

[®] NATIONAL TALENT SEARCH EXAMINATION (NTSE-2021) STAGE-1 STATE : WEST BENGAL PAPER : SAT

Date: 24/01/2021

Max. Marks: 100

SOLUTIONS

Time allowed: 120 mins

MATHEMATICS

1. If the algebraic expression $(3x^2 + px + 3)$ be always positive, then

(a) -6 (b) <math>p < -6 (c) p > 6 (d) no such p exists

Ans. (a)

Sol. For algebraic expression to be positive i.e. $3x^2 + px + 3 > 0$, so D < 0; $b^2 - 4ac < 0$

$$\Rightarrow p^2 - 4 \times 3 \times 3 < 0$$
$$\Rightarrow p^2 - 36 < 0$$

$$\Rightarrow$$
 (P-6) (p+6) < 0

$$+$$
 -6 -6 $+$ \rightarrow

$$\Rightarrow -6$$

2. The sum of the roots of $ax^2+bx + c = 0$ ($a \neq 0$) is equal to the sum of the squares of the roots of the equation. Then

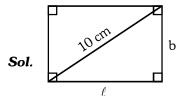
Ans. (c)

Sol.
$$ax^2 + bx + c = 0$$

Let α , β are the roots

$$\& \quad \alpha + \beta = \alpha^2 + \beta^2 \qquad (A.T.Q)$$

 $\Rightarrow (\alpha + \beta) = (\alpha + \beta)^2 - 2 \alpha \beta$


$$\Rightarrow \frac{-b}{a} = \left(\frac{-b}{a}\right)^2 - \frac{2c}{a}$$
$$\Rightarrow \frac{-b}{a} = \frac{b^2}{a^2} - \frac{2c}{a}$$
$$\Rightarrow \frac{-b}{a} = \frac{b^2 - 2ac}{a^2}$$
$$\Rightarrow -ab = b^2 - 2ac$$

$$\Rightarrow$$
 b² + ab = 2ac

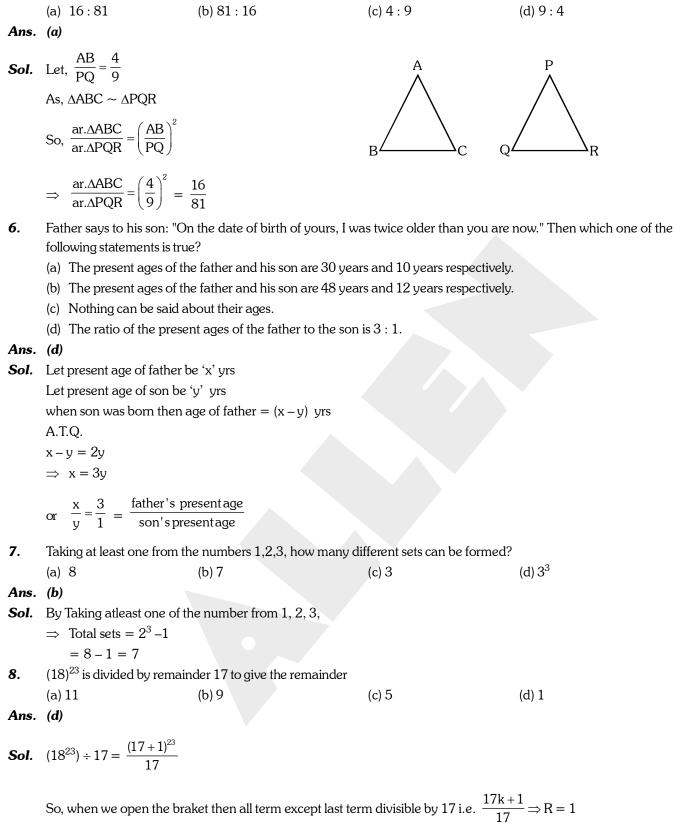
3. The solution set for the eauation $3^{2x^2} - 2 \cdot 3^{x^2+x+2} + 3^{2(x+2)} = 0$ is (b) { 0, 2} (c) $\{0, -1\}$ (d) $\{2, 4\}$ (a) $\{-1, 2\}$ Ans. (a) **Sol.** $3^{2x^2} - 2 \cdot 3^{x^2 + x + 2} + 3^{2(x+2)} = 0$ $\implies \left(3^{x^2}\right)^2 - 2.3^{x^2}.3^{x+2} + \left(3^{(x+2)}\right)^2 = 0$ $\Rightarrow [3^{x^2} - 3^{x+2}]^2 = 0$ $\Rightarrow 3^{x^2} = 3^{x+2}$ $\Rightarrow x^2 = x + 2$ (By comparing the powers) $\Rightarrow x^2 - x - 2 = 0$ $\Rightarrow x^2 - 2x + x - 2 = 0$ $\Rightarrow x(x-2) + 1 (x-2) = 0 \Rightarrow (x-2) (x+1) = 0$

