18-01-2020

[16]

[1]

[1]

[1]

MAX. MARKS : 80

MAJOR TEST # 23

MATHEMATICS (CLASS-X) [GSEB]

TIME : 3 Hrs.

INSTRUCTIONS:

- (1) All the questions are compulsory. Internal options are available in certain questions.
- (2) In all 39 questions in this question paper are divided into four sections A, B, C and D.
- (3) The numbers on the right side represent the marks of that question (Section).
- (4) Draw figure, wherever necessary. Maintain the lines and arcs of the construction.
- (5) Start writing a new section from a new page. Answer the questions in serial order.
- (6) Use of calculator is not permitted

SOLUTION

SECTION - A

Answer according to instruction : (Question no.1 to 16) [1 mark each]

State whether the following statements are True or False.

False. Yes it can be a quadratic polynomial because quadratic polynomials have atmost two zeroes but not exactly two zeroes. When the graph line of a polynomial intersects x axis at only one point, then it says that the polynomial has two equal roots (where Discriminant = 0). [1]

2. **True**

Given $x^2 + x + 1 = 0$

Here a=1, b=1 and c=1

So, Discriminant $D = b^2 - 4ac$

$$= (1)^2 - 4 \times 1 \times 2$$

= 1 - 4

-3

Here D < 0

: Equation has no real roots.

3. True

Let S be the required sum.

Clearly, it is an Arithmetic Progression whose first term = 1, last term = n and number of terms = n.

Therefore, S = $\frac{n}{2}(n + 1)$, [Using the formulas S = $\frac{n}{2}(a + l)$]

4. False

LHS = $(\tan \theta + 2) (2 \tan \theta + 1)$ = $2\tan^2 \theta + 4 \tan \theta + \tan \theta + 2$ = $2\tan^2 \theta + 5 \tan \theta + 2$ = $2 (\sec^2 \theta - 1) + 5\tan \theta + 2$ = $2 \sec^2 \theta - 2 + 5 \tan \theta + 2$ = $5 \tan \theta + 2 \sec^2 \theta + =$ RHS

Select an option for correct statement.

$$3x + 5x = 1$$

$$8x = 1$$

$$x = \frac{1}{6}$$

$$\therefore P(A) = 3x = \frac{3}{6}$$
(1)
Let the required fraction be $\frac{x}{y}$. Then,
 $x + y = 12$ (1)
and, $\frac{x}{y+3} = \frac{1}{2}$
(2)
 $2x - y = 3$ (2)
On adding (1) and (2), we get, $x = 5$
On puting $x = 5$ in equation (1), we get, $y = 7$
Therefore, the required fraction is $\frac{5}{7}$
Fill in the blanks for correct statement.
9. Put $x = 2$ and $y = 3$ in $5x - 3y = k$
 (1)
 $5(2) - 3(3) = k$
 $k = 10 - 9 = 1$
10. $A = \left|\frac{1}{2} \left[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)\right]\right|$
Here, $x_1 = 3$, $y_1 = 0$, $x_2 = 7$, $y_2 = 0$, $x_3 = 8$ and $y_3 = 4$
 $\therefore A = \left|\frac{1}{2} \left[3(0 - 4) + 7(4 - 0) + 8(0 - 0)\right]\right|$
 $= \left|\frac{1}{2}(-12 + 28 + 0)\right| = \left|\frac{1}{2}(16)\right| = 8$ sq. units
11. Given, $\cos A = \frac{4}{5}$
Now, $\tan A = \frac{\sin A}{\cos A} = \frac{3}{3} = \frac{3}{4}$
Hence, the required value of $\tan A$ is $\frac{3}{4}$
12. $AB + CD = BC + AD$
 $72 + CD = 8.5 + 6.9$
 $CD = 15.4 - 72$
 $CD = 8.2 \, cm$

