ALLEN ____

MODEL QUESTION PAPER - SET-1 : 2021-22 MATHEMATICS (THEORY)

MM : 80

SOLUTION

Time : 3 Hrs.

Entire Syllabus

•	SECTION A	•
Q.1	Select and Write the correct Answer	16M
i.	$\mathbf{d}) \frac{5}{\sqrt{26}}$	2m
ii.	a) Circles	2m
iii.	a) $\frac{2-4x^2}{\sqrt{1-x^2}}$	2m
iv.	b) - 0.85	2m
v.	d) $\left(\sqrt{2},\sqrt{2}\right)$	2m
vi.	b) k = - 6	2m
vii.	a) $\log x - f(x) + c$	2m
viii.	a) 4, 5, 7	2m
Q.2	Answer the following (1 Mark Each)	4M
i.	All triangles are not equilateral triangles.	1m
ii.	Let $y = \tan^{-1}(\log x)$	1m
	Differentiating w.r.t. x, we get	
	$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{\mathrm{d}}{\mathrm{dx}} [\tan^{-1}(\log x)]$	
	$=\frac{1}{1+(\log x)^2}\cdot\frac{d}{dx}(\log x)$	
	$=\frac{1}{1+(\log x)^2}\cdot\frac{1}{x}$	
	$\therefore \qquad \frac{\mathrm{dy}}{\mathrm{dx}} = \frac{1}{\mathrm{x} \left[1 + (\log x)^2 \right]}$	
iii.	$\sin\left[\frac{\pi}{2} + \sin^{-1}\left(\frac{-1}{2}\right)\right]$	1m
	$=\sin\left[\frac{\pi}{2}-\sin^{-1}\left(\frac{1}{2}\right)\right]$	
	$=\sin\left[\frac{\pi}{2}-\frac{\pi}{6}\right]$	
	$=\sin\frac{\pi}{3}=\frac{\sqrt{3}}{2}$	

iv.
$$\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$$

$$\therefore \qquad \frac{dy}{1+y^2} = \frac{dx}{1+x^2}$$

Integrating on both sides, we get

$$\int \frac{dy}{1+y^2} = \int \frac{dx}{1+x^2}$$

 $\therefore \tan^{-1}(y) = \tan^{-1}(x) + c$

Also, $m_1 m_2 = -k$ $m_1 + (m_1 + 8) = -k$

(-2)(-2+8) = -k

-2(6) = -k

-12 = -k**k** = **12**

...

...

...

...

...

SECTION B

Attempt Any Eight Questions 16M Q.3 Given equation of the lines is $kx^2 + 4xy - y^2 = 0$. 2m Comparing with $ax^2 + 2hxy + by^2 = 0$, we get a = k, 2h = 4, b = -1. Let m_1 and m_2 be the slopes of the lines represented by $kx^2 + 4xy - y^2 = 0$. $m_1 + m_2 = \frac{-2h}{b} = 4$ and *.*.. $m_1m_2 = \frac{a}{b} = -k$ According to the given condition, $m_2 = m_1 + 8$ Now, $m_1 + m_2 = 4$ $m_1 + (m_1 + 8) = 4$ *.*.. *.*.. $2m_1 = -4$ ÷. $m_1 = -2$...(i)

...[From (i)]

MH-BOARD

2m

2m

Q.5

Q.4

Let $I = \int \left(\frac{x^2 + 2}{x^2 + 1}\right) a^{x + \tan^{-1}x} dx$ Put $x + \tan^{-1}x = t$ Differentiating w.r.t.x, we get

 $=\frac{1}{6}\left[-4+12+24\right]$

 $=\frac{1}{6}\times 32=\frac{16}{3}$ cubic units

Volume of tetrahedron = $\frac{1}{6} \begin{bmatrix} \overline{AB} & \overline{AC} & \overline{AD} \end{bmatrix}$

 $= \frac{1}{6} \left[4 \left(-1 \right) + 4 \left(3 \right) - 2 \left(-12 \right) \right]$

 $=\frac{1}{6}\begin{vmatrix} 4 & -4 & -2 \\ 3 & -1 & 0 \\ 0 & -4 & 1 \end{vmatrix}$

$$\left(1 + \frac{1}{1 + x^2}\right) dx = dt$$
$$\therefore \qquad \left(\frac{x^2 + 2}{x^2 + 1}\right) dx = dt$$

$$\therefore \qquad I = \int a^t . dt = \frac{a^t}{\log a} + c$$
$$\therefore \qquad I = \frac{a^{x + \tan^{-1} x}}{\log a} + c$$

