CLASS - X (CBSE) BASIC

MATHEMATICS

MATHEMATICS

SAMPLE PAPER # 2

ANSWER AND SOLUTIONS

SECTION-A

- 1. Given, $21y^2 11y 2 = 0$ $\Rightarrow 21y^2 - 14y + 3y - 2 = 0$ $\Rightarrow 7y(3y-2) + 1(3y-2) = 0$ $\Rightarrow (3y-2) (7y+1) = 0$ $\Rightarrow y = \frac{2}{3}$ or $y = -\frac{1}{7}$ \therefore Zeroes of the given polynomials are $-\frac{1}{7}, \frac{2}{3}$. **OR** Given, quadratic equation is $5y^2 - 4y + 3 = 0$ On comparing with $ay^2 + by + c = 0$, we get a = 5, b = -4 and c = 3
 - Now. $D = b^2 4ac = (-4)^2 4 (5)(3)$ = 16 - 60 = -44 < 0

Since, D < 0, so the given quadratic equation has no real roots.

- 2. Given radius of base of cone, r = 12 cm and height h = 24 cm
 - : Volume of metal cone

$$=\frac{1}{3}\pi r^{2}h = \frac{1}{3}\pi \times (12)^{2} \times 24cm^{3}$$

Also, given diameter of sphere, d = 6cm

 \therefore Radius of sphere, $r = \frac{d}{2} = \frac{6}{2} = 3 \text{ cm}$

Volume of each spherical solid ball

$$=\frac{4}{3}\pi r^{3}=\frac{4}{3}\pi \times (3)^{3}=\frac{4}{3}\pi \times 27$$

Let the number of solid spherical balls formed be n.

 $\dots n = \frac{\text{Volume of solid metal cone}}{\text{Volume of 1 spherical solid ball}}$

$$\frac{=\frac{1}{3}\pi \times (12)^2 \times 24}{\frac{4}{3}\pi \times 27} = \frac{(12)^2 \times 24}{4 \times 27}$$
$$= \frac{144 \times 24}{4 \times 27} = 32 \text{ balls}$$

 4×27 3. Let assumed mean, A = 145

Table for deviation is given below

Height	Number	Class	$d_i = x_i - A$	$f_i d_i$
(in cm)	of girls	marks		
	(\mathbf{f}_{i})	X		
120-130	2	125	-20	-40
130-140	8	135	-10	-80
140-150	12	145=A	0	0
150-160	20	155	10	200
160-170	8	165	20	160
Total	$\Sigma f = 50$			$\Sigma f_i d_i = 240$

Here,
$$\Sigma f_i = 50$$
 and $\Sigma f_i d_i = 240$

:. Mean = A +
$$\frac{\Sigma f_i d_i}{\Sigma f_i}$$
 = 145 + $\frac{240}{50}$

$$a = 4, d = 7 - 4 = 3$$

$$a_n = 112$$

$$a + (n - 1) d = 112$$

$$4 + (n-1) 3 = 112$$

$$(n-1) 3 = 108$$

$$n-1 = 36$$

$$\Rightarrow n = 37$$

There are 37 terms in the sequence.

No. of cars	Frequency
0-10	7
10-20	13
20-30	14
30-40	11
40-50	20
50-60	12
60-70	15
70-80	8

$$\ell = 40, t_1 = 20, t_0 = 11, t_2 = 12, h =$$

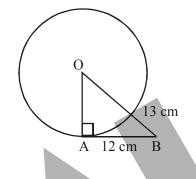
Mode = $\ell + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$

Your Hard Work Leads to Strong Foundation

5.

1/5

10

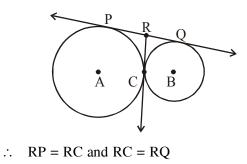

ALLEN CAREER INSTITUTE

PRE-NURTURE & CAREER FOUNDATION DIVISION

MATHEMATICS

$$= 40 + \frac{20 - 11}{2 \times 20 - 11 - 12} \times 10$$
$$= 40 + \frac{9}{40 - 23} \times 10$$
$$= 40 + \frac{90}{17}$$
$$= 40 + 5.29$$
$$= 45.29$$

- 6. Let AB be a tangent drawn from point B to a circle with centre O such that AB = 12 cm and OB = 13 cm. We know that, the tangent at any point of a circle is perpendicular to the radius through the point of contact.
 - \therefore In $\triangle AOB$, $OA \perp AB$

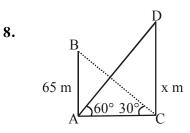

Now, in right angled ΔOAB ,

$$OB^{2} = OA^{2} + AB^{2}$$

$$\Rightarrow (13)^{2} = OA^{2} + (12)^{2} \Rightarrow 169 = OA^{2} + 144$$

$$\Rightarrow OA^{2} = 169 - 144 = 25 \Rightarrow OA = 5 \text{ cm}$$

OR


We know that the tangents drawn from an external point to the circle are equal.