- $\Rightarrow x = 2, -1$ $\Rightarrow x \in \{-1, 2\}$
- **4.** It is printed on a paper that "The length of a diagonal of a rectangle is 10 cm and its area is 62.5 sq. cm". Then which one of the following statements is true?
 - (a) The perimeter of the rectangle is 30 cm.
- (b) The sum of the length and breadth is 20 cm.
- (c) The difference of the length and breadth is 5 cm.
- (d) No such rectangle can exist.

Ans. (d)

$$\Rightarrow \text{ Diagonal} = \sqrt{\ell^2 + b^2} = 10 \text{ cm}$$
Area = 62.5 cm²

$$\Rightarrow \ell^2 + b^2 = 10^2 \qquad \dots (i)$$


$$\Rightarrow \ell b = 62.5$$
or, $2\ell b = 125 \qquad \dots (ii)$
But, A.M ≥ G.M.

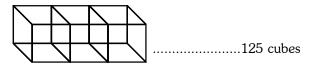
$$\Rightarrow \frac{\ell^2 + b^2}{2} \ge \sqrt{\ell^2 b^2}$$

$$\Rightarrow \ \ell^2 + b^2 \geq 2\ell b$$

 $\Rightarrow 100 \ge 125 \qquad (Not possible)$ so rectangle is not possible for this data.

5. The ratio of the lengths of the corresponding sides of two similar triangles are in the ratio of 4 : 9. Then the ratio of their areas is

9. If
$$m^2 - 4m + 1 = 0$$
, then the value of $\left(m^3 + \frac{1}{m^3}\right)$
(a) 52 (b) 48 (c) 64 (d) 68
Ans. (a)
Sol. $m^2 + 1 = 4m$
 $\Rightarrow m + \frac{1}{m} = 4$
 $\Rightarrow So, m^3 + \frac{1}{m^3} = \left(m + \frac{1}{m}\right)^3 - 3\left(m + \frac{1}{m}\right)$
 $= (4)^3 - 3 \times 4$
 $= 64 - 12$
 $= 52$
10. For $3^{x+y} = 81, 81^{x-y} = 3$, we get
(a) no solution (b) $x + \frac{21}{2}, y = \frac{21}{2}$ (c) $x = 2, y = \frac{2}{3}$ (d) $x = \frac{17}{8}, y = \frac{15}{8}$
Ans. (a)
Sol. $3^{x+y} = 3^4$ and
 $3^{4(x-y)} = 3^1$
By comparing the powers
 $\Rightarrow x + y = 4$...(i) &
 $4(x - y) = 1$...(ii)
 $x - y = \frac{1}{4}$
from (i) and (ii)
so, $x = \frac{17}{8}$ and $y = \frac{15}{8}$


11. 125 identical cubes are cut from a big cube and all the smaller cubes are arranged in a row to form a long cuboid. What is the percentage of increase in total surface area of the cuboid over the total surface area of the cube?

(a)
$$234\frac{2}{3}\%$$
 (b) $235\frac{1}{3}\%$ (c) $134\frac{2}{3}\%$ (d) None of these
Ans. (a)
Sol. Combination
of 125
small cubes

So volume of larger cube = volume of 125 cubes $a^3 = 125 b^3$

$$a = 1250$$

 $\Rightarrow a = 5b$

 \Rightarrow S.A. of larger cube = $6a^2 = 6(5b)^2 = 150 b^2$

S.A of 125 smaller cubes forming a cuboid = 2 [125b \times b + 125b \times b + b \times b] = 502b²

$$\Rightarrow$$
 % increase in S.A.

$$= \frac{502b^2 - 6(5b)^2}{6(5b)^2} \times 100$$
$$= \frac{352b^2}{150b^2} \times 100$$
$$= \frac{704}{3} = 234\frac{2}{3}\%$$

