CAREER INSTITUTE ath to success

.

CLASS - X (CBSE)

MATHEMATICS

MATHEMATICS

SAMPLE PAPER

path to succe	CAREER INSTITUTE KOTA (RAJASTHAN)	PRE-NURTURE & CAREER FOUNDATION DIVISION		
7.	$\begin{array}{l} \hline \text{KOTA (RAJASTEAN)} \\ \hline \text{Given equation } 6x^2 - x - 2 &= 0 \\ 6x^2 - 4x + 3x - 2 &= 0 \\ 2x(3x - 2) + 1(3x - 2) &= 0 \\ (3x - 2)(2x + 1) &= 0 \\ 3x - 2 &= 0 \text{ or } 2x + 1 &= 0 \\ x &= \frac{2}{3} \text{ or } x &= -\frac{1}{2} \end{array}$	10.	ORAB PR $\angle ABQ = \angle BQR$ (Alta $\angle ABQ = 70^{\circ}$ $\angle OQB = 180^{\circ} - 90^{\circ} - \angle ABO$ $\angle OQB = 180^{\circ} - 90^{\circ} - \angle ABO$ In $\triangle s$ ADE and ABC $\angle ADE = \angle ABC$ [Correst $\angle ADE = \angle ACB$ [Correst $\triangle ADE \sim \triangle ABC$ [by AADADDE	ernate $\angle s$) $Q = 20^{\circ}$ sponding angles] sponding angles] A]
	Thus, roots are $\frac{2}{3}$ and $-\frac{1}{2}$ OR $r = 3$ is root of equation $kr^2 - kr - 3 = 0$ $\Rightarrow k.3^2 - k.3 - 3 = 0$ $\Rightarrow 9k - 3k = 3$ $\Rightarrow 6k = 3$	11. 12.	$\frac{1}{AB} = \frac{1}{BC}$ $\frac{3}{5} = \frac{4}{x}$ $x = \frac{20}{3} \text{ cm}$ Minimum number of points of cosx = cos60° cos30° + sin6	of be marked = 50° sin 30°
8.	$\Rightarrow k = \frac{1}{2}$ CP = CQ [Length of tangents from an external point to a circle are equal] CQ = 11 cm [:: CP = 11 cm] BQ = CQ - CB = 11 - 7 = 4 cm BR = BQ [Length of tangents from an external point to a circle are equal]	13.	$\cos x = \frac{1}{2} \times \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} \times \frac{1}{2}$ $= \frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{4} = \frac{2\sqrt{3}}{4} = \frac{\sqrt{3}}{2}$ $= \cos 30^{\circ}$ $x = 30^{\circ}$ $\cos \theta = \frac{1}{2}$ $\Rightarrow \sec \theta = 2$ $Now, \cos \theta (\cos \theta - \sec \theta) = \frac{1}{2}$	$\left(\frac{1}{2}-2\right)$
9.	BR = 4 cm AP = AQ = 4 cm $\angle PAQ = 90^{\circ}$ [Given] Now, OP \perp AP, OQ \perp AQ [Line joining the centre to point of contact of tangent is perpendicular to tangent.] In quadrilateral OPQA $\angle P + \angle Q + \angle A + \angle O = 360^{\circ}$ $90^{\circ} + 90^{\circ} + 90^{\circ} + \angle O = 360^{\circ}$ $\angle O = 90^{\circ}$ Also, OP = OQ (Radius of same circle)	14.	$= \frac{1}{2}$ Diameter of circle = side of s Radius of circle = 3 cm	$\left(\frac{1-4}{2}\right) = \frac{-3}{4}$ square = 6 cm
	Thus, OPAQ in a square \Rightarrow Radius of circle = 4 cm.	sto Si	Area of circle = $\frac{22}{7}$ r ² = $\frac{22}{7}$ = 28.28 cm ²	$\times 3 \times 3 = \frac{156}{7}$

SATE TO SUCCESS

CLASS - X (CBSE)

