

# ALLEN CAREER INSTITUTE PRELIMINARY EXAM : 2019-20

Paper Set : SET-I(HT)

## **SUBJECT : Geometry**

**SSC Board - Sample Paper - 1 Solutions** 

#### **Entire Syllabus**

- Q.1 (A)
  - (i) c) 5
  - (ii) b)  $\frac{DE}{PQ} = \frac{EF}{RP}$
  - (iii) a) 2
  - (iv) b) 0

#### **(B)**

i)  $\sin 60 = \frac{AB}{14}$ 

$$\frac{\sqrt{3}}{2} = \frac{AB}{14}$$
$$AB = 7\sqrt{3}$$

(ii) Area of circle = Area of minor sector + Area of major sector 314 = 100 + Area of major sector Area of major sector = 214 cm<sup>2</sup>.

1

(iii) 
$$\frac{A(\Delta DEF)}{A(\Delta MNK)} = \frac{DE^2}{MN^2} = \frac{5^2}{6^2} = \frac{25}{36}$$

(iv) 
$$\sec \theta = \frac{2}{\sqrt{3}}$$
  
 $\cos \theta = \frac{\sqrt{3}}{2}$   
 $\cos \theta = \cos 30.$ 

$$\theta = 30 = \frac{\pi}{6}$$

## Q.2 (A)

- (i) <u>60</u> <u>90</u> 150
  - 30

| PUNE       |                                                   | GEOMETRY |
|------------|---------------------------------------------------|----------|
| (ii)       | 2                                                 |          |
|            | 2                                                 |          |
|            | 2                                                 |          |
| (iii)      | Property of angle bisector of a triangle          |          |
|            | AE<br>EB                                          |          |
|            | AD<br>DC                                          |          |
|            | mid-point theorem                                 |          |
| <b>(B)</b> |                                                   |          |
| (1)        | If $\triangle ACB$<br>$AC^2 = AB^2 + BC^2$        |          |
|            | $AC = \sqrt{144 + 1225}$                          |          |
|            | $AC = \sqrt{1369}$                                |          |
|            | AC = 37                                           |          |
| (ii)       | Vol. of cone = $\frac{1}{3}\pi r^2 h$             |          |
|            | $= \frac{1}{3}\pi \times 1.5 \times 1.5 \times 5$ |          |
| ()         | $= 3.75 \pi \text{ cm}^3$                         |          |
| (111)      | M = (-5, -2)<br>N = (2, 2)                        |          |
|            | Let L (0, y) be a point on y-axis                 |          |
|            | $LM = \sqrt{(0+5)^2 + (y+2)^2}$                   |          |
|            | $=\sqrt{25+y^2+4+4y}$                             |          |
|            | $LM = \sqrt{y^2 + 29 + 4y}$                       |          |
|            | $LN = \sqrt{(0-3)^2 + (y-2)^2}$                   |          |
|            | $=\sqrt{0+y^2+4-4y}$                              |          |
|            | $LN = \sqrt{y^2 + 13 - 4y}$                       |          |
|            | LM = LN                                           |          |
|            | $LM^2 = LN^2.$                                    |          |
|            | $y^2 + 29 + 4y = y^2 + 13 - 4y$                   |          |
|            | 16 = -8y                                          |          |
|            | Hence, $(0, -2)$ is the point on y-axis.          |          |

2 —





Step of construction :

- i. Draw a circle with center P and radius 3.2 cm.
- ii. Take any point M on the circle.
- iii. Draw ray PM.
- iv. Draw line I perpendicular to ray PX through point M.
- (v) a. AB = OA = OBHence OAB will be an equilateral triangle. Hence  $\angle AOB = 60^{\circ}$ .

b. 
$$\angle ACB = \frac{1}{2} \angle AOB$$

$$=\frac{1}{2} \times 60$$
$$\angle ACB = 30^{\circ}.$$

### Q.3 (A) Complete the following activities (Any one)





#### **(B)**

(i) Given :

*l* || m || n

AB, CD are transversal



| To prove :     | $\frac{PQ}{QR} = \frac{EF}{FG}$                 |                                                       |
|----------------|-------------------------------------------------|-------------------------------------------------------|
| Construction : | PL    EG<br>PE    MF<br>MF    LG<br>QM    RL    | PM = EF<br>ML = FG<br>(Basic proportionality theorem) |
|                | $\frac{PQ}{QR} = \frac{PM}{ML}$                 | (i)                                                   |
|                | $\frac{PQ}{QR} = \frac{EF}{FG}$                 | (ii)                                                  |
|                | From (i) and (ii)                               |                                                       |
|                | $\frac{PM}{ML} = \frac{EF}{FG} = \frac{PQ}{QR}$ |                                                       |
|                | $\frac{PQ}{QR} = \frac{EF}{FG}$                 |                                                       |