path to succes		ASS – X [GSEB] (MAJOR TEST)	1	8-01-2020
Kaj		SECTION - B	·	
	Do as directed (Q-17 to Q-26)	[2 marks each]		[20
17.	The length of the room $= 7m 50$	cm = 700 + 50 = 750cm		[¹ /2
	The breadth of the room $= 6 \text{ m} =$	= 600 cm		
	The height of the room $= 3 \text{ m } 75$	5 cm = 300 + 75 = 375 cm		
	Now, in order to find the length	of the longest rod that can measure	all the three dimensi	ons of the
	room exactly, we will find the H	I.C.F of 750, 600 & 375		
	$750 = 2 \times 3 \times 5^3$			[1
	$600 = 2^3 \times 3 \times 5^2$			
	$375 = 3 \times 5^3$			
	$HCF = 3 \times 5^2 = 75 \ cm$			
	Hence, the length of the longest	rod that can measure all the three di	mensions of the room	m exactly
	is 75 cm.			[¹ / ₂
18.	As per Euclid's Division Lemma	a		[¹ /2
	If a and b are 2 positive integers, then			
	$a = bq + r$ where $0 \le r < b$			
	Let positive integer be a and $b = 3$			
_	Hence $a = 3q + r$ where $(0 \le r < 3)$			
	If $\mathbf{r} = 0$	If r = 1	If r :	=2
	Our equation becomes	Our equation becomes	Our equation bec	omes
	$\mathbf{a} = 3\mathbf{q} + \mathbf{r}$	$\mathbf{a} = 3\mathbf{q} + \mathbf{r}$	a = 3q + r	
	$\mathbf{a} = 3\mathbf{q} + 0$	a = 3q + 1	a = 3q + 2	
	a = 3q	Squaring both sides	Squaring both sid	es
	Squaring both sides	$a^2 = (3q + 1)^2$	$a^2 = (3q + 2)^2$	
	$a^2 = (3q)^2$	$a^{2} = (3q)^{2} + 2^{2} + 2(2)(3q)$	$a^2 = (3q)^2 + 2^2 + 2^2$	2(2)(3q)
	$a^2 = 9q^2$	$a^2 = 9q^2 + 6q + 1$	$a^2 = 9q^2 + 12q + 3$	3 + 1
	$a^2 = 3(3q)^2$	$a^2 = 3(3q^2 + 2q) + 1$	$a^2 = 3(3q^2 + 4q + q)$	1) + 1
	$a^2 = 3m$	= 3m + 1	$a^2 = 3m + 1$	
	Where $m = 3q^2$	Where $m = 3q^2 + 2q$	Where $m = 3q^2 +$	4q + 1
	Hence the square of any positive	e integer is either of the form 3 m or	3m + 1 for some int	eger m. $[1/2]$
19.	$x^{2} + 7x + 10 = (x + 2) (x + 5)$			[1
	So, the value of $x^2 + 7x + 10$ is z	zero when $x + 2 = 0$ or $x + 5 = 0$		
	Therefore, the zeroes of $x^2 + 7x + 10$ are -2 and -5 .			
	Sum of zeroes = $-7 = -(\text{Coefficient of } \mathbf{x}) / (\text{Coefficient of } \mathbf{x}^2)$			
	Product of zeroes = 10 = Constant term / Coefficient of x^2			

20.
$$\frac{x+1}{2} + \frac{y-1}{3} = 9$$
 [1/2]
or, $3(x + 1) + 2(y - 1) = 54$
or, $3x + 2y = 53$ (i)
and $\frac{x-1}{3} + \frac{y+1}{2} = 8$

Your Hard Work Leads to Strong Foundation

path to succe		CLASS – X [GSEB] (MAJOR TEST)	18-01-2020
RO	or, $2(x-1) + 3(y+1)$	= 48	
	or, $2x + 3y = 47$	(ii)	
	Multiply eqn. (i) by 3,	9x + 6y = 159	[1]
	Multiply equn.(ii) by 2	2, 4x + 6y = 94	
	On subtracting	5x = 65	
		$x = \frac{65}{5} = 13$	
	Substitute the value of	x in eqn. (ii),	[¹ / ₂]
	2(13) + 3y = 47		
	3y = 47 - 26	= 21	
	$\therefore \qquad y = \frac{21}{3} = 7$		
	Hence $x = 13, y = 7$.		
		OR	
20.	Let the speeds of the c	ars be x km/hr and y km/hr	[¹ / ₂]
	Case 1 : When the car	s are going in the same direction	[1]
	Relative speed	$= \mathbf{x} - \mathbf{y}$	
	Distance	= 100 km	
	Time	= 100 / (x - y) = 5 hrs.	
	x - y = 100 /	5 = 20	
	x - y = 20	(1)	
	Case 1 : When the car	s are going in the opposite direction	
	Relative speed $= x + y$	y .	
	Time $= 100 / (x + y)$	y) = 1 hrs.	
	x + y = 100	(2)	
	Solving the equations	(1) and (2).	
	x = 60, y = 40		$[^{1}/_{2}]$
	Hence the speeds of th	e cars are 60 km/hr and 40 km/hr.	
21.	Solution-1		$[^{1}/_{2}]$
	Let us consider a right	triangle ABC, right-angled at point B.	
	C Δθ B		
	$\cot \theta = \frac{7}{8}$		
	If BC is 7k, then AB w	vill be 8k, where k is a positive integer.	
	Applying Pythagoras t	heorem in $\triangle ABC$, we obtain	[1]
	$AC^2 = AB^2 + BC^2$		
	$=(8k)^{2}+(7k)^{2}$		
		Your Hard Work Leads to Strong Foundation	5

