CLASS - X (CBSE) STANDARD

MATHEMATICS

MATHEMATICS

SAMPLE PAPER # '

ANSWER AND SOLUTIONS

SECTION-A

- 17th term from end means 17th term from begining of 216, 211,, 6, 1 i.e. d = 211 - 216 = -5 a₁₇ = a + 16d = 216 + 16(-5) = 216 - 80 = 136
- 2. $4x^2 + 4\sqrt{3}x + 3 = 0$

Here a = 4, b = $4\sqrt{3}$, c = 3

 $D = b^2 - 4ac$

$$D = (4\sqrt{3})^2 - 4(4)(3) = 48 - 48 = 0$$

 \Rightarrow Roots are Real and equal

3. Let AB and CD be two parallel tangents to the circle at P and Q respectively.

To prove : POQ is a diameter.

Construction : Through O draw OR ||BA or OR || CD as AB and CD are parallel tangents.

Proof : $\angle OPA = 90^{\circ}$ (radius is always perpendicular to tangent)

Since OR || BA (by construction)

 $\angle OPA + \angle POR = 180^{\circ}$

 $\angle POR = 180^{\circ} - 90^{\circ} = 90^{\circ}$

Similarly $\angle QOR = 90^{\circ}$

$$\angle POR + \angle QOR = 180^{\circ}$$

 \Rightarrow POQ is straight line through O. So PQ is diameter.

OR

 $PT = PS \implies \angle PTS = \angle PST$ But $\angle PTS + \angle PST + 60^{\circ} = 180^{\circ} \implies$ $2\angle PTS = 120^{\circ} \implies \angle PTS = \angle PST = 60^{\circ}$ \therefore PTS is an equilateral triangle \therefore TS = PT = 5 cm 4. Volume of hemisphere = $\frac{2}{3}\pi \left(\frac{21}{2}\right)^3$

Volume of one cone = $\frac{1}{3}\pi \left(\frac{7}{2}\right)^2 \times 9$

Number of cones =
$$\frac{2 \times \frac{21}{2} \times \frac{21}{2} \times \frac{21}{2}}{\frac{7}{2} \times \frac{7}{2} \times 9} = 21$$

Volume of cuboid = $[66 \times 20 \times 27]$ cm³ = Volume of the pipe = $\pi [R^2 - r^2]l$ $\Rightarrow \pi [R^2 - r^2]l = 66 \times 20 \times 27$ Here R = 5 cm and r = 4 cm $\frac{22}{7} \times [5^2 - 4^2]l = 66 \times 20 \times 27$

$$\underline{66 \times 20 \times 27 \times 7}$$

$$l = 1260 \text{ cm}$$

Class Interval	X	f	xf
0-20	10	7	70
20-40	30	Р	30P
40-60	50	10	500
60-80	70	9	630
80-100	90	13	1170
		39+P	2370+30P

$$\frac{2370 + 30P}{39 + P} = 54$$

$$2370 + 30P = 2106 + 54P$$

$$264 = 24P$$

$$P = 11$$

$$a^{2}b^{2}x^{2} + b^{2}x - a^{2}x - 1 = 0$$

6.
$$a^{2}b^{2}x^{2} + b^{2}x - a^{2}x - 1 = 0$$

or $b^{2}x(a^{2}x + 1) - 1(a^{2}x + 1) = 0$
or $(b^{2}x - 1)(a^{2}x + 1) = 0$
i.e., $(b^{2}x - 1) = 0$ or $(a^{2}x + 1) = 0$
So, $x = \frac{1}{b^{2}}$ or $x = -\frac{1}{a^{2}}$

 \therefore The roots of the equation are $\frac{1}{b^2}$ and $-\frac{1}{a^2}$.

Your Hard Work Leads to Strong Foundation

5.

1/4

PRE-NURTURE & CAREER FOUNDATION DIVISION

MATHEMATICS

SECTION-B

7.	Class Interval	f	c.f
	15 – 25	8	8
	25 - 35	10	18
	35 – 45	Х	18 + x
	45 – 55	25	43 + x
	55 - 65	40	83 + x
	65 – 75	У	83 + x + y
	75 – 85	15	98 + x + y
	85 – 95	7	105 + x + y
	Total	140	

Median = 58

Median class : 55 – 65

Median =
$$\ell + \frac{\frac{N}{2} - c.f.}{f} \times h$$

 $58 = 55 + \frac{70 - 43 - x}{40} \times 10$
 $3 = \frac{70 - 43 - x}{4}$
 $12 = 27 - x$
 $x = 27 - 12 = 15$
 $y = 20$

P A 3.5 cm

Steps of construction

- 1. Draw circle with centre at O and radius 3.5 cm.
- 2. Construct radii OA and OB such that $\angle AOB = 90^{\circ}$.
- 3. Draw perpendiculars to OA and OB at A and B respectively and let they intersect at P.
- 4. Now, PA and PB is a pair of tangents inclined to each other at an angle of 90°.