Q.6
$$\frac{x-2}{3} = \frac{y+1}{2} = \frac{z-k}{1}$$

 $\overline{AB} = \overline{b} - \overline{a}$

 $\overline{AC} = \overline{c} - \overline{a}$ $= 3\hat{i} - \hat{j}$

 $\overline{AD} = \overline{d} - \overline{a}$

 $=-4\hat{j}+\hat{k}$

 $=4\hat{i}-4\hat{j}-2\hat{k}$

2m

Equation of plane is x - y - z + 8 = 0The given line passes through (2, -1, k). Since the line lies on the plane, the point (2, -1, k). lies on the plane x-y-z+8=0 $\therefore 2-(-1)-k+8=0$ $\therefore 2+1-k+8=0$ $\therefore k=11$

MH-BOARD

2m

Let $y = (\sin x)^x$ Taking log on both sides, we get $\log y = x \log (\sin x)$ Differentiating w.r.t. x, we get $\frac{d}{dx}(\log y) = x \cdot \frac{d}{dx}[\log(\sin x)]$ $+\log(\sin x) \cdot \frac{d}{dx}(x)$ $\therefore \frac{1}{y} \cdot \frac{dy}{dx} = x \cdot \frac{1}{\sin x} \cdot \frac{d}{dx}(\sin x) + \log(\sin x) \cdot 1$ $\therefore \frac{1}{y} \cdot \frac{dy}{dx} = \frac{x}{\sin x} \cdot \cos x + \log(\sin x)$ $\therefore \frac{dy}{dx} = y[\cot x + \log(\sin x)]$ $\therefore \frac{dy}{dx} = (\sin x)^x [x \cot x + \log(\sin x)]$

Q.8 Polar coordinates are
$$\left(\frac{3}{4}, 135^{\circ}\right)$$

Here
$$r = \frac{3}{4}$$
, $\theta = 135^{\circ}$
Now,
 $x = r \cos \theta = \frac{3}{4} \cos 135^{\circ}$
 $= \frac{3}{4} \cos (90 + 45)^{\circ}$

$$= \frac{-3}{4} \sin 45^{\circ}$$
$$= \frac{-3}{4\sqrt{2}}$$

Also,

Q.7

$$y = r \sin \theta = \frac{3}{4} \sin 135^{\circ}$$
$$= \frac{3}{4} \sin (90 + 45)^{\circ}$$
$$= \frac{3}{4} \cos 45^{\circ} = \frac{3}{4} \times \frac{1}{\sqrt{2}} = \frac{3}{4\sqrt{2}}$$
$$\therefore \text{ Cartesian coordinates} \equiv \left(\frac{-3}{4\sqrt{2}}, \frac{3}{4\sqrt{2}}\right)$$

4

ALLEN

Q.9

Given equation of the lines is

 $3x^{2} - 4\sqrt{3}xy + 3y^{2} = 0$ Comparing with $ax^{2} + 2hxy + by^{2} = 0$, we get a = 3,

 $h = -2\sqrt{3}$ and b = 3

Let θ be the acute angle between the lines.

$$\therefore \quad \tan \theta = \frac{2\sqrt{h^2 - ab}}{a + b} = \begin{vmatrix} 2\sqrt{(-2\sqrt{3})^2 - 3(3)} \\ 3 + 3 \end{vmatrix}$$
$$= \begin{vmatrix} 2\sqrt{12 - 9} \\ 6 \end{vmatrix}$$
$$= \begin{vmatrix} 2\sqrt{3} \\ 6 \end{vmatrix}$$
$$\therefore \quad \tan \theta = \frac{1}{\sqrt{3}}$$
$$\therefore \quad \theta = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$$
$$\therefore \quad \theta = 30^{\circ}$$
Q.10 Let $A = \begin{bmatrix} 2 & -3 \\ 3 & 5 \end{bmatrix}$ Here,
 $a_{11} = 2$
$$\therefore \quad M_{11} = 5 \quad \text{and } A_{11} = (-1)^{1+1}(5) = 5$$
$$a_{12} = -3$$
$$\therefore \quad M_{12} = 3 \text{ and } A_{12} = (-1)^{1+2}(3) = -3$$
$$a_{21} = 3$$
$$\therefore \quad M_{22} = -3 \text{ and } A_{22} = (-1)^{2+1}(-3) = 3$$
$$a_{22} = 5$$
$$\therefore \quad M_{22} = 2 \text{ and } A_{22} = (-1)^{2+2}(2) = 2$$
$$\therefore \quad [A_{11}]_{2\times 2} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} 5 & -3 \\ 3 & 2 \end{bmatrix}$$
Q.11 Let, $I = \int \frac{x}{x + 2} dx$