- **12.** A bag contains 4 Red and 3 Black balls and a second bag contains 2 Red and 4 Black balls. After choosing a bag at random, a ball is also drawn at random. The probability that the ball is Red is
 - (a) $\frac{23}{42}$ (b) $\frac{17}{42}$ (c) $\frac{19}{42}$ (d) $\frac{16}{39}$

Ans. (c)

Sol. Probability of red ball = $\frac{1}{2} \times \frac{4}{7} + \frac{1}{2} \times \frac{2}{6}$

$$= \frac{4}{14} + \frac{2}{12}$$
$$= \frac{2}{7} + \frac{1}{6}$$
$$= \frac{12+7}{42} = \frac{19}{42}$$

13. If [n] denotes the greatest integer \leq n and (n) denotes the smallest integer \geq n ; n being a real number, then

$$\begin{pmatrix} 1\frac{1}{5} \end{pmatrix} \times \begin{bmatrix} 1\frac{1}{5} \end{bmatrix} - \begin{pmatrix} 2 - \frac{1}{5} \end{pmatrix} \div \begin{bmatrix} 1\frac{1}{5} \end{bmatrix} + (1.5) \text{ is}$$
(a) 1.5 (b) 2 (c) 2.5 (d) 3.5
(b)

Ans. (b)

Sol. $\left(\frac{6}{5}\right)\left[\frac{6}{5}\right] - \left(\frac{9}{5}\right) \div \left[\frac{6}{5}\right] + (1.5)$ = 2 × 1 - 2 ÷ 1 + 2 = 2

14. The value of
$$\frac{3}{1^2 2^2} + \frac{5}{2^2 3^2} + \dots + \frac{19}{9^2 \cdot 10^2}$$
 is
(a) $\frac{99}{100}$ (b) $\frac{1}{100}$ (c) $\frac{101}{100}$ (d) 1
Ans. (a)
Sol. $\frac{3}{14} + \frac{5}{4.9} + \frac{7}{9.16} + \dots + \frac{19}{81.100}$
 $= \left(1 - \frac{1}{4}\right) + \left(\frac{1}{4} - \frac{1}{9}\right) + \left(\frac{1}{9} - \frac{1}{16}\right) \dots + \left(\frac{1}{81} - \frac{1}{100}\right)$
 $= 1 - \frac{1}{100} = \frac{99}{100}$
15. In a frequency distribution, Mean = 9.1 and $\sum \{x_i = 132 + 5k, \sum i = 20, \text{ then k is}$
(a) 4 (b) 6 (c) 10 (d) 9
Ans. (c)
Sol. Mean $= \frac{\Sigma \{x_i\}}{\Sigma \xi}$
 $\Rightarrow 9.1 = \frac{132 + 5k}{20}$
 $\Rightarrow 182 = 132 + 5k$
 $\Rightarrow 5k = 50$
 $\therefore k = 10$
16. ABC is a traingle in which $\angle ABC > 90^\circ$ and $AD \perp CB$ produced. Then
(a) $AB^2 = AC^2 + BC^2 + BC \times BD$ (b) $AB^2 = AC^2 + BC^2 + 2BC \times BD$
(c) $AC^2 = AB^2 + BC^2$
Also, from (1)
 $\Rightarrow AC^2 = AD^2 + BD^2$
 $\Rightarrow AC^2 = AB^2 + BC^2 + 2B \times BD$

