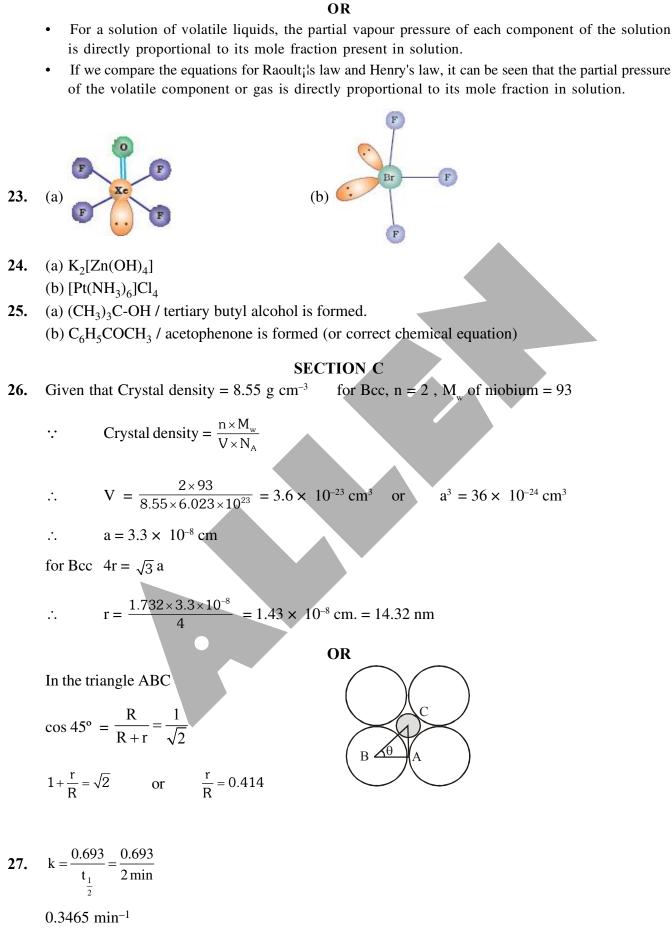
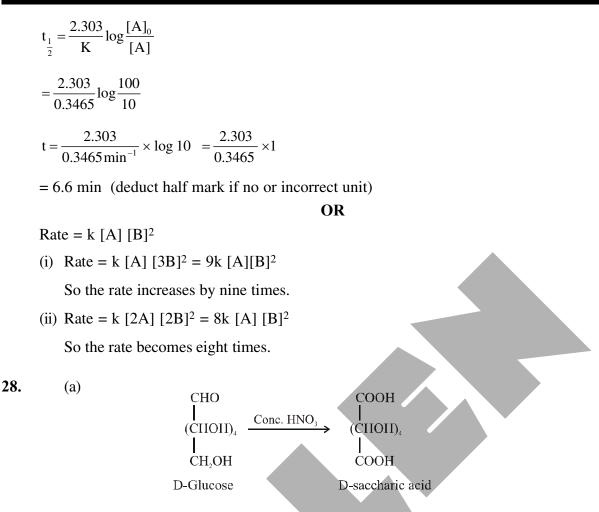

CBSE MODEL PAPER -1 (SOLUTIONS) : 2020-21 CHEMISTRY

CHEMISTRY	
	SECTION A
1.	(i) (c)
	(ii) (a)
	(iii) (a) or (c)
	(iv) (b)
2.	(i) (a) or (b)
	(ii) (c)
	(iii) (a)
	(iv) (d)
3.	(b) or (b)
4.	(c) or (b)
5.	(a) or (a)
6.	One mark may be awarded to any option
7.	(c) or (a)
8.	(b)
9.	(d)
10.	(c)
11.	(c)
12.	(d)
13.	(d)
14.	(a)
15.	(c)
16.	(d) or (i / (ii)
	SECTION B
17	Due to lowering of veneur pressure of solution Receives it depends on molelity / number of solution


17. Due to lowering of vapour pressure of solution. Because it depends on molality / number of solute particles.


OR

Due to osmosis. / Due to inward movement of water molecules. Yes, osmosis is directly proportional to temperature of solvent.

 $\pi = 20.5$ atm. (1/2 mark may be deducted for no or incorrect unit)

(b) The amino acids contains both acidic –COOH group & basic –NH2 (amino) group in their structure, due to which they can exist both as acid & base, this nature is called Amphoteric nature

$$R - CH - C - OH$$

$$NH_{2}$$
(\alpha - amino acid)

(c) In α-helix, a polypeptide chain form by all possible hydrogen bonds by twisting into a right handed helical structure with –NH group of each amino acid.

In β -pleated all peptide chains are stretched out to nearly extensions & then laid side by side which are held together by intomolecular hydrogen bonding.

29. (i) $A \rightarrow CH_3CHO$, $B \rightarrow CH_3 - CH = N - OH$

(ii)
$$A \rightarrow CH_3COOH$$
, $B \rightarrow CH_3COCl$

(iii)
$$A \rightarrow C_6H_5COONa, B \rightarrow C_6H_6$$

30. (a) In test tube (iii), containing sulphur powder.

$$3S + 2H_2SO_4 \xrightarrow{\text{Heat}} 3SO_2 + 2H_2O$$

- ALLEN,
 - (b) In test tube (i), containing cane sugar.