$$\begin{array}{c} \hline \textbf{CLASS} - \textbf{X} [\textbf{OSEB}] (\textbf{MAJOR TEST}) & \textbf{10-01-2020} \\ \hline \textbf{I} = 64k^2 + 49k^2 \\ = 113k^2 \\ \Delta C = \sqrt{113k} \\ \sin \theta = \frac{8}{\sqrt{113k}} = \frac{8}{\sqrt{113}} \\ \cos \theta = \frac{7k}{\sqrt{113k}} = \frac{7}{\sqrt{113}} \\ \hline (1 + \sin \theta)(1 - \sin \theta) \\ (1 + \cos \theta)(1 - \cos \theta) = \frac{1 - \sin^2 \theta}{1 - \cos^2 \theta} \\ = \frac{1 - \left(\frac{8}{\sqrt{113}}\right)^2}{1 - \left(\frac{8}{\sqrt{113}}\right)^2} = \frac{1 - \frac{64}{113}}{1 - \frac{49}{113}} \\ \hline (1 + \sin \theta)(1 - \sin \theta) \\ \hline (1 + \cos \theta)(1 - \cos \theta) \\ = \frac{1 - \left(\frac{8}{\sqrt{113}}\right)^2}{1 - \frac{49}{113}} = \frac{1 - \frac{64}{113}}{1 - \frac{49}{113}} \\ \hline (1 + \sin \theta)(1 - \sin \theta) \\ \hline (1 + \cos \theta)(1 - \cos \theta) \\ = \frac{1 - \sin^2 \theta}{64} \\ \hline (1 + \sin \theta)(1 - \sin \theta) \\ \hline (1 + \cos \theta)(1 - \cos \theta) \\ = \frac{1 - \sin^2 \theta}{1 - \cos^2 \theta} \\ \hline (\cdot (a + b)(a - b) = a^2 - b^2] \\ = \frac{\cos^2 \theta}{\sin^2 \theta} \\ \hline (\cdot \sin^2 \theta + \cos^2 \theta = 1] \\ = \cos^2 \theta \\ = (\cot \theta)^2 = \left[\frac{7}{8}\right]^2 \\ \hline (1 + 3) (2 - \cos \theta)^2 - \cos \theta^0 \sin 30^\circ \\ \hline (1 + 3) (2 - \cos \theta)^2 - \cos \theta^0 \sin 30^\circ \\ \hline (1 + 3) (2 - \cos \theta)^2 - \cos \theta^0 \sin 30^\circ \\ \hline (1 + 3) (2 - \cos \theta)^2 \\ = \frac{7}{2} \\ \hline (b = \frac{\sqrt{3}}{2} \\ \sin 3\theta^0 = \frac{\sqrt{3}}{2} \\ \sin 3\theta^0 = \frac{\sqrt{3}}{2} \\ \hline (b = \frac{\sqrt{3}}{2} \\ \hline (b$$

path to succe		18-01-2020
	$\cos 60^{\circ} = \frac{1}{2}$	
	Putting all values	[1]
	$\sin 2x = \sin 60^\circ \cos 30^\circ - \cos 60^\circ \sin 30^\circ$	
	$\sin 2x = \left(\frac{\sqrt{3}}{2}\right) \times \left(\frac{\sqrt{3}}{2}\right) - \left(\frac{1}{2}\right) \times \left(\frac{1}{2}\right)$	
	$\sin 2x = \frac{\sqrt{3} \times \sqrt{3}}{2 \times 2} - \frac{1}{2 \times 2}$	
	$\sin 2x = 1 = \sin 30^{\circ}$	[¹ / ₂]
	$2\mathbf{x} = 30^{\circ}$	
	$x = 15^{\circ}$	
	OR	
	Given $\sin \theta + \sin^2 \theta = 1$	[2]
	$\Rightarrow \sin \theta = 1 - \sin^2 \theta$	
	$\Rightarrow \sin \theta = \cos^2 \theta$	
	$\Rightarrow \sin^2 \theta = \cos^4 \theta$	
	$\Rightarrow 1 - \cos^2 \theta = \cos^4 \theta$	
	$\Rightarrow \cos^2 \theta + \cos^4 \theta = 1$	
23.	Given Diameter of a circle = 22 cm	[¹ / ₂]
	\Rightarrow Radius of a circle = OY = $\frac{22}{2}$ = 11 cm	
	$OY \perp XY$	
	[: Tangent to the circle is perpendicular to radius]	[1]
	In ΔOYX , by applying Pythagoras theorem,	
	$OY^2 + XY^2 = OX^2$	
	$(11)^2 + XY^2 = (61)^2$	
	$121 + XY^2 = 3721$	X
	$XY^2 = 3/21 - 121$	r1/ 1
	$\therefore XY = 60 \text{ cm}$	[1/2]
22	$\mathbf{O}\mathbf{K}$	r ¹ /.٦
23.	Or veri AB, BC and AC are tangents to the circle at E, D and F. $PD = 20$ am and $DC = 7$ am and $\langle PAC = 00^{\circ}$	
	$BD = 50$ cm and $DC = 7$ cm and $\angle BAC = 90$ Recall that tangents drawn from an exterior point to a circle are equal	
	Hence $BE = BD = 30$ cm	D
	Also $FC = DC = 7 \text{ cm}$	Λ
	Let $AE = AE = x \rightarrow (1)$	λ
	Then $AB = BE + AE = (30 + x)$	
	AC = BD + DC = 30 + 7 = 37 cm	