2m

2m

2m

 $=\int \frac{(x+2)-2}{x+2} dx$

2m

ALLEN

$$= \int \left(\frac{x+2}{x+2} - \frac{2}{x+2}\right) dx$$

$$= \int \left(1 - \frac{2}{x+2}\right) dx$$

$$-\int 1 \cdot dx - 2\int \frac{1}{x+2} dx$$

$$\therefore I = x - 2\log|x+2| + c$$
Q.12 Here $n = 400, p = 0.2$

$$\therefore q = 1 - p = 1 - 0.2 = 0.8$$

$$\therefore Mean = E(X) = np = 400 \times 0.2$$

$$= 80$$
Var $(X) = npq$

$$= 400 \times 0.2 \times 0.8$$

$$= 64$$

$$\therefore Standard deviation of $x = \sqrt{Var X}$

$$= \sqrt{64} = 8$$
Q.13 I = $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{1 - \sin x} dx = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \left(\frac{1}{1 - \sin x} \times \frac{1 + \sin x}{1 + \sin x}\right) dx$

$$= \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1 + \sin x}{\cos^2 x} dx$$

$$= \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sec x \tan x dx$$

$$= \left[\tan x\right]_{x^4}^{x^4} + \left[\sec x\right]_{x^4}^{x^4}}$$

$$= \left[\tan \frac{\pi}{4} - \tan\left(-\frac{\pi}{4}\right)\right] + \left[\sec\frac{\pi}{4} - \sec\left(-\frac{\pi}{4}\right)\right]$$

$$= \left[1 - (-1)\right] + \left(\sqrt{2} - \sqrt{2}\right)$$

$$\therefore I = 2$$$$

2021-22 - SET-1

24M

3m

3m

Q.14
$$y = A \cos 2x + B \sin 2x$$
 ...(1)
Since the solution contains two arbitrary
constants A and B, we differentiate two
times.
 \therefore Differentiating (1) w.r.t. x,
 $\frac{dy}{dx} = -2A \sin 2x + 2B \cos 2x$
and $\frac{d^2y}{dx^2} = -4A \cos 2x - 4B \sin 2x$
 $= -4 (A \cos 2x + B \sin 2x)$
 $= -4y$ [from (1)]
 $\therefore \frac{d^2y}{dx^2} + 4y = 0$

- ----

Q.15

SECTION C

Attempt Any Eight Questions

Let p : Surface area decreases.
q : Pressure increases.
∴ The given statement is p → q .
Its converse is q → p .
If pressure increases, then surface area decreases.
Its inverse is ~ p → ~ q .
If surface area does not decrease, then pressure does not increase.
Its contrapositive is ~ q → ~ p.
If pressure does not increase, then surface area does not decrease.

Q.16
$$\tan \theta + \tan 2\theta + \sqrt{3} \tan \theta \tan 2\theta = \sqrt{3}$$

 $\therefore \tan \theta + \tan 2\theta = \sqrt{3}(1 - \tan \theta \tan 2\theta)$

$$\frac{\tan \theta + \tan 2\theta}{1 - \tan \theta \tan 2\theta} = \sqrt{3}$$

$$\tan (\theta + 2\theta) = \sqrt{3}$$

$$\tan 3\theta = \sqrt{3}$$

$$\tan 3\theta = \tan \frac{\pi}{3}$$

$$3\theta = n\pi + \frac{\pi}{3}$$

$$\theta = \frac{n\pi}{3} + \frac{\pi}{9}$$

Q.17 The edge of a cube is decreasing at the rate of 0.6 cm/sec. Find the rate at which 3m its volume is decreasing when the edge of the cube is 2cm.

Let a be the length of each side of the cube and V be its volume.

Then,
$$\frac{da}{dt} = -0.6$$
 cm/sec, $a = 2$ cm[Given]
(where '-'ve sign represents rate of decrease.)
 $V = a^3$
Differentiating w.r.t. t, we get
 $dV = 2e^2 da$

 $\frac{dt}{dt} = 3a^2 \frac{dt}{dt}$

 $\therefore \qquad \frac{dV}{dt} = 3(2)^2(-0.6) = -7.2 \text{ cm}^3 / \text{ sec}$

 $\frac{dy}{dx} = \frac{y\sin\left(\frac{y}{x}\right) - x}{x\sin\left(\frac{y}{x}\right)}$

Thus, the volume is decreasing at the rate of 7.2 cm^3/sec .

...(i)

...(ii)

Q.18

ALLEN

3m

Put y = vxdifferentiating w.r.t.x, we get

 $x\sin\left(\frac{y}{x}\right)dy = \left[y\sin\left(\frac{y}{x}\right) - x\right]dx$

$$\frac{dy}{dx} = v + x \frac{dv}{dx} \qquad \dots (iii)$$

Substituting (ii) and (iii) in (i), we get

$$v + x\frac{dv}{dx} = \frac{vx\sin\left(\frac{vx}{x}\right) = x}{x\sin\left(\frac{vx}{x}\right)}$$

$$\therefore \quad v + x \frac{dv}{dx} = \frac{vx \sin v - x}{x \sin v}$$
$$\therefore \quad v + x \frac{dv}{dx} = v - \frac{1}{\sin v}$$
$$\therefore \quad x \frac{dv}{dx} = -\frac{1}{\sin v}$$