17. Given : $0^{\circ} < \theta < 90^{\circ}$. then, if $\sin\theta + \cos\theta = x$, which one of the following is correct? (c) $1 \le x \le \sqrt{2}$ (d) $1 < x \le \sqrt{2}$ (a) x < 1(b) x > 1.5Ans. (d) **Sol.** $\sin\theta + \cos\theta = x$ $\sqrt{2}\left(\frac{1}{\sqrt{2}}\sin\theta + \frac{1}{\sqrt{2}}\cos\theta\right) = x$ $\Rightarrow \sqrt{2} \sin\left(\theta + \frac{\pi}{4}\right) = x$ As, $0 < \theta < 90^{\circ}$ $\Rightarrow 1 < x \le \sqrt{2}$ If $\sin \theta + \cos \phi = 2$ and $0^{\circ} \le \theta$, $\phi \le 90^{\circ}$, then $2\theta + 2000$. $\phi =$ 18. (b) 90° (c) 2180° (d) Can not be found out (a) 180° Ans. (a) **Sol.** $\sin\theta + \cos\phi = 2$, this is possible iff $\Rightarrow \sin\theta = 1, \& \cos\phi = 1$ It means $\theta = 90^{\circ} \& \phi = 0^{\circ}$ $\therefore 2\theta + 2000 \phi = 2 \times 90^{\circ} + 2000 \times 0 = 180^{\circ}$ $\sec\theta + \tan\theta = a + \sqrt{b}$ a, $b \in Q$ and $\sqrt{b} \in Q$ and $\sec\theta$ is rational, then 19. (b) $a^2 = 1 + \overline{b}$ (c) $\overline{b}^2 = 1 - a$ (a) $\overline{b}^2 = 1 + a$ (d) $a^2 = 1 - \overline{b}$ Ans. (b) **Sol.** As, $\sec\theta + \tan\theta = a + \sqrt{b}$ A.T.Q. by comparing rational and irrational terms. $\sec\theta = a$ (As, $\sec\theta$ is rational) and $\tan \theta = \sqrt{\overline{b}}$ (As, $\sqrt{\overline{b}}$ is irrational) Now, $\sec^2\theta = 1 + \tan^2\theta$ $\Rightarrow a^2 = 1 + (\sqrt{\overline{b}})^2$ $\Rightarrow a^2 = 1 + \overline{b}$ The ratio of in which 9x - 3y - 14 = 0 divides the join of (2, -4) and (3, 7) is **20**. (b) 1 : 2 (c) 2 : 3 (a) 2 : 1 (d) 3 : 2 Ans. (a) **Sol.** Let the ratio is k : 1, apply section formula, $x = \frac{3k+2}{k+1}; \quad y = \left(\frac{7k-4}{k+1}\right)$ 9x - 3y - 14 = 0As, 9x = 3v + 14→ B (3, 7)

7

so, $9\left(\frac{3k+2}{k+1}\right) = 3\left(\frac{7k-4}{k+1}\right) + 14$

 $\Rightarrow 16 = 8k$ \Rightarrow k = 2

 $\therefore \frac{k}{1} = \frac{2}{1}$

 $\Rightarrow 27k + 18 = 21k - 12 + 14k + 14$

PHYSICS

21. The mass, linear momentum and kinetic energy of a body are m, p and E respectively, then

(a)
$$p = \sqrt{2mE}$$
 (b) $E = \sqrt{2mp}$ (c) $p = \sqrt{2E}$ (d) $E = \sqrt{2p}$

Ans. (a)

Sol. Explanation

$$K = \frac{1}{2} mv^{2}$$

$$K = \frac{1}{2} mv^{2} \times \frac{m}{m}$$

$$K = \frac{m^{2}v^{2}}{2m} \qquad [\because P = mv]$$

$$K = \frac{P^{2}}{2m}$$

$$2mK = P^{2}$$

$$\sqrt{2mk} = P$$

22. A stone is allowed to fall freely downwards initially at rest from the top of a tower. The time taken by the stone to reach the bottom of the tower is 4 seconds. What is the height of the tower? Take, acceleration due to gravity = 32 ft/s^2

(a) 64 ft. (b) 32 ft. (c) 48 ft. (d) 256 ft.

Ans. (d)

Sol.
$$u = 0$$
, $t = 4s$, $a = g = 32 \frac{ft}{s^2}$

By using 2^{nd} equation of motion

$$s = ut + \frac{1}{2} at^{2}$$

$$s = 0 \times 4 + \frac{1}{2} \times 32 \times (4)^{2}$$

$$s = \frac{32 \times 16}{2} = 256 \text{ ft}$$

23. The coefficient of linear expansion of a solid is x and the coefficient of volume expansion of the solid is y, then

(a)
$$x = \frac{y}{3}$$
 (b) $y = \frac{x}{3}$ (c) $x = \frac{y}{2}$ (d) $y = \frac{x}{2}$

Ans. (a)

Sol.
$$V = L^3 \Rightarrow \frac{\Delta V}{V} = \frac{3\Delta L}{L} \Rightarrow y = 3x \Rightarrow x = \frac{y}{3}$$

24. In case of refraction of light from a medium to air the critical angle is found to be 45°. What is the refractive index of the medium with respect to air?