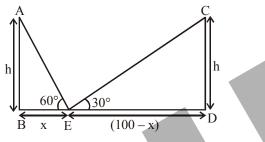
- \Rightarrow RP = RQ
- \Rightarrow R is the mid-point of PQ.

7. The given sequence
$$7,10\frac{1}{2}$$
, $14,..., 84$.
 $\therefore 10\frac{1}{2}-7=14-10\frac{1}{2}=...=\frac{7}{2}$
 \therefore The given sequence is an AP
Here, first term, $a = 7$,
common difference, $d = \frac{7}{2}$
and last term, $l = a_n = 84$
 $\therefore a_n = a + (n-1) d$
 $\therefore 84 = 7 + (n-1)\frac{7}{2}$ [$\because a = 7 \text{ and } d = \frac{7}{2}$
 $\Rightarrow \frac{7}{2}(n-1) = 84 - 7$
 $\Rightarrow \frac{7}{2}(n-1) = 77$
 $\Rightarrow n-1 = 77 \times \frac{2}{7}$
 $\Rightarrow n-1 = 77 \times \frac{2}{7}$
 $\Rightarrow n-1 = 22 \Rightarrow n = 23$
 \because Sum of n terms of an AP,
 $S_n = \frac{n}{2}(a+l)$
 \therefore Sum of 23 terms,
 $S_{23} = \frac{23}{2}(7+84) = \frac{23}{2} \times 91$
 $= \frac{2093}{2} = 1046\frac{1}{2}$

SECTION-B

Your Hard Work Leads to Strong Foundation

CLASS - X (CBSE) BASIC


MATHEMATICS

Let AB be the tower and CD be the hill. Then, $\angle CAD = 60^\circ$, $\angle ACB = 30^\circ$ and AB = 65m. Let CD = x m From right angled $\triangle BAC$

 $\cot 30^{\circ} = \frac{AC}{AB} \Rightarrow \sqrt{3} = \frac{AC}{65} \Rightarrow AC = 65\sqrt{3} \text{ m}$ From right angled $\triangle ACD$

$$\tan 60^\circ = \frac{\text{CD}}{\text{AC}}$$
$$\Rightarrow \sqrt{3} = \frac{\text{CD}}{65\sqrt{3}} \Rightarrow \text{CD} = 65\sqrt{3} \times \sqrt{3} = 195\text{m}$$

Let AB and CD be two pillars of equal height h m and distance between them be BD = 100 m. Let E be a point on the road such that BE = x m, DE = (100 - x)m, $\angle AEB = 60^{\circ}$ and $\angle CED = 30^{\circ}$.

In right angled $\triangle ABE$,

$$\frac{AB}{BE} = \tan 60^\circ \Rightarrow \frac{h}{x} = \sqrt{3} \quad [\because \tan 60^\circ = \sqrt{3}]$$

...(i)

 \Rightarrow h = $\sqrt{3}x$

In right angled $\triangle CDE$,

 $\frac{\text{CD}}{\text{DE}} = \tan 30^{\circ}$

$$\Rightarrow \frac{h}{100 - x} = \frac{1}{\sqrt{3}} \qquad [\because \tan 30^\circ = \frac{1}{\sqrt{3}}]$$

$$\Rightarrow h = \frac{100 - x}{\sqrt{3}} \qquad \dots \dots (ii)$$

From equation (i) and (ii), we get

 $\sqrt{3}x = \frac{100 - x}{\sqrt{3}}$

 $\Rightarrow 3x = 100 - x$

 $\Rightarrow 4x = 100$

∴ x = 25

On putting x = 25 in equation (i), we get

 $h = \sqrt{3} \times 25 = 25 \times 1.732 = 43.3 m$

Hence, height of each pillar is 43.3 m and position of the point from a pillar making an angle 60° is 25 m.

9. Let OP is radius and AB is tangent of the inner circle.

 \therefore OP \perp AB [\because tangent is perpendicular to the radius at the point of contact]

Again, let OB is radius of outer circle. Here, OP = 3 cm, OB = 5 cm

In right angled $\triangle OPB$, $(PB)^2 = (OB)^2 - (OP)^2$ [by using Pythagoras theorem]

$$\Rightarrow PB = \sqrt{(5)^2 - (3)^2}$$

[taking positive square root both sides]

$$=\sqrt{25-9}=\sqrt{16}=4\,\mathrm{cm}$$

∴ AB = 2PB = 2 × 4 = 8 cm
 [∴ perpendicular from the centre of a circle to a chord bisects the chord]

Hence, the length of a chord of the circle which touches the inner circle is 8 cm.