Q.19

$$\therefore \quad -\sin v \, dv = \frac{1}{x} \, dx$$
Integrating on both sides, we get
$$-\int \sin v \, dv - \int \frac{1}{x} \, dx$$

$$\therefore \quad -(-\cos v) = \log|x| + c$$

$$\therefore \quad \cos v = \log|x| + c$$

$$\therefore \quad \cos\left(\frac{y}{x}\right) = \log|x| + c$$
Let M be the foot of the perpendicular drawn from the point P(2, -3, 1) to the given line
$$\frac{x+1}{2} = \frac{y-3}{3} = \frac{z+1}{-1}$$
Let $\frac{x+1}{2} = \frac{y-3}{3} = \frac{z+1}{-1} = \lambda$.
The co-ordinates of any point on the line are given by $x = 2\lambda - 1$, $y = 3\lambda + 3$, $z = -\lambda - 1$

$$\therefore$$
 The co-ordinates of M are
$$(2\lambda - 1, 3y + 3, -\lambda - 1) \qquad ...(i)$$
The direction ratios of PM are
$$2\lambda - 2 - 2, 3\lambda + 3 + 3, -\lambda - 1 - 1$$
i.e., $2\lambda - 3, 3\lambda + 6, -\lambda - 2$
The direction ratios of the given line are 2, 3, -1.
Since PM is perpendicular to the given line.
$$\therefore \quad 2(2\lambda - 3) + 3(3\lambda + 6) - 1(-\lambda - 2) = 0$$

$$\therefore \quad 4\lambda - 6 + 9\lambda + 18 + \lambda + 2 = 0$$

$$\therefore \quad 14\lambda + 14 = 0$$

$$\therefore \quad \lambda = -1$$
Substituting $\lambda = -1$ in (i), the co-ordinates of M are
$$(-2 - 1, -3 + 3, 1 - 1)$$
i.e., $(-3, 0, 0)$

$$\therefore$$
Length of the perpendicular from P to the given line
$$= PM = \sqrt{(-3 - 2)^2 + (0 + 3)^2 + (0 - 1)^2}$$

$$= \sqrt{(-5)^2 + 3^2 + (-1)^2}$$

$$= \sqrt{25 + 9 + 1}$$

2021-22 - SET-1

 $= \sqrt{35}$ units

MH-BOARD

ALLE

Q.20

Let I =
$$\int \sqrt{x^2 + a^2} \cdot 1 \, dx$$

Integrating by parts,

$$I = \sqrt{x^{2} + a^{2}} \int 1 dx - \int \left(\int 1 dx \frac{d}{dx} \sqrt{x^{2} + a^{2}} \right) dx$$

$$= \sqrt{x^{2} + a^{2}} (x) - \int \left(x \cdot \frac{1}{2\sqrt{x^{2} + a^{2}}} (2x) \right) dx$$

$$= x\sqrt{x^{2} + a^{2}} - \int \frac{x^{2}}{\sqrt{x^{2} + a^{2}}} dx$$

$$= x\sqrt{x^{2} + a^{2}} - \int \left(\frac{a^{2} + x^{2} - a^{2}}{\sqrt{x^{2} + a^{2}}} \right) dx$$

$$= x\sqrt{x^{2} + a^{2}} - \int \left(\sqrt{x^{2} + a^{2}} - \frac{a^{2}}{\sqrt{x^{2} + a^{2}}} \right) dx$$

$$\therefore I = x\sqrt{x^{2} + a^{2}} - \int \sqrt{x^{2} + a^{2}} dx$$

$$+ a^{2} \int \frac{dx}{\sqrt{x^{2} + a^{2}}}$$

...(1)

$$\therefore I = x\sqrt{x^{2} + a^{2}} - I + a^{2} \log(x + \sqrt{x^{2} + a^{2}}) + c_{1}$$
....[From (1)]
$$\therefore 2I = x\sqrt{x^{2} + a^{2}} + a^{2} \log(x + \sqrt{x^{2} + a^{2}}) + c_{1}$$

$$\therefore I = \frac{x}{2}\sqrt{x^{2} + a^{2}} + \frac{a^{2}}{2} \log(x + \sqrt{x^{2} + a^{2}}) + c$$

$$\left(\text{ where } c = \frac{c_{1}}{2}\right)$$

Q.21 The cartesian equations of the line passing through A(x, y, z) and B(x_2 , y_2 , z_2) 3m

are $\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$

Here, $(x_1, y_1, z_1) = (-2, 3, 4)$ and $(x_2, y_2, z_2) = (1, 1, 2)$

 $(x_2, y_2, z_2) = (1, 1, 2)$

 \therefore Required Cartesian equation are

$$\frac{x - (-2)}{1 - (-2)} = \frac{y - 3}{1 - 3} = \frac{z - 4}{2 - 4}$$

$$\therefore \quad \frac{x+2}{3} = \frac{y-3}{-2} = \frac{z-4}{-2}$$

Substituting C(4, -1, 0) in the above equation, we get

$$\frac{4+2}{3} = \frac{-1-3}{-2} = \frac{0-4}{-2}$$

∴ 2 = 2 = 2

2021-22 - SET-1

Since C satisfies the equation of a line AB, points A, B, C are collinear.