Lifetime Frequency 9. 0-20 10 20-40 35 40-60 52 60-80 61 80-100 38 100-120 29 Total 225

Mode =
$$60 + \frac{61-52}{2 \times 61-52-38} \times 20$$

= $60 + \frac{9}{122-90} \times 20$
= $60 + \frac{9}{32} \times 20$
= $60 + \frac{45}{8}$
= $60 + 5.625$
= 65.625

- 10. Let AC be the cliff and ED be the ship. AC = (h + 12) m Now, in rt $\triangle AEB$
 - $\tan 45^{\circ} = \frac{h}{EB}$ $\tan 45^{\circ} = 1$ $\Rightarrow h = EB$ $\ln rt \Delta EBC,$ $\tan 30^{\circ} = \frac{BC}{EB}$ $(1) \qquad A^{A}$ $= \frac{45^{\circ}}{B}$ 12 m D^{A} $= \frac{45^{\circ}}{B}$ 12 m D^{A} $= \frac{10^{\circ}}{B}$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{12}{h} [From (1), h = EB]$$

$$\Rightarrow$$
 h = 12 $\sqrt{3}$

 \therefore Height of cliff = $(12 + 12\sqrt{3})$ m.

$$= 12 (1 + \sqrt{3}) m.$$

OR

PQ = 50 metres is the height of the tower. Let AB = h metres be the height of the building. Angle of elevation of the top of the building from the foot of the tower = 30° , i.e., $\angle AQB = 30^\circ$.

8.

Your Hard Work Leads to Strong Foundation

PRE-NURTURE & CAREER FOUNDATION DIVISION

MATHEMATICS

In
$$\triangle PQA$$
 : $x^2 = 12^2 + y^2$
 $x^2 - y^2 = 144$...(2)
Put (2) in (1) 144 + 169 - 25 = 10y
 $10y = 288 \implies y = 28.8$
PA = $x = \sqrt{144 + (28.8)^2} = \sqrt{973.44}$

- = 31.2 cm
- 13. (i) Let assumed mean, A = 0.10 Table for assumed mean method and their product with corresponding frequency is given below

Concentration of SO ₂ (in ppm)	Frequency (f _i)	Class mark (x _i)	d _i =x _i -A	f _i d _i
0.00-0.04	4	0.02	- 0.08	- 0.32
0.04-0.08	9	0.06	- 0.04	- 0.36
0.08-0.12	9	0.10=A	0	0
0.12-0.16	2	0.14	0.04	0.08
0.16-0.20	4	0.18	0.08	0.32
0.20-0.24	2	0.22	0.12	0.24
Total	$\Sigma f_i = 30$			$\Sigma f_i d_i = -0.04$

Here, total observations $(\Sigma f_1) = 30$ and $\Sigma f_1 d_1$ = - 0.4

According to formula,

Mean = A +
$$\frac{\Sigma f_1 d_1}{\Sigma f_1} = 0.10 + \frac{(-0.04)}{30}$$

$$= 0.10 - 0.001 = 0.099 \text{ ppm}$$

(ii) Here,
$$N = 30$$

Concentration of SO ₂	Frequency	Cummulative frequency
(in ppm)	(f ₁)	(cf)
0.00-0.04	4	4
0.04-0.08	9	13
0.08-0.12	9	22
0.12-0.16	2	24
0.16-0.20	4	28
0.20-0.24	2	30

$$\therefore \frac{N}{2} = \frac{30}{2} = 15$$

Which lies in the cumulative frequency 22, whose median class interval is 0.08-0.12.

Median =
$$\ell + \frac{\frac{N}{2} - cf}{f} \times h$$

$$= 0.08 + \frac{15 - 13}{9} \times 0.04 = 0.0888$$

14. (i) Total distance covered by competitor in placing the second potato in bucket.

$$= 2 \times 6 + 2 \times (6+4)$$

= 32 m

(ii) The distance run by the competitor to picks up the first potato, second potato, third potato, fourth potato.....are respectively 2x6 $2x{6+4}$, 2x(6+4+4),

2x(6+4+ 4+4+4)... i.e. 12, 20, 28, 36.....

Clearly, it is an AP with first term, a = 12and common difference, d = 20 - 12 = 8

$$s_{10} = \frac{10}{2} [2 \times 12 + 9 \times 8]$$

= 5 [24 + 72] = 5 × 96
= 480 m