(a)
$$\sqrt{2}$$
 (b) $\sqrt{3}$ (c) 2 (d) 3

Ans. (a)

Sol. $\mu = \frac{1}{\sin i_c} = \frac{1}{\sin 45^\circ} = \frac{1}{1/\sqrt{2}}$

$$\mu = \sqrt{2}$$

 $[\mu = refractive index of the medium with respect to air]$

- **25.** Which of the following pair have same unit?
 - (a) Heat and Specific heat
 - (b) Thermal capacity and Water equivalent
 - (c) Specific heat and Thermal capacity
 - (d) Heat and Work
- Ans. (d)
- Sol. Unit of heat and work is same
- 26. Which of the following is an electromagnetic wave?(a) α-ray(b) β-ray
- (c) γ-ray

(d) cathode ray

- Ans. (c)
- **Sol.** Gamma ray (γray) is an eletronagatic wave.
- **27.** In case of a convex lens, what is the minimum distance between an object and its real image?
 - (a) 2.5 times of focal length (b) 2 times of focal length
 - (c) 4 times of focal length (d) equal to focal length
- Ans. (c)
- Sol. The minimum distance between a real object and its real image formed by convex lens is 4f.

28. What will be the power consumed by a 50Ω wire if it is kept across a potential difference of 200 V?
(a) 0.8 kW
(b) 80 kW
(c) 400 W
(d) 8 kW

Ans. (a)

Sol. Power consumed, $P = \frac{V^2}{R}$

$$= \frac{(200)^2}{50} = \frac{40000}{50}$$

P=800w=0.8~kW

- **29.** I cm ot main scale of a vernier callipers is divided into 10 divisions. The least count of the callipers is 0.005 cm, then what is the number of divisions in the vernier scale?
 - (a) 10 (b) 20 (c) 25 (d) 50
- Ans. (b)

Sol. Each division on MSR = $\frac{1}{10} = 0.1$ cm

Let N be the number of division that must present on vernier scale so that each division on MSR corresponds to the maximum value that vernier scale can measure.

 $N\times 0.005~\text{cm}=0.1~\text{cm}$

$$N = \frac{0.1}{0.005} = 20$$

 $N=20\,divisions$

30. If an x- ray tube is operated at 20kV, what is the cut-off wave length? (Take, Planks constant $h = 6.62 \times 10^{-34} \text{ J.S}$) (a) 0.89 Å (b) 0.75 Å (c) 0.62 Å (d) 0.31 Å

Ans. (c)

Sol. Valtage of \times Ray tube, V = 20 kV

 $= 20 \times 10^3 \,\mathrm{V}$

Plank's constant, h = 6.62 \times 10 $^{-34}$ Js speed of light, C = 3 \times 10 8 m/s

Minimum wavelength,
$$\lambda_{\min} = \frac{hc}{ev}$$

$$= \frac{6.62 \times 10^{-34} \times 3 \times 10^{8}}{1.6 \times 10^{-19} \times 20 \times 10^{3}}$$

 $\lambda_{min} = 0.62 \text{\AA}$

31. An ideal gas is found to obey the equation $p^2V = \text{constant}$ along with the ideal gas equation (here, p = pressure and V = volume). If initial temperature and volume are T_0 and V_0 respectively and it expands to a volume $3V_0$, then what is the final temperature?

	(a) $\sqrt{3}T_0$	(b) √2T₀	(c) $\frac{T_0}{\sqrt{3}}$	(d) $\frac{T_0}{\sqrt{2}}$
Ans.	(a)			
Sol.	PV = nRT		(1)	
	PV = constant		(2)	
	Given that			
	$P^2 V = constant$		(3)	
	From equation (1)			
	$P = \frac{nRT}{V}$			
	$P^2 = \left(\frac{nRT}{V}\right)^2$			

From equation (3)

$$\left(\frac{nRT}{V}\right)^2 V = \text{constant}$$

$$\frac{T_1^2}{V} = \text{constant}$$

$$\frac{T_1^2}{V_1} = \frac{T_2^2}{V_2}$$

$$T_2^2 = \frac{T_1^2 V_2}{V_1} \begin{cases} V_2 = 3V_0 \\ T_1 = T_0 \end{cases}$$

$$T_2^2 = \frac{3V_0 T_0^2}{V_0}$$

$$T_2^2 = 3T_0^2$$

$$T_2 = T_0 \sqrt{3} = \sqrt{3}T_0$$

32. Specific heat (S) of a metal at low temperature varies according to $S = aT^3$, where 'a' is a constant and T is a absolute temperature. The amount of heat energy needed to raise the temperature of unit mass of the metal from T = 1K to T = 2K is