Consider right $\triangle ABC$, by Pythagoras theorem we have

path to succ	CAREER INSTITUTE KOTA (RANASTHAN)	CLASS – X [GSEB] (MAJOR TEST)	18-01-2020	
RC	$BC^2 = AB^2$	$+AC^2$	[¹ /	′2]
	\Rightarrow (37) ² = 0	$(30 + x)^2 + (7 + x)^2$		
	$\Rightarrow 1369 = 9$	$900 + 60x + x^2 + 49 + 14x + x^2$		
	$\Rightarrow 2x^2 + 74$	4x + 949 - 1369 = 0		
	$\Rightarrow 2x^2 + 74$	4x - 420 = 0		
	$\Rightarrow x^2 + 37x$	x - 210 = 0		
	$\Rightarrow x^2 + 42x$	x - 5x - 210 = 0		
	$\Rightarrow x(x+4)$	2) - 5(x + 42) = 0		
	\Rightarrow (x - 5)(z	(x + 42) = 0		
	\Rightarrow (x - 5) =	= 0 or (x + 42) = 0		
	\Rightarrow x = 5 or	x = -42		
	\Rightarrow x = 5[Si	nce x cannot be negative]		
	$\therefore AF = 5$	cm [From (1)]		
	Therefore A	B = 30 + x = 30 + 5 = 35 cm	[¹ /	′2]
	AC = 7 + x	= 7 + 5 = 12 cm		
	Let 'O' be t	he centre of the circle and 'r' the radius of the circle.		
	Join point C	0, F; points O, D and points O, E.		
	From the fig	gure,		
	Area of (ΔA	$(\Delta AOC) = Area (\Delta AOB) + Area (\Delta BOC) + Area (\Delta AOC)$	[¹ /	2]
	$=\frac{1}{2} \times AC \times$	$AB = \frac{1}{2} \times AB \times OE + \frac{1}{2} \times BC \times OD + \frac{1}{2} \times AC \times OC$		
	$\Rightarrow AC \times AI$	$\mathbf{B} = \mathbf{A}\mathbf{B} \times \mathbf{O}\mathbf{E} + \mathbf{B}\mathbf{C} \times \mathbf{O}\mathbf{D} + \mathbf{A}\mathbf{C} \times \mathbf{O}\mathbf{C}$		
	\Rightarrow 12 × 15 =	$= 35 \times r + 37 \times r + 12 \times r$		
	\Rightarrow 12 \times 35	= 84r		
	∴ r = 5			
	Thus the rac	lius of the circle is 5 cm		
24.	Lifetimes (i	n hours) Frequency	[¹ /	2]
	0 - 20	10		
	20 - 40	35		
	40 - 60	$52 f_0$		
	60 - 80	61 f ₁		
	80 - 100	38 f ₂		
	100 - 120	29		
	Mode = l +	$\frac{\mathbf{f}_1 - \mathbf{f}_0}{2\mathbf{f}_1 - \mathbf{f}_0 - \mathbf{f}_2} \times \mathbf{h}$	[2	1]
	Modal class	= interval with highest frequency		
	= 60 - 8	0		
	where $l = lo$	wer limit of modal class $= 60$		
	h = class int	erval = 20 - 0 = 20		
	$f_1 = frequen$	cy of the modal class = 61		
		Your Hard Work Leads to Strong Foundation	8	

18-01-2020

 $f_0 = frequency \ of \ the \ class \ before \ modal \ class = 52$

 $f_2 = frequency \ of \ the \ class \ after \ modal \ class = 38$

Mode
$$= 60 + \frac{61-52}{2(61)-52-38} \times 20$$

 $= 60 + \frac{9}{32} \times 20$
 $= 60 + \frac{9}{3} \times 5$
 $= 60 + 5.625$ [¹/₃]
25. Given : Lamp post (AB) = 3.6 m [¹/₃]
Height of girl (CD) = 90 cm $= \frac{90}{100}$ m = 0.9 m
Speed = 1.2 m/sec.
To Find : Length of her shadow i.e. DE
Solution :
The girl walks BD distance in 4 seconds
We know that,
Speed = $\frac{Distance}{Time}$
 $1.2 = \frac{BD}{4}$
 $1.2 \times 4 = BD$
BD = 4.8 m
Now, in AABE and ACDE
 $\angle E = \angle E$ (Common)
 $\angle B = \angle D$ (Both 90° because lamp post as well a the girl ar standing vertical to the ground)
Therefore, using AA similarity criterion
So, AABE - ACDE
We know that if two triangles are similar, their sides are in proportion [1]
 $\frac{BE}{DE} = \frac{AB}{CD}$
 $\frac{BD + DE}{DE} = \frac{AB}{CD}$
 $\frac{48 + DE}{DE} = \frac{3.6}{0.9}$
 $\frac{48 + DE}{DE} = \frac{3.6}{9} \times \frac{10}{10}$
 $\frac{48 + DE}{DE} = 4$