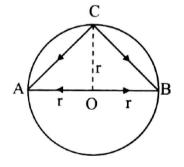
.

Evaluate:
$$\int \frac{3x-2}{x^2-3x+2} dx$$

Let $I = \int \frac{3x-2}{x^2-3x+2} dx$
Consider, $x^2 - 3x + 2 = x^2 - 2x - x + 2$
 $= x (x-2) - 1(x-2)$
 $= (x-1) (x-2)$
 $\therefore I = \int \frac{3x-2}{(x-1)(x-2)} dx$
Let $\frac{3x-2}{(x-1)(x-2)} = \frac{A}{x-1} + \frac{B}{x-2}$
 $\therefore 3x - 2 = A (x-2) + B (x-1)$
Put $x = 2$, $\therefore 4 = B$
Put $x = 1$, $1 = -A$, $\therefore A = -1$
 $\therefore I = \int \left(\frac{-1}{x-1} + \frac{4}{x-2}\right) dx$

$$= -\log (x - 1) + 4 \log (x - 2) + c$$

= 4 log (x - 2) - log (x - 1) + c



Let, r be the radius and O be the centre of the circle. A, B, and C are three points on the circle such that, AB is the diameter.

Let $\overline{a},\overline{b}$ and \overline{c} be the position vectors of points A, B, and C reaspectively.

ALLEN

:..

C is on the circle, $\left|\overline{c}\right| = r$

Also, $|\overline{a}| = |\overline{b}| = r$ and $\overline{b} = -\overline{a}$

Consider $\overline{CA}.\overline{CB} = (\overline{a} - \overline{c}) \cdot (\overline{b} - \overline{c})$

$$= (\overline{a} - \overline{c}) \cdot (-\overline{a} - \overline{c})$$
$$= (\overline{a} - \overline{c}) \cdot (-1)(-\overline{a} - \overline{c})$$
$$= (-1)(\overline{a} - \overline{c})(\overline{a} - \overline{c})$$
$$= (|\overline{c}|^2 - |a|^2)$$
$$= (\overline{c}^2 - \overline{c}^2)$$

$$= r^2 - r$$
$$= 0$$

 $\therefore \qquad \overline{CA} \cdot \overline{CB} = 0$

- \therefore \overline{CA} is perpendicular to \overline{CB} .
- \therefore The angle between \overline{CA} and \overline{CB} is a right angle.

$$\therefore$$
 m \angle ACB = 90°

:. The angle subtended on a semicircle is a right angle.

Since
$$0 < a < 2a$$

$$\therefore \int_{0}^{2a} f(x) dx = \int_{0}^{a} f(x) dx + \int_{a}^{2a} f(x) dx$$

In second integral put $x = 2a - t \therefore dx = -dt$
Also, when $x = a$, $t = a$ and
when $x = 2a$, $t = 0$
$$\therefore \int_{0}^{2a} f(x) dx = \int_{0}^{0} f(2a - t) (-dt)$$

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(2a - t) dt$$
$$= -\int_{a}^{b} f(2a - t) dt \qquad \dots \text{(by property)}$$
$$= \int_{0}^{a} f(2a - x) dx \qquad \dots \text{(by property)}$$

$$\therefore \int_{0}^{2a} f(x) \, dx = \int_{0}^{a} f(x) \, dx + \int_{0}^{a} f(2a - x) \, dx$$

Q.25 A random variable X has the following probability distribution:

	Χ	0	1	2	3	4	5	6	7
	P(X)	0	k	2k	2k	3k	k^2	$2k^2$	$7k^2 + k$
Ľ	Determin	ii. F	P(X < 3	s) iii.	P(X >	4)			

Sol. i. The table gives a probability distribution and therefore $\sum_{i=1}^{n} p_i = 1$ $0 + k + 2k + 2k + 3k + k^{2} + 2k^{2} + 7k^{2} + k = 1$ Ζ. $10k^2 - 9k - 1 = 0$ *.*:. $10k^2 + 10k - k - 1 = 0$ ÷. 10k(k + 1) - 1(k + 1) = 0*.*.. (10k - 1)(k + 1) = 0*.*.. $k = \frac{1}{10}$ or k = -1*.*.. But k cannot be negative $k = \frac{1}{10}$ *:*.. ii. P(X < 3)= P (X = 0 or X = 1 or X = 2)= P(X = 0) + P(X = 1) + P(X = 2) $= 0 + k + 2k = 3k = \frac{3}{10}$ iii. P(X > 4)= P(X = 5 or X = 6 or X = 7)= P(X = 5) + P(X = 6) + p(X = 7) $= k^2 + 2k^2 + 7k^2 + k$ $=10k^{2} + k = 10\left(\frac{1}{10}\right)^{2} + \frac{1}{10} = \frac{1}{10} + \frac{1}{10} = \frac{1}{5}$ Q.26 Here n = 5P (success) = P (target will be hit) = 0.2 $\therefore p = 0.2, q = 1 - 0.2 = 0.8$ Let X = Number of times the target is hit. Then X ~ B (n = 5, p = 0.2) Then p.m.f. of X is given by

