

REGIONAL MATHEMATICAL OLYMPIAD (RMO)-2019

(Held On Sunday 20th OCTOBER, 2019)

Max. Marks : 102

Time allowed : 3 hours

TEST PAPER WITH SOLUTION

Instructions :

- Calculators (in any form) and protactors are not allowed.
- Rulers and compasses are allowed.
- Answer all the questions.
- All questions carry equal marks. Maximum marks : 102.
- Answer to each question should start on a new page. Clearly indicate the question number.
- 1. Suppose x is a nonzero real number such that both x^5 and $20x + \frac{19}{x}$ are rational numbers. Prove that x is a rational number.

Sol. Let
$$20x + \frac{19}{x} = r, r \in \mathbb{Q}$$

$$\Rightarrow 20x^2 - rx + 19 = 0$$

$$\Rightarrow x = \frac{r \pm \sqrt{r^2 - 4 \cdot 20 \cdot 19}}{40}$$

$$\Rightarrow x = r_1 \pm \sqrt{r_2}, r_1, r_2 \in \mathbb{Q} ;$$

Now

$$\mathbf{x}^{5} = (\mathbf{r}_{1} \pm \sqrt{\mathbf{r}_{2}})^{5} = \left(\binom{5}{0} \mathbf{r}_{1}^{5} + \binom{5}{2} \mathbf{r}_{1}^{3} \mathbf{r}_{2} + \binom{5}{4} \mathbf{r}_{1} \mathbf{r}_{2}^{2} \right) \pm \sqrt{\mathbf{r}_{2}} \left(\binom{5}{1} \mathbf{r}_{1}^{4} + \binom{5}{3} \mathbf{r}_{1}^{2} \mathbf{r}_{2} + \binom{5}{5} \mathbf{r}_{2}^{2} \right)$$

as $x \in \mathbb{R}$

 $r_2 \in \mathbb{R} \geq 0$

as
$$x^5 \in \mathbb{Q}$$
 and $5r_1^4 + 10r_1^2r_2 + r_2^2 \neq 0$

otherwise $r_1 = r_2 = 0 \implies x = 0$ (not possible)

$$\Rightarrow \qquad \sqrt{r_{_2}} \ \in \ \mathbb{Q}$$

 \Rightarrow $x \in \mathbb{Q}$, Hence proved.

REGIONAL MATHEMATICAL OLYMPAID (RMO)-2019 Exam/20-10-2019

- **2.** Let ABC be a triangle with circumcircle Ω and let G be the centroid of triangle ABC. Extend AG, BG and CG to meet the circle Ω again in A_1 , B_1 and C_1 , respectively. Suppose $\angle BAC = \angle A_1B_1C_1$, $\angle ABC = \angle A_1C_1B_1$ and $\angle ACB = \angle B_1A_1C_1$. Prove that ABC and $A_1B_1C_1$ are equilateral triangles.
- Sol. (As equal chords makes equal angles)

Given that $\angle BAC = \angle A_1B_1C_1 \Rightarrow BC = A_1C_1$ $\angle ABC = \angle A_1C_1B_1 \Rightarrow A_1B_1 = AC$ $\angle ACB = \angle B_1A_1C_1 \Rightarrow B_1C_1 = AB$ Since A, B, C, A₁,B₁,C₁ all are cyclic We have $\angle x_2 = \angle y_2$ and $\angle y_2 = \angle z_2$ $\Rightarrow \angle x_2 = \angle z_2$ Now in triangle $\triangle BGC$, we have $\angle BGC = 180 - (y_1 + z_2)$...(1) But In $\triangle ABC$ we have $x_1 + x_2 + y_1 + y_2 + z_1 + z_2 = 180^{\circ}$ $\therefore \ \angle BGC = x_1 + x_2 + y_2 + z_1$ But we got $x_2 = y_2$ (alternate angles) and AG is radical axis and AC is tangent to circumcircle of $\triangle AGB$ Similarly AB is tangent to circumcircle of $\triangle AGC$ \therefore $x_1 = z_1$

$$\therefore \ \angle BGC = 2(x_1 + x_2) = 2 \angle A$$

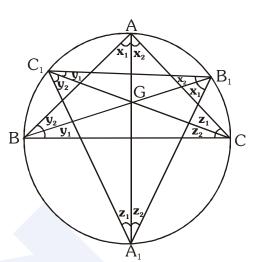
So G is circumcentre of ΔABC

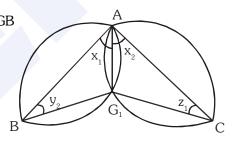
since G is given as centroid

- $\therefore \Delta ABC$ is an equilateral triangle
- $\& \ \ \Delta A_1 B_1 C_1 \text{ is also an equilateral triangle.} \qquad \qquad \text{Hence proved.}$
- **3.** Let a, b, c be positive real numbers such that a + b + c = 1. Prove that