MATHEMATICS

15. Volume of sphere = Volume of cuboid

$$\frac{4}{3}\pi r^3 = 49 \times 33 \times 24$$

r = 21 cm

16. Number of bed eggs = $0.035 \times 400 = 14$

OR

Number of favourable outcomes = 3 Total outcomes = 36

Probability =
$$\frac{3}{36} = \frac{1}{12}$$

SECTION-II

- 17. (a) (i) The coordinates of points Q and S are(2, 3) and (6, 6)
 - (b) (ii) Distance between the vertices Q and S is

$$8 = \sqrt{(6-2)^2 + (6-3)^2} = \sqrt{4^2 + 3^2}$$
$$= \sqrt{16+9} = \sqrt{25} = 5 \text{ units}$$

(c) (i) As the coordinates of points Q and P are(2, 3) and (2, 6).

 \therefore The width of the rectangle = 6 - 3 = 3

(d) (ii) By using internal division formula.

$$\frac{1}{Q(2,3)}$$
 $\frac{2}{G}$ $R(6,3)$

Coordinate of

$$G = \left(\frac{1 \times 6 + 2 \times 2}{1 + 2}, \frac{1 \times 3 + 2 \times 3}{1 + 2}\right)$$

$$=\left(\frac{6+4}{3},\frac{3+6}{3}\right)$$

$$=\left(\frac{10}{3},\frac{9}{3}\right)=\left(\frac{10}{3},3\right)$$

(e) (iii) Area of rectangle PQRS
= Length × Breadth
= 4 × 3 = 12 sq. units

- 18. (a) (i) Total number of equilateral triangle in the given figure is 6.
 - (b) (iv) If area of two triangle are equal, then it is not necessary to be similar or congruent.
 - (c) (iii) As we know that there are six equilateral triangle all have equal side.

Hence, we get six similar triangles.

- (d) (iv) 'SSA' property is not used for making triangles similar.
- (e) (iv) Area of hexagon = 6 × Area of one equilateral triangle having side a.

$$= 6 \times \frac{\sqrt{3}}{4} \times (a)^2$$
$$= \frac{3\sqrt{3}}{2} (a)^2$$

- 19. (a) (i) Here, we see that shape of the parabola is upward, So, in quadratic polynomial ax² + bx + c, a is always > 0.
 - (b) (ii) Given curve intersect the x-axis at two point i.e. -2 and 1.

Hence, zeroes of given curve are -2 and 1.

(c) (ii) Since, zeroes of given polynomial are -2 and 1.

.: Polynomial expression,

 $p(x) = x^2 - (sum of zeroes)x + product of zeroes$

$$= x^2 - (-2 + 1)x + (-2)(1)$$

$$= x^2 + x - 2$$

(d) (i) We have, $p(x) = x^2 + x - 2$

When x = 2, then $p(2) = 2^2 + 2 - 2 = 4$

(e) (iv) If we move that parabola right side of one unit, then zeroes polynomial becomes -1 and 2.

Now, polynomial expression

= x^2 - (sum of zeroes)x + product of zeroes = $x^2 - (-1 + 2)x + (-1) \times 2 = x^2 - x - 2$

Your Hard Work Leads to Strong Foundation

MATHEMATICS

2	A		
4	υ	٠	

Weight (in	Number of students	cf	Xi	f _i x _i
kg)				
38 - 40	3	3	39	117
40 - 42	2	5	41	82
42 - 44	4	9	43	172
44 - 46	5	14	45	225
46 - 48	14	28	47	658
48 - 50	4	32	49	196
50 - 52	3	35	51	153
	$\Sigma f = 35$			$\sum f_i x_i = 1603$