(a) 3a (b) $\frac{15a}{4}$ (c) $\frac{2a}{3}$

(d) $\frac{13a}{4}$

Ans. (b)

Sol.
$$dQ = mSdT$$

then Q = $\int mSdT$ since, S = aT³, where 'a' is a consatant Q = $\int m (aT^3).dT$ Q = $ma \int_{0}^{2} T^3 dT$

$$Q = \operatorname{ma}\left[\frac{T^{4}}{4}\right]_{1}^{2}$$
$$Q = \operatorname{ma}\left[\frac{(2)^{4}}{4} - \frac{(1)^{4}}{4}\right]_{1}^{2}$$

For units mass

$$Q = a \left[\frac{16}{4} - \frac{1}{4} \right]$$
$$Q = \frac{15a}{4}$$

33. An object of weight W and density ρ is submerged wholly in a liquid of density σ , its apparent weight will be

(a) $(\rho - \sigma)$ (b) $(\rho - \sigma)/W$ (c) $W\left(1 - \frac{\sigma}{\rho}\right)$ (d) $\left(1 - \frac{\rho}{\sigma}\right)$

Ans. (c)

Sol. Wair = W Bouyant force , $F_B = \rho_\ell V_d g$ $F_B = \sigma V_d g$...(1) Apparent weight = weight – bouyant force $W_a = W - \sigma V_d g$ $W_a = W - \frac{\sigma W}{\rho g} \times g$

 $W_a = W \left[1 - \frac{\sigma}{\rho} \right]$

CHEMISTRY

34. The ratio of σ and π bonds in propyne is (a) 1 : 3 (c) 2 : 3 (b) 3 : 1 (d) 3 : 2 Ans. (b) **Sol.** The structure of propyne is $H - C \equiv C - C - H$ There are 6 σ bonds and 2π bonds. Hence ratio of σ and π bonds in propyne is 6 : 2 or 3 : 1 35. The element having the lowest first ionization energy is (a) He (b) Cl (c) F (d) I Ans. (d) Sol. As we move down a group, size increases and ionization energy decreases. Hence I has lowest first ionisation energy. If the four tubes of a car are filled to the same pressure with N_2 , O_2 , H_2 and Ne gas separately then which will fill the 36. tube first? $(b) O_{2}$ $(c) H_{2}$ (d) Ne (a) N_{2} Ans. (c) As rate of diffusion is inversely proportional to square root of molecular mass of gas. Hence H₂ will have the highest Sol. rate of diffusion. At a given temperature what will be the percentage increase in pressure for a 5% decrease in the volume of the gas 37. (a) 5% (b) 5.26 (c) 6.26% (d) 10.26% Ans. (b) Sol. At a given temperature $P_1V_1 = P_2V_2$ $P_1 = P, P_2 = ?$ $V_1 = V, V_2 = 0.95 V$ Hence, $P \times V = P_2 \times 0.95 V$ $P_2 = 1.0526 P$ Hence there will be 5.26% increase in pressure of the gas.