10.
$$9x^2 - 9(a + b)x + (2a^2 + 5ab + 2b^2) = 0$$

D =
$$[-9 (a + b)]^2 - 4 (2a^2 + 5ab + 2b^2) \times 9$$

= $81(a + b)^2 - 36 (2a^2 + 5ab + 2b^2)$
= $81a^2 + 81b^2 + 162ab - 72a^2 - 180ab - 72b^2$
= $9a^2 + 9b^2 - 18ab$

$$D = 9(a - b)^2$$

18

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \Rightarrow \frac{\left[9(a+b)\right] \pm \sqrt{9(a-b)^2}}{18}$$
$$x = \frac{9(a+b) \pm 3(a-b)}{18}$$

Your Hard Work Leads to Strong Foundation

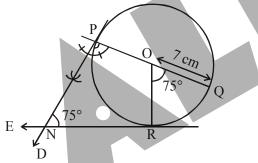
3/5

PRE-NURTURE & CAREER FOUNDATION DIVISION

MATHEMATICS

$$x = \frac{9a + 9b + 3a - 3b}{18}$$
$$x = \frac{12a + 6b}{18} = \frac{2a + b}{3}$$

$$\mathbf{x} = \frac{9\mathbf{a} + 9\mathbf{b} - 3\mathbf{a} + 3\mathbf{b}}{18}$$

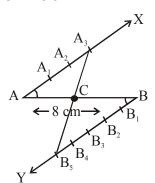

$$x = \frac{6a + 12b}{18} = \frac{a + 2b}{3}$$

Thus
$$x = \frac{2a+b}{3}$$
 or $\frac{a+2b}{3}$

SECTION-C

11. Steps of construction

- (i) Draw a circle with O as centre and radius 7 cm.
- (ii) Draw any diameter POQ of this circle.
- (iii) Draw the radius OR meets the circle at R such that $\angle QOR = 75^{\circ}$.
- (iv) Draw PD \perp PO and RE \perp OR.


Let PD and RE intersect each other at point N. Then, NP and NR are the required tangents to the given circle inclined to each other at an angle of 75°

OR

Steps of construction

- (i) Draw a line segment AB = 8 cm and a ray AX making an acute angle with the line segment AB.
- (ii) Draw another ray BY || AX such that $\angle ABY = \angle BAX$.
- (iii) Mark 3 points, i.e. $A_1, A_2, A_3(: m = 3)$ on AX and 5 points, i.e. B_1, B_2, B_3, B_4, B_5 (: n = 5) on BY such that $AA_1 = A_1A_2 = A_2A_3 = BB_1 = B_1B_2 = B_2B_3$ $= B_3B_4 = B_4B_5$

(iv) Join A_3B_5 which intersects AB at point C Thus, C divides AB in the ratio 3 : 5, i.e. AC:CB = 3:5.

12. The given series is in inclusive form. Converting it to exclusive form and preparing the cumulative frequency table as given below

Class interval	Frequency (f _i)	Comulative frequency
159.5-162.5	15	15
162.5-165.5	117	132
165.5-168.5	136	268
168.5-171.5	118	386
171.5-174.5	14	400
Total	N=Σf _i =400	

Here,
$$N = 400$$

Now,
$$\frac{N}{2} = \frac{400}{2} = 200$$

The cumulative frequency just greater than 200 is 268 and the corresponding class is 165.5-168.5.

Thus, the median class is 165.5-168.5.

 \therefore *l*=165.5, h = 3 and f = 136 and cf = 132

$$\therefore \text{ Median} = l + \left\{ h \times \frac{\frac{N}{2} - cf}{f} \right\}$$
$$= 165.5 + \left\{ 3 \times \frac{200 - 132}{136} \right\}$$
$$= 165.5 + \frac{3 \times 68}{136}$$

= 165.5 + 1.5 = 167Hence, the median height is 167 cm.

Your Hard Work Leads to Strong Foundation

path to success	CLASS - X	CLASS - X (CBSE) BASIC	
13.	(i) In ΔBEF tan60° = $\frac{BF}{EF}$	14. (i) Volume of spherical par	$t = \frac{4}{3}\pi r^3$
			$=\frac{4}{3}\times3.14\times\left(\frac{8.5}{2}\right)^3$
	$\sqrt{3} = \frac{35.5 - 2.5}{\text{EF}}$		$= 321.39 \text{ cm}^3$
	<i>–</i>	(ii) Volume of solid figure	= vol. of cylinder +
	$EF = \frac{33}{\sqrt{3}} = \frac{33\sqrt{3}}{3}$	vol of sphere = $\pi (1)^2 \times 8 + 321.39$	
		$= 3.14 \times 8 + 321.39$	
	$= 11\sqrt{3} m$	= 25.12 + 321.39	
	(ii) In ΔBFD	$= 346.51 \text{ cm}^3$	
	$\tan 30^\circ = \frac{BF}{DF}$		
	$\frac{1}{\sqrt{3}} = \frac{33}{\mathrm{DE} + 11\sqrt{3}}$		
	$DE + 11\sqrt{3} = 33\sqrt{3}$		
	$DE = 22\sqrt{3} m$		