P(X = x) = P(x) $= {}^{5}C_{x} (0.2)^{x} (0.8)^{5-x}, x = 0, 1, 2, \dots 5.$

- ... P (target is hit at least twice out of 5 shots) = 1 - [P(0) + P(1)] $= 1 - \left[{}^{5}C_{0} (0.2)^{0} (0.8)^{5} + {}^{5}C_{1} (0.2)^{1} (0.8)^{4} \right]$
 - = 1 [(1) (1) (0.328) + (5) (0.2) (0.4096)]= 1 - [0.328 + 0.4096]= 1 - 0.7376= 0.2624

SECTION D

	Attempt Any Five Questions	20M
Q.27	$x = a \cos^3 t$ Differentiating w.r.t. t, we get	4m
	$\frac{dx}{dt} = a\frac{d}{dt}(\cos t)^3 = a.3(\cos t)^2\frac{d}{dt}(\cos t)$	
	$=3a\cos^2 t(-\sin t)=-3a\cos^2 t.\sin t$	
	$y = a \sin^3 t$ Differentiating w.r.t. t, we get	
	$\frac{dy}{dt} = a\frac{d}{dt}(\sin t)^3 = a.3(\sin t)^2\frac{d}{dt}(\sin t)$	
	$=3a\sin^2 t.\cos t$	
	$\therefore \qquad \frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{3a\sin^2 t \cos t}{-3a\cos^2 t \sin t} = -\frac{\sin t}{\cos t} \dots (i)$	
	Now, $x = a \cos^3 t$	
	$\therefore \qquad \cos^3 t = \frac{x}{a}$	
	$\therefore \qquad \cos t = \left(\frac{x}{a}\right)^{\frac{1}{3}}$	
	$y = a \sin^3 t$	
	$\therefore \qquad \sin^3 t = \frac{y}{a}$	
	$\therefore \qquad \sin t = \left(\frac{y}{a}\right)^{\frac{1}{3}}$	
	From (i), we get	
	$\frac{dy}{dx} = \frac{-\sin t}{\cos t} = -\frac{\frac{y^{\frac{1}{3}}}{\frac{1}{3}}}{\frac{x^{\frac{1}{3}}}{\frac{1}{3}}} = -\left(\frac{y}{x}\right)^{\frac{1}{3}}$	

MH-BOARD

4m

 $\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{bmatrix}$ 0.28 Cofactors of matrix A are $A_{11} = (-1)^2 \begin{vmatrix} 3 & 0 \\ 2 & -1 \end{vmatrix} = -3$ $A_{12} = (-1)^3 \begin{vmatrix} 3 & 0 \\ 5 & -1 \end{vmatrix} = -(-3) = 3$ $A_{13} = (-1)^4 \begin{vmatrix} 3 & 3 \\ 5 & 2 \end{vmatrix} = 6 - 15 = -9$ $A_{21} = (-1)^3 \begin{vmatrix} 0 & 0 \\ 2 & -1 \end{vmatrix} = 0$ $A_{22} = (-1)^4 \begin{vmatrix} 1 & 0 \\ 5 & -1 \end{vmatrix} = -1$ $A_{23} = (-1)^5 \begin{vmatrix} 1 & 0 \\ 5 & 2 \end{vmatrix} = -2$ $A_{31} = (-1)^4 \begin{vmatrix} 0 & 0 \\ 3 & 0 \end{vmatrix} = 0$ $A_{32} = (-1)^5 \begin{vmatrix} 1 & 0 \\ 3 & 0 \end{vmatrix} = 0$ $A_{33} = (-1)^6 \begin{vmatrix} 1 & 0 \\ 3 & 3 \end{vmatrix} = 3$ $\therefore \text{ Matrix of cofactors of A} = \begin{vmatrix} -3 & 3 & -9 \\ 0 & -1 & -2 \\ 0 & 0 & 3 \end{vmatrix}$:. adj A = $\begin{bmatrix} -3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{bmatrix}$ Also $|A| = \begin{vmatrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{vmatrix}$ $= 1 (-3) = -3 \neq 0$ \therefore A⁻¹ exists. $\therefore \quad \mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \text{ (adj A)}$ $=\frac{-1}{3}\begin{vmatrix} -3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{vmatrix}$

Q.29 An open cylindrical tank whose base is a circle is to be constructed of metal sheet 4m so as to contain a volume of πa^3 cu.cm of water. Find the dimensions so that sheet required is minimum. Let r be the radius, h be the height, V be the volume and A be the total surface area of open cylindrical tank.