38 .	$O_2^=$ is isoelectronic with				
	(a) H ₂	(b) N ₂	(c) F ₂	(d) HF_{2}^{-}	
Ans.	(c)	-	-	-	
Sol.	The number of electrons	in $O_2^=$ is 18			
	Hence F_2 having 18 electron	rons will be isoelectronic with ($D_2^=$		
39 .	Which of the following for	ms a homologous series?			
	(a) Ethane, Ethylene, Ace	tylene	(b) Ethane, Propane, Buta	anone	
	(c) Methanol, Ethanol, Pr	opanoic acid	(d) Butane, 2-Methyl But	ane, 2, 3, dimethyl Butane.	
Ans.	(d)				
Sol.	Butane – C_4H_{10}				
	2-Methyl Butane – C_5H_{12}				
	2, 3-dimethyl butane – C_{e}	₅ H ₁₄			
	As all the three structures	differ by $-CH_2$, they form a ho	mologous series.		
40 .	The gas that gives a black solution is	precipitate with aqueous Pb(N	IO ₃) solutuion and a white p	recipitate with aqueous ZnCl ₂	
	(a) CO ₂	(b) NO ₂	(c) NH ₃	(d) H_2S	
Ans.	(d)				
Sol.	$Pb(NO_{3})_{2_{(aq)}} + H_{2}S_{(g)} \rightarrow \underset{(Black)}{PbS} \downarrow + 2NO_{3(aq)}$				
	$ZnCl_{2_{(aq)}} + H_2S_{(g)} \rightarrow ZnS_{(white)}$	$_{s)}+2HCl_{(aq)}$			
41.	The organic product that i mixture with water is	s obtained by absorbing Ethyl	ene into concentrated H ₂ SO	₄ and subsequently boiling the	
	(a) an aldehyde	(b) an amide	(c) a ketone	(d) an alcohol	
Ans.	(d)				
Sol.	Ethene + conc. $H_2SO_4 \longrightarrow$ Ethyl hydrogensulphate $\xrightarrow{\text{boiling with water}}$ Ethyl alcohol.				
42 .	Equal volumes of two solutions of two solutions and the solution of the soluti	utions of $pH = 4$ and $pH = 10$	are mixed. pH of the result	tant solution will be	
	(a) 6	(b) 7	(c) 8	(d) 9	
Ans.	(b)				
Sol.	First solution $pH = 4$.				
	$[H^+] = 10^{-4}M$				
	Second solution, $pH = 10$				
	$[H^+] = 10^{-10}$				
	pH + POH = 14, $pOH = 4$				
	[OH ⁻] = 10			_	
	Hence they will exactly neutralise each other and pH of the resulting solution will be 7.				

Hence they will exactly neutralise each other and \ensuremath{pH} of the resulting solution will be 7.

43. Find out the position isomers from the following pairs of compounds

(a)
$$H_{s}C = C - CH_{s}OH, H_{s}C = C - OCH_{s}$$
 (b) $H_{s}C = CH - CH_{s}COOH, H_{s}C = CH - COOCH_{s}$
(c) $H_{s}C - CH - O - CH_{s}, H_{s}C - CH_{s} - CH_{s} - O - CH_{s}$ (d) $H_{s}C - CH_{s} - C - CH_{s}, H_{s}C - CH - C - O - H_{s}CH_{s}$
(c) $H_{s}C - CH - O - CH_{s}, H_{s}C - CH_{s} - CH_{s} - O - CH_{s}$ (d) $H_{s}C - CH_{s} - C - CH_{s}, H_{s}C - CH - C - O - H_{s}CH_{s}$
(c) $H_{s}C - CH - O - CH_{s}, H_{s}C - CH_{s} - CH_{s} - O - CH_{s}$ (d) $H_{s}C - CH_{s} - C - CH_{s}, H_{s}C - CH - C - O - H_{s}CH_{s}$
(c) $H_{s}C - CH - O - CH_{s}, H_{s}C - CH_{s} - CH_{s} - C - CH_{s}$ (d) Supersaturated Solutional isomers.
44. Egg albumin in water is a
(a) True solution (b) Colloid (c) Suspension (d) Supersaturated Solution
45. Lithium is generally used as an electode in high energy density batteries. This is because
(a) Lithium is quite reactive (d) Lithium has quite high negative reduction potential
(c) Lithium is quite reactive (d) Lithium does not corrode easily
4**ns**. (b)
50. Lithium has high negative reduction potential, which makes it suitable for use in batteries.
46. NH_{3} + O_{2} $\longrightarrow B_{s}$
 $B + O_{2} + H_{2}O \longrightarrow C$
 $A, B and C respectively are
(a) N2O, NO2 and HNO3 (b) NO, NO2 and HNO3 (c) NO2, NO and HNO3 (d) N2O, NO and HNO3
40N2 + O2 $\longrightarrow 2NO_{2}$
 $4NO_{2} + O_{2} + 2H_{2}O \longrightarrow 4HNO_{3}$
Biology
47. The main plant body of pteridophyte is
(a) Spore (b) Prothallus (c) Spore (d) Gametophyte
4**ns**. (c)
50. Main plant body of pteridophyte is sporophyte, as it is diploid plant body that produces spores through metosis.
48. In human eye, at the blind spot
(a) Only cone cells are present. (b) Only cone cells are present.
(c) Both rod and cone cells are present. (c) No Ni cone cells are present.
(c) Both rod and cone cells are present. (d) Neither rod nor cone cells are present.
(d) Sol. Bind spot of eye lacks receptor cells (red & cones) because the optic nerves leave the eye ball from here.$