$$C_{12}H_{22}O_{11} + H_2SO_4 \xrightarrow{\Delta} 12C + 11H_2O$$

(c) In test tube (ii), containing copper turnings

$$Cu + 2H_2SO_4 \xrightarrow{\Delta} CuSO_4 + SO_2 + 2H_2O$$
SECTION D

- **31.** (a)
 - (i) Cu⁺¹(3d¹⁰) compounds are white because of absence of unpaired electrons while Cu⁺² (3d⁹) compounds are coloured due to unpaired e- / shows d-d transition.
 - (ii) E° value for Mn³⁺ / Mn²⁺ couple is much more positive than that for Fe³⁺ / Fe²⁺, due to the Mn²⁺ have higher stability than M³⁺ due to half filled d⁵ configuration.
 - (iii) due to completely filled d-orbitals in their ground state as well as in oxidized state.
 - (b) $Co = [Ar]4s^23d^7$, $Co^{+2} = [Ar] 3d^7$

$$\mu = \sqrt{n(n+2)}$$
$$= \sqrt{3(3+2)} = \sqrt{15} = 3.92 \text{ B.M.}$$

OR

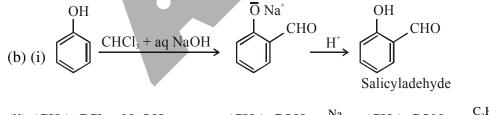
Actinoids

All are radioactive

(a)

Lanthanoids

- (1) most of them are not radioactive
- (2) don't show a wide range of oxidation stat


(3) Most of their ions are colourless

Most of their ions are coloured (or any other correct differences)

Show a wide range of oxidation state

- (b) (i) Sc⁺³, because of absence of unpaired electron.
 - (ii) Cr, because of presence of strong intermetallic bonding than Cu.
- **32.** (a) Tert-butyl alcohol,

because it forms more stable 3° carbocation than 1° carbocation

(ii)
$$(CH_3)_3CCl + NaOH_{(aq.)} \longrightarrow (CH_3)_3COH \xrightarrow{Na} (CH_3)_3CONa \xrightarrow{C_2H_3Cl} (CH_3)_3COC_2H_5$$

(iii)
$$CH_3CH = CH_2 \xrightarrow{(i)B_2H_6} CH_3CH_2CH_2OH$$
 (or by any other suitable method)

OR

(a) $CH_3 - CH - CH - CH_3 \xrightarrow{H^+} CH_3 - CH - CH - CH_3$ $I \qquad I \qquad CH_3 \qquad OH \qquad CH_3 \xrightarrow{H^+} CH_3 - CH - CH_3$

$$CH_{3} - CH - CH - CH_{3} \xrightarrow{-H_{2}O} CH_{3} - CH - CH_{3} + CH_{3}$$

$$CH_{3} - CH_{3} \xrightarrow{-H_{2}O} CH_{3} \xrightarrow{-H_{2}O} CH_{3} - CH_{3} \xrightarrow{-H_{2}O} CH_{3}$$

$$CH_{3} - CH_{3} \xrightarrow{-CH_{3}O} CH_{3} \xrightarrow{-H_{2}O} CH_{3} \xrightarrow{-H_{2}O} CH_{3} \xrightarrow{-H_{2}O} CH_{3}$$

$$CH_{3} - CH_{2} - CH_{3} + Br^{-} \longrightarrow CH_{3} - CH_{3} \xrightarrow{-H_{2}O} CH_{3}$$

$$CH_{3} - CH_{3} - CH_{3} - CH_{3} \xrightarrow{-H_{2}O} CH_{3} \xrightarrow{-H_{2}O} CH_{3}$$

$$CH_{3} - CH_{3} - CH_{3} - CH_{3} \xrightarrow{-H_{2}O} CH_{3} \xrightarrow{-H_{2}O} CH_{3}$$

$$CH_{3} - CH_{3} - CH_{3} \xrightarrow{-H_{2}O} CH_{3} \xrightarrow{-H_{2}O} CH_{3} \xrightarrow{-H_{2}O} CH_{3}$$

$$CH_{3} - CH_{3} - CH_{3} \xrightarrow{-H_{2}O} CH_{3} \xrightarrow{-H_{2}O} CH_{3} \xrightarrow{-H_{2}O} CH_{3}$$

$$CH_{3} - CH_{3} - CH_{3} \xrightarrow{-H_{2}O} CH_{3} \xrightarrow{-H_{2}O} CH_{3} \xrightarrow{-H_{2}O} CH_{3}$$

$$CH_{3} - CH_{3} - CH_{3} \xrightarrow{-H_{3}O} CH_{3} \xrightarrow{-H_{3}O} CH_{3} \xrightarrow{-H_{3}O} CH_{3} \xrightarrow{-H_{3}O} CH_{3}$$

$$CH_{3} - CH_{3} - CH_{3} \xrightarrow{-H_{3}O} CH_$$

- (ii) Br_2 in CH_3COOH
- (iii) Br_2 aq. / Bromine water
- 33. (a) (i) Silver wire at 30°C because as temperature decreases, resistance decreases so conduction increases.
 - (ii) 0.1 M CH₃COOH, because on dilution degree of ionization increases hence conduction increases.
 - (iii) KCl solution at 50°C, because at high temperature mobility of ions increases and hence conductance increases

(b)
$$E^0 \text{ cell} = E^0_{\ C} - E^0_{\ A}$$

$$= 0.34 - (-0.76) = 1.10V$$

$$\Delta G^{\circ} = -nFE^{0} = -2 \times 1.10 \times 96500$$

$$= -212300 \text{ J/mol or } -212.3 \text{ kJ/mol}$$

OR

(a).
$$E^0 cell = E^0_C - E^0_A$$

$$= 0.80 - (-0.76) = 1.56$$
 V

E cell = E⁰cell -
$$\frac{0.059}{n} \log \frac{[Zn^{2+}]}{[Ag^{+}]^{2}} = 1.56 - \frac{0.059}{2} \log 10^{3} = 1.47 \text{ V}$$

(b). Y, as molar conductivity increases with dilution due to increase in degree of dissociation.