphate and forms a "new substance (green coloured solution of iron sulphate) and cannot be converted back to the original solution. Thus, it is an irreversible and chemical change.
28. (2)

Sol. All these changes occur again and again after fixed intervals of time, hence are periodic changes.
29. (2)

Sol. Burning the pieces of paper is chemical change.
30. (3)

Sol. Process 1 is a reversible, physical change while process 2 is an irreversible, chemical change
31. (4)

Sol. Periodic changes are the changes which keep repeating themselves after a regular period of time. So, low and high tides and opening of a morning glory flower are the examples of periodic changes.
33. (3)

Sol. Irreversible change
34. (2)

Sol. It is permanent change as rolled out roti cannot be obtained from baked one.
35. (1)

Sol. Exothermic change is accompanied by release of energy in the form of heat and light.
36. (2)

Sol. Permanent change, change in composition and formation of new substance all these are characteristics of a chemical changes while reversibility is not a characteristic of chemical changes.
37. (3)

Sol. Burning is a chemical change while all other are physical changes.
38. (3)

Sol. The eruption of volcanoes is a natural, non- periodic change.
39. (1)

Sol. (i), (ii), (iii) and (iv) are irreversible changes
40. (2)

Sol. Cotton fibres is separated by ginning.
41. (1)

Sol. Freshly sand-papered surface of copper have metallic lustre.
42. (3)

Sol. Wind is essential to perform winnowing activity.
43. (1)

Sol. We cannot use seawater because sea water is salty
51. (4)
$1 \mathrm{~B}=1,000,000,000$
1 Lac - 1,00,000
$\therefore 1 \mathrm{~B}=\frac{1000000000}{100000}$

$$
=10000 \text { Lakh }
$$

52. (4)

L cannot be repeated.
57. (2) $\frac{171}{500}$

The colours of fridges preferred by people living in a locality are shown by the following pictograph.

76. (c) Carbohydrates, Explanation: The food components present in sugar is carbohydrates.
77. (a) Anaemia. Explanation: The disease caused by the deficiency of iron is anaemia.
78. (a) Marasmus, Explanation: Deficiency ofprotein and carbohydrates in infants leads to marasmus.
79. (d) All of these, Explanation: We know that food is essential for all living organisms and it provides energy to perform various functions, helpsin growth and development. Although, it protects our body from various diseases.
80. (b)Proteins, Explanation: All leguminous (pulses) plant are rich source of proteins.
81. (b) Ingredients, Explanation: Materials required to prepare a fooditemare called ingredients.
82. (b) Tulsi, Explanation: Leaves ofthe Whaet, Maize and Grasseshave parallel venation. Tulsi plant ha s reticulate v enation in their le av s .
83. (d) Transpiration, Explanation: Water comesout the leavesin the form of vapour by a process called transpiration.
84. (c) Leaves, Explanation: Leaves are not a part of flower.
85. (d) Tree, Explanation: The presence of hard and thick stemis a feature of tree. PRE-NURTURE \& CAREER FOUNDATION DIVISION
86. (c) Femur, Explanation: Generally, in human body radius, ulna, humerus are foundinaimbut femur is foundin thigh or upper leg.
87. (b)Neck, Explanation: The pivot joints occurin our skeleton at neck. A pivot joint exist between our skull and the top vertebra.
88. (b) Skull andlowerjaw, Explanation: Skull andlower jawhasthe hinge joint betwe en them
89. (c) Both biotic and abiotic components, Explanation: Environment consists of both biotic and abiotic components.
90. (b) Habitat, Explanation: The place where living beings live is called their habitat
91. (c) Do notneedfood,Explanation. U\nng things require food for energy.
92. (b) Ocean, Explanation: Ocean is the example of aquatic habitat
93. (d) Phototropism, Explanation Bending of a stemtowards sunlight is called phototropism.
94. (c) Cycling, Explanation Cycling is not a method of garbage disposal.
95. (d) Re dworms, Explanation: Re dwoims are used for malting vermic omp o st s.
96. (c) usedin making compost, Explanation: Leaves falling from trees shouldbe usedin making compost.
97. (c) landfill areas, Explanation: Garbage from cities are dumped at landfill areas.
98. (c) Frog, Explanation: Frogcanlive onlandaswell asin water.
99. (b) hair, Explanation: Yakshave hairs on their bodies to keep them warm.
100. (c) Snail, Explanation: Snailmoves withjust one large, disc-shaped muscular foot.
101. (1)

Sol. The figure in option (2) represents the correct water image of figure (1) as shown below.

Figure

Water

Water Image

102. 3

Sol. The figure in option (3) represents the correct water image of figure (1) as shown below.

Figure

Water
-

Water Image

103. 3

Sol. The figure in option (3) represents the correct water image of figure (1) as shown below.

Figure

Water Image

104. 3

Sol. Here, the mirror is placed vertically at $A B$ on the RHS of the question figure. Hence, only the figure given in answer figure (3) would be obtained as the correct mirror image.
105. 4

Sol. Here, the mirror is placed vertically at $A B$ on the RHS of the question figure. Hence, only the figure given in answer figure (4) would be obtained as the correct mirror image.
106. (4)

Required Distance $=3+1=4 \mathrm{~km}$.
107. (1)

$\mathrm{AD}=\sqrt{3^{2}+4^{2}}$
$=\sqrt{9+16}$
$=\sqrt{4}$
$=5 \mathrm{~km}$.
108. (4)

109. (1)

110. (3)

113. (3)

Sol. We observe that
$2^{\text {nd }}$ term=3+2=5
$3^{\text {rd }}$ term $=5 \times 2=10$
$4^{\text {th }}$ term $=10+2=12$
$5^{\text {th }}$ term $=12 \times 2=24$
Clearly the pattern is: $+2, \times 2+2, \times 2,+2, \times 2,+2$
So, $8^{\text {th }}$ (required) term $=52+2=54$
Hence, the answer is (3).
114. (1)

Sol. First numeral $-2,7,14,23,34(+5,+7,+9,+11 .$.
Second letter $-\mathrm{Z}, \mathrm{Y}, \mathrm{X}, \mathrm{W}, \mathrm{V}$ (decreases by 1 each time)
Third numeral - $5,7,9,11,13$ (increases by 2 each time)
So the missing term is 47 U 15 .
Hence, the answer is (1).
115. (3)

Sol. First letter- decreases by 2 each time
Second numeral- square of $12,11,10,9,8$..
So the missing term is $\mathrm{O}-64$.
Hence, the answer is (3).
116. (3)

The Position of letter is written from left to right. So the position value of L is 12 and N is 14 .
119. (2)

Sol. $27-10=17$
17 is position for Q from left