(a) (ii) N = 35, $\frac{N}{2} = \frac{35}{2} = 17.5$ median class 46 - 48

(b) (i) Here
$$\ell = 46$$
, $\frac{N}{2} = 17.5$, cf = 14, f = 14

Median =
$$46 + \frac{17.5 - 14}{14} \times 2$$

$$= 46 + \frac{3.5}{14} \times 2$$

= 46.5

(c) (ii) Mean =
$$\frac{\sum f_i x_i}{\sum f_i} = \frac{1603}{35} = 45.8$$

- (d) (i) Modal class is 46 48
- (e) (i) Median > Mean

- 21. $72 = 2 \times 2 \times 2 \times 3 \times 3$ $80 = 2 \times 2 \times 2 \times 2 \times 5$ $120 = 2 \times 2 \times 2 \times 3 \times 5$ LCM of 72, 80, $120 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5$ = 720
- **22.** Since A and B both are on the same circle with centre O(2, 3))

$$\Rightarrow$$
 OA = OB (Radius of circle)

$$\Rightarrow \sqrt{(2-4)^2 + (3-3)^2} = \sqrt{(2-x)^2 + (3-5)^2}$$

- On squaring
- 4 = (2 x) + 4

$$2-x=0$$

x = 2

OR

Let fourth vertex D be (x, y)

Since diagonals of parallelogram bisect each other

$$\Rightarrow 1 + 4 = 1 + x$$
$$x = 4$$
$$2 + 0 = 0 + y$$

$$\Rightarrow$$
 y = 2

Thus, D(4, 2)

23.
$$x^2 + x - 6$$

$$= x^{2} + 3x - 2x - 6$$
$$= x(x + 3) - 2(x + 3)$$

$$= x(x + 3) - 2(x + 3)$$
$$= (x + 3)(x - 2)$$

For finding zeros

$$(x + 3)(x - 2) = 0$$

 \Rightarrow x = -3, or x = 2

Thus, zeros are -3 and 2

Sum of zeros =
$$-3 + 2 = -1 = \frac{-\text{coefficient of } x}{\text{coefficient of } x^2}$$

Product of zeros = $-3 \times 2 = -6 = \frac{\text{constant}}{\text{coefficient of } x^2}$

Hence verified.

24. Steps of construction

- 1. A circle with centre O and radius 3.5 cm is drawn.
- 2. A radius OB is drawn.
- 3. OA \perp OB is drawn.
- 4. AP \perp OA and BP \perp OB is drawn intersecting each other at P.
- 5. PA and PB are required tangents.

4

Your Hard Work Leads to Strong Foundation

MATHEMATICS

SECTION-IV

Let us assume, to the contrary, that $3 - \sqrt{5}$ is 27. rational. That is, we can find coprime integers

a and b (b \neq 0) such that $3 - \sqrt{5} = \frac{a}{h}$, b \neq 0,

Therefore, $\frac{a}{h} - 3 = -\sqrt{5}$ $\Rightarrow \frac{a-3b}{b} = -\sqrt{5}$ $\Rightarrow \frac{a-3b}{2b} = -\sqrt{5} \Rightarrow \frac{a}{2b} - \frac{3}{2} = -\sqrt{5}$

Since a and b are integers, we get $\frac{a}{2b} - \frac{3}{2}$ is rational, and so $\frac{a-3b}{2b} = -\sqrt{5}$ is rational. But this contradicts the fact that $\sqrt{5}$ is irrational. This contradiction has arisen because of our incorrect assumption that $3 - \sqrt{5}$ is rational. So, we conclude that $3 - \sqrt{5}$ is irrational.

28.
$$\frac{1}{a+b+x} - \frac{1}{x} = \frac{1}{a} + \frac{1}{b}$$

$$\frac{x - (a + b + x)}{x(a + b + x)} = \frac{a + b}{ab}$$

-ab = x(a + b + x) $x^2 + ax + bx + ab = 0$ $\mathbf{x}(\mathbf{x} + \mathbf{a}) + \mathbf{b}(\mathbf{x} + \mathbf{a}) = \mathbf{0}$ $(\mathbf{x} + \mathbf{a})(\mathbf{x} + \mathbf{b}) = \mathbf{0}$ x = -a or -b

OR

$$\frac{x+3}{x-2} - \frac{1-x}{x} = \frac{17}{x}$$
$$\frac{x+3}{x-2} = \frac{17}{x} + \frac{1-x}{x}$$
$$\frac{x+3}{x-2} = \frac{17+1-x}{x}$$
$$x(x+3) = (18-x) (x-2)$$
$$x^{2} + 3x = 18x - x^{2} - 36 + 2x$$