path to succ	CLASS – X [GSEB] (MAJOR TEST)	18	-01-2020]
RC	$4.8 + DE = 4 \times DE$			1
	4.8 = 4DE - DE			
	4.8 = 3DE			
	3DE = 4.8			
	$DE = \frac{4.8}{3}$			
	$DE = \frac{48}{3 \times 10}$			
	$DE = \frac{16}{10} = 1.6m$			
	Hence, Shadow is 1.6 long		[¹	/2]
26.	Let x be one's digit and y be tenth digit.			
	Then, number is $10y + x$			
	So, if the digits interchange their places, then the number is $10x + y$		[[1]
	now, $xy = 20$ (i)			
	10y + x - 9 = 10x + y			
	or $9y - 9x = 9$			
	or $y - x = 1$ (ii)			
	From (i) and (ii), we get			
	$x (x + 1) = 20 = 4 \times 5 = 4 \times (4 + 1)$			
	On comparing we get $x = 4$, then from (i), $y = 5$		[¹	/2]
	Thus, the number is 54.			
	[Note : you can also find roots by solving quadratic equation $x^2 + x - 20 = 0$]			
	OR			
26.	$\frac{1}{3}x^2 - \sqrt{11}x + 1 = 0$		[¹ /	/ ₂]
	Multiply by 3 on both sides, we have			
	$\Rightarrow 3x^2 - 3\sqrt{11}x + 3 = 0$			
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		[[1]
	$=\frac{-(-3\sqrt{11})\pm\sqrt{(-3\sqrt{11})^2-4(3)(3)}}{2(2)}$			
	2(3)			
	$=\frac{3\sqrt{11}\pm\sqrt{99-16}}{100}$			

$$= \frac{6}{3\sqrt{11} \pm \sqrt{83}}$$

$$\therefore \text{ Roots are } \frac{3\sqrt{11} + \sqrt{83}}{6}, \frac{3\sqrt{11} - \sqrt{83}}{6}$$
[¹/₂]

path to success	CLASS – X [GSEB] (MAJOR TEST)	18-01-2020
KG	SECTION - C	
	Do as directed : (Q-27 to Q-34) [3 marks each]	[24
27.	Given polynomial is $P(x) = 2x^3 + 9x^2 - 15$	[]
	Let a is the number which must be added to above polynomial so that it is exactly of	divisible by $2x + 3$
	So, by remainder theorem	
	$P\left(\frac{-3}{2}\right) + a = 0$	[1
	$\Rightarrow 2\left(\frac{-3}{2}\right)^3 + 9\left(\frac{-3}{2}\right)^2 - 15 + a = 0$	
	$\Rightarrow \frac{-27}{4} + \frac{81}{4} + a = 0$	[1
	$\therefore \frac{54}{4} + a = 0 \implies a = \frac{-27}{2}$	
	Hence $\frac{-27}{2}$ must be added the polynomial $2x^3 + 9x^2 - 15$ so that the resulting poly	nomial is exactly
	divisible by $2x + 3$	
28.	Let the larger number be x and smaller be y	[]
	Then according to question $x^2 - y^2 = 180$ (1)	
	and $y^2 = 8x(2)$	
	From (1) and (2)	
	$x^2 - 8x - 180 = 0$	[]
	$\Rightarrow x^2 - 18x + 10x - 180 = 0$	
	$\Rightarrow x(x-18) + 10(x-18) = 0$	
	$(\mathbf{x} - 18) (\mathbf{x} + 10) = 0$	
	\therefore x = 18 or x = -10 (Rejected)	
	:. $y^2 = 18 \times 8 = 144$ [From (2)]	[]
	$y = \pm 12$	
	Hence the numbers are 18, 12, and 18, -12	
.9.	3, 8, 13, 253	[]
	To find 20 th term form the last term we consider the sequence as follows	
	a = 253 and d = $3 - 8 = -5$	[]
	$a_n = a + (n-1)d$	
	$a_{20} = 253 + (20 - 1) (-5)$	
	$= 253 + 19 \times (-5)$	
	= 253 - 95	
	= 158	[]
	Hence, the 20 th term from the last term is 158.	
	OR	
	Multiples of 8 are : 8, 16, 24, 32 which form an A.P.	[]
	It is given that, $a = 8$, $d = 16 - 8 = 8$, here $n = 15$	

Your Hard Work Leads to Strong Foundation

18-01-2020

$$S_{s} = \frac{n}{2} [2a + (n-1)d]$$
(1)

$$\Rightarrow S_{s} = \frac{15}{2} [2x8 + (15-1) \times 8]$$
We know that,

$$= \frac{15}{2} [16 + 14 \times 8]$$

$$= \frac{15}{2} [16 + 112]$$

$$= \frac{15}{2} \times 128 = 15 \times 64 = 960.$$
(1)
Hence, the sum of first 15 multiples of 8 = 960.
30. Given points A(-6, 10) & B(3, -8)
We need to find ratio between AC & CB
Let point C(-4, 6)

$$\frac{k}{4} = \frac{1}{2} = \frac{1}{8}$$
(-6, 10) $(-4, 6)$
(3)
We need to find ratio between AC & CB
Let the ratio be k: 1
Hence, $m_{1} = k, m_{2} = 1$
Also, $x_{1} = -6, y_{1} = 10$
 $x_{2} = 3, y_{2} = -8$
 $\& x = -4, y = 6$
Using section formula
 $x = \frac{m_{1}x_{2} + m_{2}x_{1}}{m_{1} + m_{2}}$
 $-4 = \frac{3k - 6}{k + 1}$
 $-4(k + 1) = 3k - 6$
 $-4k - 4 = 3k - 6$
 $-4k - 4 = 3k - 6$
 $-4k - 3k = -6 + 4$
 $-7k = -2$
 $k = \frac{-2}{-7}$
Hence, then ratio is k: 1
 $= 7 \times \frac{2}{7}, 7 \times 1$
(1)
Multiplying 7 both sides
 $= 7 \times \frac{2}{7}, 7 \times 1$

ALLEN ALLEN

18-01-2020

So, the ratio is 2 : 7

31.