(ii) Let AB and CD be two building with AB = 10 m and angle of elevation from top of AB to top of CD





BD = AP = 12 APC is a right angled triangle in  $\triangle$ APC  $\tan \theta = \frac{CP}{AP}$   $\tan 60 = \frac{CP}{12}$   $\sqrt{3} = \frac{CP}{12}$   $CP = 12\sqrt{3}$  CD = CP + PD $= (12\sqrt{3} + 10)m$ 

(iii) From the centre O of smaller circle, draw seg OT  $\perp$  PR. Join OP, OR and seg MN. **Proof**: Quadrilateral RMNP is a cyclic quadrilateral.

 $\angle MRP = \angle MNQ$ 

also quadrilateral MNQS is a cyclic quadrilateral

 $\angle MNQ + \angle P = 180^{\circ}.$ 

 $\angle MNQ = \angle MSQ$ 

Hence,

 $\angle MRP = \angle MSQ$ 

But they are a pair of interior angle on the same side of transversal SR Hence, SQ  $\mid\mid$  RP.

(iv) Diagonal of perallelogram bisect each other.e.g. midpoint PR = midpoint QS

$$\left\{\frac{2+11}{2}, \frac{(-2-1)}{2}\right\} = \left\{\frac{(7+6)}{2}, \frac{(3-6)}{2}\right\}$$

 $\left\{\frac{13}{2}, \frac{-3}{2}\right\} = \left\{\frac{13}{2}, \frac{-3}{2}\right\}$ 

Midpoint of PR = Midpoint of QS So, PQRS is a parallelogram.

## Q.4

Given ∆ABC, GE || AB and GF || AC
Construction : Draw a median AD.
Since G is the centroid

we know 
$$\frac{\text{GD}}{\text{AD}} = \frac{1}{3}$$
 (centroid divide the median in 1 : 2 ratio)

 $\frac{A(\Delta GEF)}{A(\Delta ABC)} = \frac{GD^2}{AD^2} = \frac{1}{9}$ 



ii.  $\angle B = 45$ 

∠A = 100

∠C = 35

Step 1 : Draw a line segment BC = 6

Step 2 : Draw an angle 45 at B on BC

Step 3 : Draw an angle of 35 at C on BC.

Using perotector such that, it intersect angle drawn in step 2 at A.

 $\triangle ABC$  is constructed.

to construct,  $\Delta PBQ$  whose sides are 4/7 times the corresponding of  $\Delta ABC$ 

Draw an acute angle at BC

Using compass take 7 equal distant point.

Join 7<sup>th</sup> point with C

draw a parallel line (through  $4^{\text{th}}$  point) to line passing through  $7^{\text{th}}$  point intersecting BC at C'  $\Delta$ PBQ in 4/7 times  $\angle$ ABC.



iii. 
$$\angle SPQ = \frac{1}{2}m(arc PR)$$

 $\angle SQR = \frac{1}{2} m(\text{arc } PQ) \quad (\text{Inscribed angle})$  $\angle PSQ + \angle PQS + \angle SQP = 180^{\circ}.$  $\angle SQR = \frac{1}{2} m \text{ arc } SRQ$  $\angle SPQ = \frac{1}{2} m \text{ arc } SRP$ 

But,

$$\angle PSQ = \frac{1}{2} \angle PRQ$$
  
arc PR + arc RQ = 180°.  
also,



 $\angle PRQ + \angle PSQ = 180^{\circ}.$ 

Q.5

i.

So point G will be on the line EF.

ii. Equilateral triangle field each angle is 60°.

$$r = 6 m$$

Area of sector of a circle

$$=\frac{\theta}{360}\times\pi r^2$$

Area of sector =  $\frac{60}{360} \times \frac{22}{7} \times 6 \times 6$ 

= 18.8 m². Square field

area of sector

$$=\frac{90}{360}\times\frac{22}{7}\times6\times6$$

= 28.2 m². Hexagonal field area of sector

$$=\frac{120}{360} \times \frac{22}{7} \times 6 \times 6$$
$$= 37.7 \text{ m}^2$$

Now, when we compare the areas the hexagonal field has a larger are compared to the equilateral triangle and square field. Therefore, the row is able to graze maximum area in a hexagonal field so it should be tied in the hexagonal field.

7 |