CLASS - X (CBSE) BASIC

MATHEMATICS

MATHEMATICS

SAMPLE PAPER

ANSWER AND SOLUTIONS SECTION-A 3. Classes Freque

1. $x^2 - 4x - 8 = 0$

$$x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \times 1 \times (-8)}}{2}$$

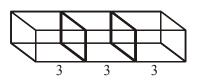
 $=\frac{4\pm\sqrt{16+32}}{2}$

$$=\frac{4\pm\sqrt{48}}{2}$$

$$=\frac{4\pm4\sqrt{3}}{2}$$

$$=2\pm 2\sqrt{3}$$

Given $eq^n x^2 - 4x + 1 = 0$ Here a = 1, b = -4, c = 1Discriminant $D = b^2 - 4ac$


$$= (-4)^2 - 4 \times 1 \times 1$$

= 16 - 4

OR

= 12 2. Volume of cube = 27 $a^3 = 27$

$$a = 27$$

 $a = 3$

Length of cuboid formed = $3+3+3 = 9$			
breadth of cuboid formed = 3			
height of cuboid formed = 3			
surface area of cuboid = $2(9 \times 3 + 3 \times 3 + 3 \times 9)$			
= 2 (27 + 9 + 27)			
$= 2 \times 63 = 126 \text{ cm}^2$			

3.	Classes	Frequency
	0 - 6	7
	6 – 12	5
	12 – 18	10
	18 – 24	12
	24 - 30	6

Since, highest frequency is 12 Hence, modal class is 18 - 24 $l = 18, f_1 = 12, f_0 = 10, f_2 = 6, h = 6$ $\ell + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$ Mode $\frac{12-10}{24-10-6} \times 6$ $= 18 + \frac{2}{8} \times 6$ $= 18 + \frac{3}{2}$ = 18 + 1.5= 19.5 Two APs are 63, 65, 67, ..., (1) and 3, 10, 17, (2) From (1), First term = 63 and common difference = 2. Its nth term = $63 + (n - 1) \times 2 = 2n + 61$. From (2), First term = 3 and common difference = 7Its nth term = $3 + (n - 1) \times 7 = 7n - 4$ Putting 7n - 4 = 2n + 61 \Rightarrow $7n - 2n = 61 + 4 \Rightarrow 5n = 65 \Rightarrow n = 13$ Class Frequency cf

Chabb	11 equency	••
12.5-17.5	2	2
17.5-22.5	22	24
22.5-27.5	19	43
27.5-32.5	14	57
32.5-37.5	13	70

Your Hard Work Leads to Strong Foundation

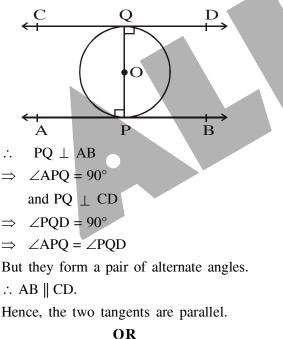
5.

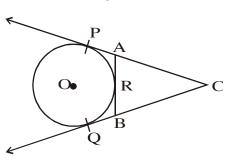
4.

1/4

ALLEN CAREER INSTITUTE

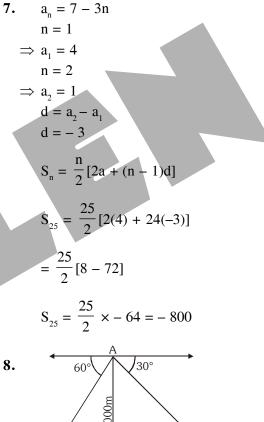
PRE-NURTURE & CAREER FOUNDATION DIVISION


MATHEMATICS


$$\frac{N}{2} = \frac{70}{2} = 35$$

Median class = 22.5 - 27.5
Median = $\ell + \frac{\frac{N}{2} - cf}{f} \times h$
= 22.5 + $\frac{35 - 24}{19} \times 5$
= 22.5 + $\frac{11 \times 5}{19}$
= 22.5 + $\frac{55}{19}$
= 22.5 + 2.89
= 25.39

6. In the figure, PQ is diameter of the given circle and O is its centre.


Let tangents AB and CD be drawn at the end points of the diameter PQ.

Since, the tangents at a point to a circle is perpendicular to the radius through the point.

CP = CQ = 11 cm(Tangents from external point) CQ = CB + BQBut BQ = BR (Tangents from external point) $\therefore 11 = 7 + BR$ or BR = 4 cm **SECTION-B** $a_n = 7 - 3n$ n = 1

 $P \xrightarrow{60^{\circ}} 30^{\circ} Q$

Let A be the position of the captain of an aeroplane flying at the altitude of 1000 metres from the ground.

AB = The altitude of the aeroplane from the ground = 1000 m

P and Q be the position of two ships.

Let PB = x metres, and BQ = y metres.

Required : PQ = Distance between the ships = (x + y) metres.