			[1]
Dail pocket allowance	Number of	Class mark (x _i)	f _i x _i
(in Rs)	workers (f _i)		
11 – 13	7	$\frac{11+13}{2} = 12$	7 × 12 = 84
13 – 15	6	$\frac{13+15}{2} = 14$	6 × 14 = 84
15 – 17	9	$\frac{15+17}{2} = 16$	9 × 16 = 144
17 – 19	13	$\frac{17+19}{2} = 18$	$13 \times 18 = 234$
19 – 21	f	$\frac{19+21}{2} = 20$	$f \times 20 = 20f$
21 – 23	5	$\frac{21+23}{2} = 22$	$5 \times 22 = 110$
23 – 25	4	$\frac{23+25}{2} = 24$	$4 \times 24 = 96$
$\sum f_i = 44$	+ <i>f</i>	$\sum f_i x_i = 752$	1 + 20 <i>f</i>

Mean
$$(\bar{x}) = \frac{\sum f_i x_i}{\sum f_i}$$

 $18 = \frac{752 + 20f}{44 + f}$
 $18 (44 + f) = 752 + 20f$
 $18(44) + 18(f) = 752 + 20f$
 $792 + 18f = 752 + 20f$
 $792 - 752 = 20f - 18f$
 $40 = 2f$

$$f = \frac{40}{2}$$
$$f = 20$$

OR

31. Here, modal class =
$$32 - 41$$

 $l = 32$, $f_0 = a$, $f_1 = 53$, $f_2 = b$ and $h = 9$
Mode = $l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$
 $\Rightarrow 34.5 = 32 + \frac{53 - a}{2 \times 53 - a - b} \times 9$
 $\Rightarrow \frac{2.5}{9} = \frac{53 - a}{106 - a - b}$
 $\Rightarrow 265 - 2.5a - 2.5b = 477 - 9a$

[1]

18-01-2020

 \Rightarrow 7.5a - 2.5b = 212 \Rightarrow 75a - 25b = 2120 $\therefore 13a - 5b = 424$...(1) As total observation are 165 [1] \Rightarrow So, 5 + 11 + a + 53 + b + 16 + 10 = 165 \Rightarrow 95 + a + b = 165 a + b = 70...(2) \therefore b = 70 - a Substitute b = 70 - a in equation (1) [1] \Rightarrow 13a - 5(70 - a) = 424 \Rightarrow 13a - 350 + 5a = 424 \Rightarrow 18a = 424 + 350 \Rightarrow 18a = 774 \therefore a = 43 \Rightarrow b = 70 - 43 = 27 \therefore Frequency a = 43 and b = 27 32. Given : Let circle be with centre O and P be a point [1] Ο outside circle. PQ and PR are two tangents to circle interscting at point Q and R respectively To prove : Lengths of tangents are equal i.e. PQ = PRConstruction : Join OQ, OR and OP Proof : As PQ is a tangent [1] $OQ \perp PQ$ (Tangent at any point of circle is perpendicular to the radius through point of contact) So, $\angle OOP = 90^{\circ}$ Hence $\triangle OQP$ is right triangle Similarly, PR is a tangent $OR \perp PR$ (Tangent at any point of circle is perpendicular to the radius through point of contact) So, $\angle ORP = 90^{\circ}$ In $\triangle OQP$ and $\triangle ORP$ [1] $\angle OQP = \angle ORP$ (Both 90°) OP = OP(Common) OQ = OR(Both radius) $\therefore \Delta OQP \cong \Delta ORP$ (R.H.S. congruency) Hence, PQ = PR (by CPCT) Hence both tangents from external point are equal in length

AREA DE AREAR INSTITUTE RATE DE AREAR (RAJASTHAN)

CLASS - X [GSEB] (MAJOR TEST)

18-01-2020

33. Area of the shaded region

= (Area of circle with OD (=7 cm) as diameter) + Area of Semi-Circle with AB as diameter – Area of $\triangle ABC$

$$= \pi \times \left(\frac{7}{2}\right)^{2} + \frac{1}{2} \times \pi \times (7)^{2} - \frac{1}{2} \times AB \times OC$$

= $\left(\frac{\pi}{4} \times 49 + \frac{\pi}{2} \times 49 - \frac{1}{2} \times 14 \times 7\right) cm^{2}$
= $\left(\frac{3\pi}{4} \times 49 - 49\right) cm^{2}$
= $\left(\frac{3}{4} \times \frac{22}{7} \times 49 - 49\right) cm^{2} = \frac{231 - 98}{2} cm = 66.5 cm^{2}$

34. Internal diameter of the pipe 20 cm = $\frac{20}{100} = \frac{1}{5}$ m

Internal radius = $\frac{1}{2} \times \frac{1}{5} = \frac{1}{10}$ m

Rate of flow of water = 3km/h = 3000 m/h

Let the pipe take t hours to fill up the tank.