$$\frac{a}{a^{2}+b^{3}+c^{3}} + \frac{b}{b^{2}+c^{3}+a^{3}} + \frac{c}{c^{2}+a^{3}+b^{3}} \le \frac{1}{5abc}.$$
Sol. $a^{2} + b^{3} + c^{3} = a^{2} \cdot 1 + b^{3} + c^{3}$
 $= a^{2} (a+b+c) + b^{3} + c^{3}$
 $= a^{3} + b^{3} + c^{3} + a^{2}b + a^{2}c$
 $\ge 5 (a^{7}b^{4}c^{4})^{1/5}$ (By AM \ge GM)
 $\Rightarrow \frac{1}{a^{2} + b^{3} + c^{3}} \le \frac{1}{5(a^{7}.b^{4}c^{4})^{\frac{1}{5}}}$
 $\Rightarrow \frac{a}{a^{2} + b^{3} + c^{3}} \le \frac{(a^{3}bc)^{\frac{1}{5}}}{5abc} \le \frac{3a + b + c}{5abc}$ (By AM \ge GM)

$$\Rightarrow \frac{a}{a^2 + b^3 + c^3} \le \frac{1}{5 \operatorname{abc}} \left(\frac{3a + b + c}{5} \right)$$





2

$$\Rightarrow LHS \leq \frac{1}{5 \operatorname{abc}} \left(\sum \left(\frac{3a+b+c}{5} \right) \right)$$
$$\leq \frac{1}{5 \operatorname{abc}} \frac{5(a+b+c)}{5}$$
$$\leq \frac{1}{5 \operatorname{abc}} \quad (\text{as} \quad a+b+c=1)$$

Hence proved.

4. Consider the following 3×2 array formed by using the numbers 1, 2, 3, 4, 5, 6 :

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} = \begin{pmatrix} 1 & 6 \\ 2 & 5 \\ 3 & 4 \end{pmatrix}$$

Observe that all row sums are equal, but the sum of the squares is not the same for each. Extend the above array to a $3 \times k$ array $(a_{ij})_{3 \times k}$ for a suitable k, adding more columns, using the numbers 7, 8, 9,...., 3k such that

$$\sum_{j=1}^{k} a_{1j} = \sum_{j=1}^{k} a_{2j} = \sum_{j=1}^{k} a_{3j} \quad \text{and} \quad \sum_{j=1}^{k} (a_{1j})^2 = \sum_{j=1}^{k} (a_{2j})^2 = \sum_{j=1}^{k} (a_{3j})^2$$

Sol. $1 + 2 + 3 + ... + 3 k = \frac{3k(3k+1)}{2}$

and
$$\sum_{j=1}^{k} a_{1j} = \frac{k(3k+1)}{2} = integer$$

Also
$$1^2 + 2^2 + 3^2 + \dots + (3k)^2 = \frac{3k(3k+1)(6k+1)}{6}$$

As
$$\sum_{j=1}^{k} a_{1j}^2 = \frac{1}{3} \frac{k(3k+1)(6k+1)}{2} \Rightarrow 3 \mid k$$

Claim ; If 3 | k and k > 3 then it is always possible. Proof : Observe following : $(n^{2}+(n+5)^{2}) - ((n+1)^{2}+(n+4)^{2}) = 8$ $((m+1)^{2}+(m+4)^{2} - ((m+2)^{2}+(m+3)^{2}) = 4$ $(\ell^{2}+(\ell+5)^{2}) - ((\ell+2)^{2}+(\ell+3)^{2}) = 12$ Also 8 + 4 = 12 $\Rightarrow (n^{2}+(n+5)^{2}) + (m+1)^{2} + (m+4)^{2} + (\ell+2)^{2} + (\ell+3)^{2}$ $= (n+1)^{2} + (n+4)^{2} + (m+2)^{2} + (m+3)^{2} + \ell^{2} + (\ell+5)^{2}$ Also $n + (n+5) + (m+1) + (m+4) + (\ell+2) + (\ell+3)$ $= 2n + 2m + 2\ell + 15$ $= (n+1) + (n+4) + (m+2) + (m+3) + (\ell) + (\ell+5)$ Hence $1^{2} + 6^{2} + 8^{2} + 11^{2} + 15^{2} + 16^{2}$ $2^{2} + 5^{2} + 9^{2} + 10^{2} + 13^{2} + 18^{2}$ $3^{2} + 4^{2} + 7^{2} + 12^{2} + 14^{2} + 17^{2}$