25. LHS $\cos A = 1 + \sin A$

$$\overline{1+\sin A} + \overline{\cos A}$$

$$= \frac{\cos^2 A + (1+\sin A)^2}{\cos A(1+\sin A)}$$

$$= \frac{\cos^2 A + 1 + \sin^2 A + 2\sin A}{\cos A(1+\sin A)}$$

$$= \frac{1+1+2\sin A}{\cos A(1+\sin A)} \quad [\because \sin^2 A + \cos^2 A = 1]$$

$$= \frac{2(1+\sin A)}{\cos A(1+\sin A)}$$

$$= \frac{2}{\cos A} = 2 \sec A$$

$$= RHS$$
Hence proved
$$OR$$

$$\sqrt{3} \tan \theta = 3\sin \theta$$

$$\sqrt{3} \tan \theta = 3\sin \theta$$

$$\sqrt{3} \frac{\sin \theta}{\cos \theta} = 3\sin \theta$$

$$\cos \theta = \frac{1}{\sqrt{3}}$$

Now,
$$\sin^2 \theta - \cos^2 \theta = 1 - \cos^2 \theta - \cos^2 \theta$$

$$= 1 - 2\cos^2 \theta$$

 $=1-\frac{2}{3}=\frac{1}{3}$ 26. In the figure, PQ is diameter of the given circle and O is its centre.

> Let tangents AB and CD be drawn at the end points of the diameter PQ.

Since, the tangents at a point to a circle is perpendicular to the radius through the point.

5

path to succe		ER FOI	JNDATION DIVISION	MATHEMATICS
	$2x^2 - 17x + 36 = 0$		In $\triangle ABC$, DX AC	
	$2x^2 - 9x - 8x + 36 = 0$			
	x(2x - 9) - 4(2x - 9) = 0		$\frac{BX}{PC} = \frac{BD}{AP}$ (1) [By corollar	y of thales theroem]
	(2x - 9) (x - 4) = 0		DC AD	
	9		In $\triangle ABC$, YE AB	
	$x = \frac{1}{2}, 4$		CF CY	
29.	Let breadth of rectangle be x		$\frac{\partial D}{\partial C} = \frac{\partial T}{\partial B}$ (2) [By corollar	y of thales theroem]
	Length of rectangle be 2x		From (1) and (2)	
	Area of rectangle = $x \times 2x = 2x^2$		(-)(-)	
	1		$\frac{BD}{BD} = \frac{CE}{CE}$ [:: BX = CY]	
	Area of shaded region = $2x^2 - \frac{1}{2}\pi x^2$		AB AC	
	$- 2x^2 2 \times 2 4 4$		AB AC	
	Ratio = $\frac{1}{2x^2 - \frac{1}{2}\pi x^2} = \frac{1}{4 - \pi} = \frac{1}{4 - \pi} = \frac{1}{4 - \pi} = \frac{1}{4 - \pi}$		$\overline{BD} = \overline{CE}$	
	2 7		Subracting 1 from both side	s
	$\frac{28}{28} = \frac{14}{14}$			
	6 3		$\frac{AB-BD}{BD} = \frac{AC-CE}{CE}$	
	Ratio = 14 : 3		DD CE	
30.	$AM \perp BC$ is drawn		AD_AE	
	In \triangle ADM, by pythagores theorem		$\overline{\text{BD}} = \overline{\text{CE}}$	
			By inverse of BPT	
			DE BC	
		31.	Class Frequency	cf 7
	B / C		0-10 7 10.20 8	15
	$AD^2 = AM^2 + DM^2$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35
	$AD^2 = AB^2 - BM^2 + DM^2$		30-40 8	43
	$AD^2 = AB^2 - (BM^2 - DM^2)$		40–50 7	50
	$= AB^2 - (BM + DM) (BM - DM)$		N. 50	
	$= AB^2 - (CM + DM) (BD) [:: BM = CM]$		$\frac{N}{2} = \frac{50}{2} = 25$	
	$= AB^2 - CD.BD$		<i>Σ Σ</i>	
	$\frac{2}{1}$ $\frac{2}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$		Median class $20 - 30$, cf = 1	5, $f = 20, b = 10$
	$= AB^2 - \frac{1}{3}BC \cdot \frac{1}{3}BC$		25-15	
	$1 \qquad 2 \qquad 2$		$Median = 20 + \frac{10}{20} \times 10$	
	$[BD = \frac{1}{3} BC \Longrightarrow CD = \frac{1}{3}BC]$		= 20 + 5 = 25	
	$-AB^2 - \frac{2}{-}BC^2$	32.	Let AB be the tower of height	ht h. D and B are
	-AD = 9 be		points at a distance of 40m	from each other
	$AD^2 = \frac{9AB^2 - 2AB^2}{1000000000000000000000000000000000000$		and makes angle of elevation	45° and 60°. Let
	AD = 9 [. $AD = DC$]		BC = x	
	$9AD^2 = 7AB^2$ Hence proved.		trang Coundation	
	6 OKOUR Hard Work Leads	ID ST	rong Foundation	