ALLEN

Then,
$$\nabla = \pi r^2 h = \pi a^3$$
(i)
and $A = \pi r h = \pi r^2$ (ii)
From (i), we get
 $r^2 h = a^3$
 $\therefore h = \frac{a^3}{r^2}$
Putting the value of h in (ii), we get
 $A = 2\pi r \left(\frac{a^3}{r^2}\right) + \pi r^2 = 2\pi a^3 \left(\frac{1}{r}\right) + \pi r^2$
 $\therefore \frac{dA}{dr} = 2\pi a^3 \left(-\frac{1}{r^2}\right) + 2\pi r = 2\pi \left(-\frac{a^3}{r^2} + r\right)$
 $\therefore \frac{d^2A}{dr^2} = 2\pi \left[(-a^3)(-2r^{-3}) + 1\right] = 2\pi \left(\frac{2a^3}{r^3} + 1\right)$
Consider, $\frac{dA}{dr} = 0$
 $\therefore 2\pi \left(-\frac{a^3}{r^2} + r\right) = 0$
 $\therefore r = \frac{a^3}{r^2}$
 $\therefore r^3 = a^3$
 $\therefore r = a$
For $a = r$,
 $\left(\frac{d^2A}{dr^2}\right) = 2\pi \left(\frac{2a^3}{a^3} + 1\right) = 6\pi > 0$
Hence, A, i.e., total surface area is minimum
when $r = a$.
From (i), we get
 $\pi r^2 h = \pi a^3$
 $\therefore r^2 h = a^3$
 $\therefore h = a$
Thus, the quantity or metal sheet required

Thus, the quantity or metal sheet required is minimum when height = radius = a cm.

0.30 L.H.S. $=(p \lor q) \land (p \lor \sim q)$ $\equiv p \lor (q \land \thicksim q)$ [Distributive law] $\equiv p \lor F$ [Complement law] ≡ p [Identify law] In $\triangle ABC$ by sine rule, we have Q.31 $\frac{a}{\sin A} = \frac{b}{\sin B} = k$ $a = k \sin A$ and $b = k \sin B$ ÷. ...(i) Now, $a \cos A = b \cos B$...[Given] $k \sin A \cos A = k \sin B \cos B$...[From (i)] $\sin A \cos A = \sin B \cos B$ *.*.. $2 \sin A \cos A = 2 \sin B \cos B$ *.*.. $\sin 2A = \sin 2B$ *.*.. ÷. $\sin 2A - \sin 2B = 0$ *.*.. $2\cos(A+B)\sin(A-B)=0$... $\left[\because \sin C - \sin D = 2\cos\left(\frac{C+D}{2}\right)\sin\left(\frac{C-D}{2}\right) \right]$ $2\cos(\pi-C)\sin A - B = 0$... [:: $A + B + C = \pi$] $-2 \cos C \cdot \sin (A - B) = 0$ *.*.. $\cos C = 0$ or $\sin (A-B) = 0$ ÷. $C = \frac{\pi}{2}$ or A - B = 0÷ $\dots \left[\because \cos \frac{\pi}{2} = 0, \sin 0 = 0 \right]$ $C = \frac{\pi}{2}$ or A = B*.*.. $C = \frac{\pi}{2}$ implies $\triangle ABC$ is right angled triangle and A = B implies $\triangle ABC$ is an *.*.. isosceles triangle. The triangle is either right angled triangle or an isosceles triangle. ÷. Q.32 Let, $\overline{a}, \overline{b}, \overline{c}$ be the position vectors of points A, B, C respectively. $\overline{a} = 3\hat{i} + 0\cdot\hat{j} + p\hat{k}, \overline{b} = -\hat{i} + q\hat{j} + 3\hat{k} \text{ and } \overline{c} = -3\hat{i} + 3\hat{j} + 0\cdot\hat{k}$ Let point C divides line segent AB in the ratio t : 1. i. By using section formula, $\overline{c} = \frac{t \cdot b + 1 \cdot \overline{a}}{t + 1}$ $\therefore \qquad -3\hat{i}+3\hat{j}+0\cdot\hat{k}=\frac{t\left(-\hat{i}+q\hat{j}+3\hat{k}\right)+\left(3\hat{i}+0\cdot\hat{j}+p\hat{k}\right)}{t+1}$

$$\therefore (t+1)(-3\hat{i}+3\hat{j}+0\hat{k})$$

= $-t\hat{i}+tq\hat{j}+3t\hat{k}+3\hat{i}+0\cdot\hat{j}+p\hat{k}$
$$\therefore -3(t+1)\hat{i}+3(t+1)\hat{j}+0\cdot\hat{k}$$