 $\Rightarrow \begin{bmatrix} 2 & 5 & 9 & 10 & 13 & 18 \\ 3 & 4 & 7 & 12 & 14 & 17 \end{bmatrix}$ is satisfying the desired condition. Similarly we can find $\begin{pmatrix} 1 & 6 & 8 & 11 & 18 & 13 & 21 & 23 & 25 \\ 2 & 5 & 7 & 12 & 15 & 17 & 19 & 22 & 27 \\ 3 & 4 & 9 & 10 & 14 & 16 & 20 & 24 & 26 \end{bmatrix}$ which is satisfying all condition

Also observe $(n + 1)^2 + (n + 6)^2 + (n + 8)^2 + (n + 11)^2 + (n + 15)^2 + (n + 16)^2$ = $(n + 2)^2 + (n + 5)^2 + (n + 9)^2 + (n + 10)^2 + (n + 13)^2 + (n + 18)^2$ = $(n + 3)^2 + (n + 4)^2 + (n + 7)^2 + (n + 12)^2 + (n + 14)^2 + (n + 17)^2$

Hence we can always get a construction for k + 6 from a construction of k as we already got for k = 6 and

k = 9, by induction it is true for all k such that 3|k, k > 3

for k = 3 we can directly check that it will not happen. done!!

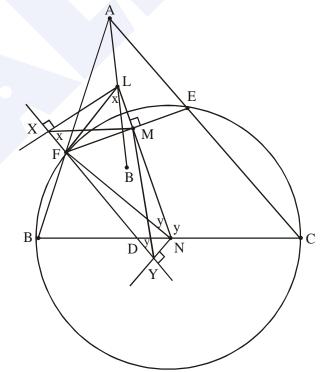
- 5. In an acute angled triangle ABC, let H be the orthocenter, and let D, E, F be the feet of altitudes from A, B, C to the opposite sides, respectively. Let L, M, N be midpoints of segments AH, EF, BC, respectively. Let X, Y be feet of altitudes from L, N on to the line DF. Prove that XM is perpendicular to MY.
- **Sol.** Since $BE \perp AC$ and $CF \perp AB$.

 $(1 \ 6 \ 8 \ 11 \ 15 \ 16)$

So we have AFHE is cyclic quadrilateral also AH is diameter of this circle since L is the mid point of AH the EF is chord of circle we have LM \perp EF (as M is mid point of EF)

Similarly we have BCEF is also cyclic and 'N' is mid point of diameter of BC.

Since EF is radical axis of both the circle \odot AFHE and \odot BCEF and L, N are centres of these circles, so LN \perp EF.



 \therefore We have LMN are colinear.

REGIONAL MATHEMATICAL OLYMPAID (RMO)-2019 Exam/20-10-2019

...(1)

Now LMFX, MF YN are cyclic (in both quadrilaterals sum of opposite angles = 180°)

- $\therefore \angle MLF = \angle MYF = x$ (Let)
 - $\angle MNF = \angle MYF = y$ (Let)
- $\therefore \ \angle XMY = \angle LFN = 90^{\circ} (as x + y = 90^{\circ})$

Since \angle LFN is angle in the semicircle of nine point circle with LN as diameter.

- \therefore XM \perp MY proved
- 6. Suppose 91 distinct positive integers greater than 1 are given such that there are at least 456 pairs among them which are relatively prime. Show that one can find four integers a, b, c, d among them such that gcd(a, b) = gcd(b, c) = gcd(c, d) = gcd(d, a) = 1.
- **Sol.** Let us consider a graph G with 91 vertices (91 distinct numbers) and connect each pair of these vertices which corresponds to co-prime pairs \Rightarrow at least 456 edges i.e. $e \ge 456$. Here e = number of edges. Now getting four number a,b, c, d such that gcd (a, b) = gcd (b, c) = gcd(c,d) = gcd (d,a) = 1 \Rightarrow existence at a cycle of length 4.

Let us assume there is no cycle of length '4'.

Let vertex set of G be V = { v_1 , v_2 ,..., v_{91} }, let deger of $v_i = d_i$.

For any vertex $v_i \in V$, the number of vertex pairs (v_{α}, v_{β}) adjacent to v_i is $\begin{pmatrix} d_i \\ 2 \end{pmatrix}$.

As G contain no cycle of length 4, when v_i is changing in the V, all vertex pairs (v_{α}, v_{β}) are distinct. Otherwise,

vertex pairs (v_{α}, v_{β}) are counted in both $\binom{d_i}{2}$ and $\binom{d_j}{2}$ respectively.

Then v_i , v_{α} , v_j , v_{β} form a cycle of length 4.