Your Hard Work Leads to Strong Foundation

7

PRE-NURTURE & CAREER FOUNDATION DIVISION

MATHEMATICS

In
$$\triangle ABE$$

$$\tan 30^\circ = \frac{AB}{BE}$$

$$\frac{1}{\sqrt{3}} = \frac{x}{2+x} \qquad [\because AB = CD]$$

 $2 + x = \sqrt{3} x$

 $2 = (\sqrt{3} - 1)x$

$$\mathbf{x} = \frac{2(\sqrt{3}+1)}{2}$$

 $=\sqrt{3}$ + 1 = 2.732 km

OR

Let AB be the building & GE and DF be the position of boy. Let CF = x

In $\triangle ACF$

FG =
$$28\sqrt{3} - \frac{28}{\sqrt{3}}$$
 [From (1)]
= $\frac{28(3-1)}{\sqrt{3}}$
= $\frac{28 \times 2\sqrt{3}}{3}$ = 32.30 m
35. Volume of pillar
= Volume of cone volume of cylinder
= $\frac{1}{3}\pi r^2h + \pi r^2H$
= $\frac{1}{3}\pi 8^2 \times 36 + \pi 8^2 \times 240$
= $\pi 8^2$ [12 + 240]
= $\frac{22}{7} \times 64 \times 252$
= $22 \times 64 \times 36$ = 50688 cm³
Weight of 1 cu cm of iron = 7.5 g
Weight of pillar = 50688 × 7.5
= 380160 gm
= 380.16 kg
36. Let speed of train be x km / hr and speed of car
be y km / hr
ATQ
 $\frac{320}{x} + \frac{280}{y} = 8 + \frac{40}{60} = \frac{26}{3}$
 $\frac{200}{x} + \frac{400}{y} = 9 + \frac{10}{60} = \frac{55}{6}$
Let $\frac{1}{x} = u, \frac{1}{y} = v$
 $320u + 280v = \frac{26}{3} \dots(1)$
 $200u + 400v = \frac{55}{6} \dots(2)$

Your Hard Work Leads to Strong Foundation

ALLEN CLASS - CLASS - CLASS	CLASS - X (CBSE)		
Multiplying equation (1) by 20 & (2) by 32 and subtracting	$320u = \frac{26}{3} - \frac{14}{3}$		
$6400 u + 5600 v = \frac{520}{3}$	$320u = \frac{12}{3}$		
$6400u + 12800 v = \frac{880}{3}$ $$	$u = \frac{4}{320} = \frac{1}{80}$		
$v = \frac{120}{7200} = \frac{1}{60}$	Thus, speed of train = $x = \frac{1}{u}$	= 80 km/hr	
From (1) $320u + 280 \times \frac{1}{60} = \frac{26}{3}$	Thus, speed of train = $y = \frac{1}{v}$	= 60 km/hr	