Volume of the water that flows in t hours from the pipe

= Area of cross section \times speed \times time

$$= \pi r^2 \times \text{speed} \times \text{time}$$

$$= \pi \left(\frac{1}{100}\right) \times 3000 \times t = 30\pi t$$

Diameter of the cylinder = $10m \implies \text{Radius} = 5m$

Depth = 2m

So, Volume of the tank = $\pi r^2 h = \pi (25)2 = 50\pi m^3$

Now volume of the water that flows from the pipe in t hours = volume of the tank

∴
$$30\pi t = 50 \pi$$

∴ $t = \frac{50}{30}$ hours $= \frac{50}{30} \times 60 = 100$ mins.

OR

34. Form the figure we have

Height (h₁) of larger cylinder = 220 cm Radius (r₁) of larger cylinder = $\frac{24}{2}$ = 12 cm

Height (h_2) of smaller cylinder = 60 cm

Radius (r_2) of smaller cylinder = 8 cm

Total volume of pole

= volume of larger cylinder + volume of smaller cylinder

$$= \pi r_1^2 h_1 + \pi r_2^2 h_2$$

[1]

[2]

[1]

[1]

[1]

[1]

18-01-2020

 $= \pi (12)^2 \times 220 + \pi (8)^2 \times 60$ $= \pi [144 \times 220 + 64 \times 60]$ $= 35520 \times 3.14 = 1,11,532.8 \text{ cm}^3$ Mass of 1 cm^3 iron = 8 gm Mass of 111532.8 cm³ iron = 111532.8×8 = 892262.4 gm = 892.262 kg

SECTION - C

Do as directed : (Q-35 to Q-39) [4 marks each]

35.

Steps of construction:

(i) Draw a line segment BC with measurement of 6 cm.

(ii) Now construct angle 60° from point B and draw AB = 5 cm.

(iii) Join the point C with point A. Thus ABC is the required triangle.

(iv) Draw a line BX which makes an acute angle with BC and is opposite of vertex A.

(v) Cut four equal parts of line BX namely BB₁, BB₂, BB₃, BB₄.

(vi) Now join B_4 to C. Draw a line B_3C' parallel to B_4C .

(vii) And then draw a line C'A' parallel to CA.

Hence

A'BC' is the required triangle.

OR

35. **Steps of construction:**

- (i) Taking point O as centre draw a circle of radius 6 cm.
- (ii) Now, name a point P which is 10 cm away from point O. Join OP.
- (iii) Draw a perpendicular bisector of OP and name the intersection point of bisector and OP as O'.

(iv) Now draw a circle considering O' as centre and O'P as the radius.

(v) Name the intersection point of circles as Q and R.

(vi) Join PQ and PR. These are the required tangents.

[1]

[20]

[3]

18-01-2020

[3]

(vii) Measure lengths of PQ = 8cm and PR = 8cm

36. Let the speed of train and bus be u km/h and v km/h respectively. [1] According to the question, $\frac{60}{11} + \frac{240}{5} = 4$...(1) $\frac{100}{10} + \frac{200}{10} = 4 + \frac{10}{60} = \frac{25}{6} \dots (2)$ Let $\frac{1}{y} = p$ and $\frac{1}{y} = q$ The given equations reduce to: [1] 60p + 240q = 4...(3) $100p + 200q = \frac{25}{6}$ 600p + 1200q = 25(4) Multiplying equation (3) by 10, we obtain: [1] $600p + 2400q = 40 \dots (5)$ Subtracting equation (4) from equation (5), we obtain: 1200q = 15 $q = \frac{15}{1200} = \frac{1}{80}$ Substituting the value of q in equation (3), we obtain: [1] 60p + 3 = 460p = 1 $\therefore p = \frac{1}{u} = \frac{1}{60}, q = \frac{1}{v} = \frac{1}{80}$ u = 60 km/h, v = 80 km/hThus, the speed of train and the speed of bus are 60 km/h and 80 km/h respectively.

It is given that the angle of depression at A and B from the top of a tower be 30° and 60° respectively. Let the speed of the car be v m/s. Then AB = distance travelled by the car in 6 s.

= (6 x v) m (Dist = speed x time)

= 6v m

Let the car takes t sec. to reach the tower CD from B. Then,

.....(i)

BC = distance travelled by car in t sec.

$$=$$
 (v x t) m $=$ vt m

In right triangle BCD, we have

$$\tan 60^{\circ} = \frac{\text{CD}}{\text{BC}}$$
$$\Rightarrow \sqrt{3} = \frac{\text{h}}{\text{vt}}$$
$$\Rightarrow \text{h} = \sqrt{3} \text{ vt}$$

In right triangle ACD, we have

$$\tan 30^{\circ} = \frac{\text{CD}}{\text{AC}}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{6v + vt}$$

 $\Rightarrow 6v + vt = \sqrt{3}h$

$$\Rightarrow$$
 h = $\frac{6v + vt}{\sqrt{3}}$ (ii)

Comparing (i) and (ii), we get

$$\sqrt{3} \text{ vt} = \frac{6\text{v} + \text{vt}}{\sqrt{3}}$$

$$\Rightarrow \sqrt{3} \times \sqrt{3} \text{vt} = 6\text{v} + \text{vt}$$

$$\Rightarrow 3\text{vt} = 6\text{v} + \text{vt}$$

$$\Rightarrow 3\text{vt} - \text{vt} = 6\text{v}$$

$$\Rightarrow \text{vt} (3 - 1) = 6\text{v}$$

$$\Rightarrow \text{t} \times 2 = 6$$

$$\Rightarrow$$
 t = 3 seconds

Hence, the time taken by the car to reach the foot of the tower is 3 sec.