Nour Hard Work Leads to Strong Foundation

CLASS - X (CBSE) BASIC

y)

MATHEMATICS

ABP is rt.
$$\Delta$$
 at B

$$\frac{AB}{PB} = \tan 60^{\circ}$$

$$\frac{1000}{x} = \sqrt{3} \Rightarrow x = \frac{1000}{\sqrt{3}}$$

$$x = \frac{1000(1.732)}{3} \Rightarrow x = 577.3 \text{ m}$$
ABQ is rt. Δ at B

$$\frac{AB}{BQ} = \tan 30^{\circ}$$

$$\frac{1000}{y} = \frac{1}{\sqrt{3}} \Rightarrow y = 1000 \sqrt{3}$$

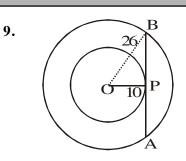
$$y = 1000 (1.732) = 1732 \text{ m}$$
Required distance between the ships = (x + metres)

$$= (577.3 + 1732) \text{ m} = 2309.3 \text{ m}$$
OR

$$W$$
Height of tree = (x + y)m

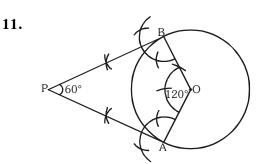
$$\tan 30^{\circ} = \frac{x}{8}$$

$$\Rightarrow x = \frac{8}{\sqrt{3}} \text{ m}$$


$$\cos 30^{\circ} = \frac{8}{y}$$

$$\frac{\sqrt{3}}{2} = \frac{8}{y}$$

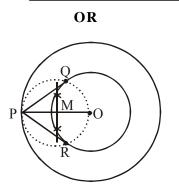
$$y = \frac{16}{\sqrt{3}}$$


$$x + y = \frac{8}{\sqrt{3}} + \frac{16}{\sqrt{3}} = \frac{24}{\sqrt{3}} \text{ m}$$

$$\Rightarrow \frac{24}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = 8\sqrt{3} \text{ m}$$

In **DOPB** $OP^2 + PB^2 = OB^2$ [by pythagoras theorem] $(10)^2 + PB^2 = (26)^2$ $PB^2 = (26)^2 - (10)^2$ $PB^2 = 676 - 100 = 576$ PB = 24 cm $\therefore AB = AP + PB = 24 + 24 = 48cm$ Let the number be x and x + 110. ATQ $x^2 + (x + 1)^2 = 421$ $x^2 + x^2 + 1 + 2x = 421$ $2x^2 + 2x - 420 = 0$ $x^2 + x - 210 = 0$ $x^2 + 15x - 14x - 210 = 0$ x (x + 15) - 14(x + 15) = 0(x + 15) (x - 14) = 0x = -15 (Rejected); x = 14x + 1 = 14 + 1 = 15Thus, numbers are 14 and 15.

Steps of construction


- 1. Draw circle with centre at O and radius 3 cm.
- 2. Construct radii OA and OB such that $\angle AOB = 120^{\circ}$.
- 3. Draw perpendiculars to OA and OB at A and B respectively and let they intersect at P.
- 4. Now, PA and PB is a pair of tangents inclined to each other at an angle of 60°.

Your Hard Work Leads to Strong Foundation

ALLEN AREER INSTITUTE

PRE-NURTURE & CAREER FOUNDATION DIVISION

MATHEMATICS

Steps of construction

1. Two concentric circles of radius 4cm & 6cm are drawn.

2. Taking P a point on circumference of outer circle & OP is joined.

3. Perpendicular bisector of OP is drawn intersecting it at M.

4. Taking M as centre & MP as radius, a circle is drawn intersecting smaller circle at Q & R.

5. PQ & PR are required tangents.

12.

Class Interval Frequency $\mathbf{f_i}\mathbf{x_i}$ X 0-20 10 50 5 20-40 30 $30f_1$ f_1 40-60 50 10 500 60-80 70 70f₂ f_2 7 80-100 90 630 110^{-1} 100-120 8 880 Total 50 $2060 + 30f_1 + 70f_2$ $30 + f_1 + f_2 = 50$ $f_1 + f_2 = 20$(1) Mean = $\frac{\Sigma f_i x_i}{\Sigma f_i}$ $62.8 = \frac{2060 + 30f_1 + 70f_2}{50}$ $3140 = 2060 + 30f_1 + 70f_2$ $30f_1 + 70f_2 = 1080$ $3f_1 + 7f_2 = 108$..(2) Multiplying equation (1) by 3 and subtracting from (1) $3f_1 + 7f_2 = 108$ $3f_1 + 3f_2 = 60$ $4f_2 = 48$ $f_2 = 12$ from (1) $f_1 = 8$

13. (i) In AABD $\tan 45^\circ = \frac{AB}{BD}$ $1 = \frac{AB}{BD}$ BD = ABBD = 20m(ii) In ∆CBD $\tan 60^\circ = \frac{\text{CB}}{\text{BD}}$ $\sqrt{3} = \frac{CA + 20}{20}$ $20\sqrt{3} = CA + 20$ $CA = 20\sqrt{3} - 20$ $= 20(\sqrt{3}-1)$ = 20(1.73 - 1) $= 20 \times 0.73$ = 14.6 m(i) slant height = $\sqrt{r^2 + h^2}$ 14. $=\sqrt{7^2+24^2}$ $=\sqrt{49+576}$ $=\sqrt{625}$ = 25 cm(ii) Total surface area = curved surface area of cylinder + curved surface area of hemisphere + curved surface area of cone $= 2\pi \times 7 \times 40 + 2\pi \times 7^2 + \pi \times 7 \times 25$ $= \pi (560 + 98 + 175)$

$$= 833 \times \frac{22}{7}$$

= 22 × 119
= 2618 cm²

4/4