4m

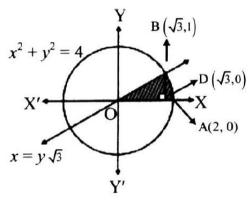
4m

Q.33

$$= (-t+3)\hat{i} + tq\hat{j} + (3t+p)\hat{k}$$

By equality of vectors, we get *.*.. -3(t-1) = -t+3...(i) 3(t+1) = tq...(ii) From (i), we get ...(iii) -3t - 3 = -t + 3-2t = 6*.*.. t = -3*:*.. *.*.. C divides segment AB externally, (since t is negative) in the ratio 3 : 1. ii. Putting t = -3 in (ii), we get 3(-3+1) = -3q-6 = -3q*.*.. q = 2*.*.. Putting t = -3 in (iii), we get 0 = -9 + pp = 9÷. *.*.. p = 9 and q = 2Given equation of the circle is $x^2 + y^2 = 4$...(i) and equation of the line is $x = v\sqrt{3}$ $\therefore \qquad y = \frac{x}{\sqrt{3}}$(ii) From (i), we get $v^2 = 4 - x^2$ $v = \sqrt{4 - x^2}$ ÷. ...(iii) [:: In first quadrant, y > 0] Find the point of intersection of $x^2 + y^2 = 4$ and $x = y\sqrt{3}$. Substituting (ii) in (i), we get $x^2 + \left(\frac{x}{\sqrt{3}}\right)^2 = 4$ $\therefore \qquad x^2 + \frac{x^2}{3} = 4$

- ALLEN
 - $\therefore \qquad \frac{4x^2}{3} = 4$
 - $\therefore x^2 = 3$
 - $\therefore \qquad x = \pm \sqrt{3}$
 - $\therefore \quad x = \sqrt{3} \qquad \dots [\because \text{ in first quadrant, } x > 0]$ When $x = \sqrt{3}, y = 1$
 - $\therefore \quad \text{The point of intersection is } B(\sqrt{3}, 1).$ Draw BD \perp OX



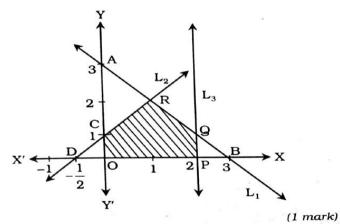
Required area = area of the region OABO = area of the region ODBO + area of the region BDAB $= \int_{0}^{\sqrt{3}} \frac{x}{\sqrt{3}} dx + \int_{\sqrt{3}}^{2} \sqrt{4 - x^{2}} dx \dots [\text{From (ii) and (iii)}]$ $= \frac{1}{\sqrt{3}} \left[\frac{x^{2}}{2} \right]_{0}^{\sqrt{3}} + \left[\frac{x}{2} \sqrt{4 - x^{2}} + \frac{4}{2} \sin^{-1} \left(\frac{x}{2} \right) \right]_{\sqrt{3}}^{2}$ $= \frac{1}{2\sqrt{3}} \left[\left(\sqrt{3} \right)^{2} - 0 \right] + \left[\frac{\frac{2}{2} \sqrt{4 - 4} + 2 \sin^{-1} \left(1 \right)}{\left\{ -\frac{\sqrt{3}}{2} \sqrt{4 - 3} + 2 \sin^{-1} \left(\frac{\sqrt{3}}{2} \right) \right\} \right]$ $= \frac{\sqrt{3}}{2} + \left[0 + 2 \cdot \frac{\pi}{2} - \left(\frac{\sqrt{3}}{2} + 2 \cdot \frac{\pi}{3} \right) \right]$ $= \frac{\sqrt{3}}{2} + \pi - \frac{\sqrt{3}}{2} - \frac{2\pi}{3} = \frac{\pi}{3} \text{ sq. units.}$

ALLEN

Q.34

To draw $x \le 2$, $x + y \le 3$, $-2x + y \le 1$ Draw lines x = 2, x + y = 3, -2x + y = 1

To draw	x	y	Lines passes through (x, y)	Sign	Region lies on
L	0	3	A (0, 3)		Origin
x + y = 3	3	0	B (3, 0)	≤	side
	0	1	C (0, 1)		
$\begin{array}{c} L_2 \\ -2x + y = 1 \end{array}$	$-\frac{1}{2}$	0	$D\left(-\frac{1}{2},0\right)$	_ ≤	Origin side
L_3 The line is parallel to x = 2 Y-axis			5	Origin side	



From the figure the shaded region OPQRC is the feasible region.

Solving equations of L_1 and L_2

$$x + y = 3$$

$$-2x + y = 1$$

$$\frac{+ - -}{3x = 2}$$

$$\therefore x = \frac{2}{3}, y = \frac{7}{3}$$

$$\therefore R = \left(\frac{2}{3}, \frac{7}{3}\right)$$

The corner points of feasible region are

O(0,0),P(2,0),Q(2,1),R
$$\left(\frac{2}{3},\frac{7}{3}\right)$$
,C(0,1)

ALLEN.

Vertex of	Value of
Feasible region (x, y)	Z = 6x + 4y
O (0, 0)	0
P (2, 0)	12
Q (2, 1)	16
$R\left(\frac{2}{3},\frac{7}{3}\right)$	$4 + \frac{28}{3} = 13\frac{1}{3}$
C (0, 1)	4

Z is maximum at x = 2, y = 1 and maximum value of Z is 16.

Together we will make a difference