[1]

[1]

[1]

18-01-2020

38. Volume of the tank $=\frac{2}{3}\pi r^3$ [1] $=\frac{2}{3}\times\frac{22}{7}\times\left(\frac{3}{2}\right)^3$ $=\frac{99}{14}m^{3}$ $=\frac{99}{14}\times 1000$ liters $=\frac{99000}{14}$ liters Volume of water to be emptied = $\frac{1}{2} \times$ volume of tank [1] $=\frac{1}{2}\times\frac{99000}{14}$ $=\frac{99000}{28}$ litres Time taken to empty $\frac{25}{7}$ litres = 1 sec [1] Time taken to empty 1 litres = $\frac{7}{25}$ sec Time taken to empty $\frac{99000}{8}$ litres = $\frac{7}{25} \times \frac{99000}{28}$ sec [1] $=\frac{693000}{700}$ = 990 sec $=\frac{990}{60}\min$ = 16.5 min In $\triangle PQR$, $\angle Q = 90^{\circ}$. 39. Given: [1] $PQ^2 + QR^2 = PR^2.$ To prove : Draw QM \perp PR **Construction**: Proof: [1] In $\triangle PQM$ and $\triangle PQR$, $\angle PMQ = \angle PQR = 90^{\circ}$ $\angle QPM = \angle RPQ$ (Common) Μ $\therefore \Delta PQM \sim \Delta PRQ$ (By AA Similarity) $\frac{PQ}{PR} = \frac{MR}{PQ}$ 0 R $\Rightarrow PQ^2 = PM \times PR$...(i) Similarly, [1] \therefore In \triangle QMR and \triangle PQR,

 $\angle QMR = \angle PQR = 90^{\circ}$ $\angle QRM = \angle QRP \text{ (Common)}$ $\therefore \angle QRM \sim \angle PQR \text{ (By AA similarity)}$ $\therefore \frac{PQ}{PR} = \frac{MR}{PQ}$ $\Rightarrow PQ^2 = PM \times PR \quad ...(ii)$ Adding the relations obtained in (i) and (ii), we get, $PQ^2 + QR^2 = PM \times PR + PR \times MR$ = PR(PM + MR) $= PR \times PR$ $= PR^2$

OR

39. Statement : Ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

Given : Two triangles ABC and PQR such that $\triangle ABC \sim \triangle PQR$

To prove : $\frac{\operatorname{ar}(ABC)}{\operatorname{ar}(PQR)} = \left(\frac{AB}{PQ}\right)^2 = \left(\frac{BC}{QR}\right)^2 = \left(\frac{CA}{RP}\right)^2$

Proof : For finding the areas of the two triangles, we draw altitudes AM and PN of the triangles. [1]

Now,
$$\operatorname{ar}(ABC) = \frac{1}{2}BC \times AM$$

And
$$\operatorname{ar}(PQR) = \frac{1}{2}QR \times PN$$

So, $\frac{\operatorname{ar}(ABC)}{\operatorname{ar}(PQR)} = \frac{\frac{1}{2} \times BC \times AM}{\frac{1}{2} \times QR \times PN} = \frac{BC \times AM}{QR \times PN} \qquad \dots (1)$

Now, in $\triangle ABM$ and $\triangle PQN$.

$$\angle B = \angle Q \qquad (As \ \Delta ABC \sim \Delta PQR)$$
And $\angle M = \angle N \qquad (Each = 90^{\circ})$
So, $\Delta ABM \sim \Delta PQN \qquad (AA \ similarity \ criterion)$
Therefore, $\frac{AM}{PN} = \frac{AB}{PQ} \qquad ...(2)$
Also, $\Delta ABC \sim \Delta PQR$

[1]

[1]

18-01-2020

[1]

Rejict Center
So,
$$\frac{AB}{PQ} = \frac{BC}{QR} = \frac{CA}{RP}$$

Therefore, $\frac{ar(ABC)}{ar(PQR)} = \frac{AB}{PQ} \times \frac{AM}{PN}$
 $= \frac{AB}{PQ} \times \frac{AB}{PQ}$
 $= \left(\frac{AB}{PQ}\right)^2$

...(3)

[from(1) and (3)]

[From(2)]

Now using (3), we get

ar(ABC)_	$(AB)^2$	$(BC)^2$	$(CA)^2$
$\frac{1}{ar(PQR)}$	\overline{PQ}	$-\left(\overline{\mathbf{QR}}\right)$	$-\left({RP}\right)$