49 .	Percentage of O_2 present in inhaled air in human beings is approximately				
	(a) 21%	(b) 77%	(c) 0.04%	(d) 3%	
Ans.	(a)				
Sol.	When we inhale, atmosph	eric air enters into our lungs wl	hich contains 21% oxygen.		
50 .	The disease which usually	spreads through cuts and wou	inds is		
	(a) Chicken pox	(b) Malaria	(c) Tuberculosis	(d) Tetanus	
Ans.	(d)				
Sol.	Tetanus is acquired throug	gh infection of a cut or wound	with the spores of bacterium	Clostridium tetani.	
51.	Lysosome stores				
	(a) ATP	(b) Hydrolytic enzymes	(c) Carbohydrate	(d) Protein	
Ans.	(b)				
Sol.	Lysosome stores large nur	nber of hydrolytic enzymes, wh	nich are also known as acid h	ydrolases.	
52 .	Which muscle separates th	noracic and abdominal cavity?			
	(a) Abdominal muscle	(b) Smooth muscle	(c) Diaphragm	(d) Cardiac muscle	
Ans.	(c)				
Sol.	Diaphragm is a muscular	sheet that separates the thorac	cic and abdominal cavity in 1	nammals.	
53 .	Which one of the following	g hormones helps in contractio	n of uterine muscles during p	parturition?	
	(a) Vasopressin	(b) Oxytocin	(c) Prolactin	(d) Relaxin	
Ans.	(b)				
Sol.	Oxytocin is known as birth	n hormone that helps in contra	ction of uterine muscles duri	ng parturition.	
54 .	Glomerulus and Bowman	's capsule together form			
	(a) Malpighian tubule	(b) Malpighian corpuscle	(c) Collecting tubule	(d) Renal tubule	
Ans.	(b)				
Sol.	Glomerulus & Bowman's	capsule together form Malpigh	ian corpuscles.		
55 .	Cardiac muscle is				
	(a) striated and voluntary		(b) smooth and voluntary		
	(c) striated and involuntat	ry	(d) smooth and involuntar	У	
Ans.	()				
Sol.		ed as they have light & dark ba		oluntary in nature.	
56 .	-	ubphases of meiosis crossing c	-		
	(a) Leptotene	(b) Pachytene	(c) Zygotene	(d) Diplotene	
Ans.	(b)				
Sol.	Pachytene is the subphase of Meiosis-I during which crossing over takes place between non-sister chromatids of homologous chromosomes.				
57.	The part of human alimen	tary canal where no enzyme s	-		
	(a) Mouth	(b) Oesophagus	(c) Stomach	(d) Ileum	
Ans.	(b)				
Sol.	Oesophagus is the part of human alimentary canal where digestive glands are absent, only mucus glands are present.				
58 .	-	n tap water bursts because of			
	(a) Endosmosis	(b) Exomosis	(c) Diffusion	(d) Plasmolysis	
Ans.	(a)				
Sol.	Tap water is hypotonic for marine fish so endosmosis occurs, which causes bursting.				

59 .	"Penicillin" obtained from	n a fungus is an			
	(a) Antiseptic	(b) Antiserum	(c) Antibody	(d) Antibiotic	
Ans.	(d)				
Sol.	Penicillin is an antibiotic,	obtained from fungus Penicilliu	m notatum.		
60 .	The immunoglobulin whi	ch is transported to the foetus th	nrough placenta from mothe	er is	
	(a) IgG	(b) IgA	(c) IgE	(d) IgM	
Ans.					
Sol.	. ,	hat significantly crosses the hur	nan placenta.		
		SST	•		
61.	France was named as "a r	nuseum of economic errors" by			
	(a) Rousseau	(b) Adam Smith	(c) Montesquieu	(d) Quesnay	
Ans.	(b)				
Sol.	France was named as "a r	nuseum of economic errors" by	Adam Smith		
62 .	Who was known as the "	Fsar the Liberator"?			
	(a) Tsar Nicholas I	(b) Tsar Nicholas II	(c) Tsar Alexander I	(d) Tsar Alexander II	
Ans.	(d)				
Sol.	Tsar Alexander II was kno	own as the " Tsar the Liberator".			
63 .	The day 24th October, 19	929 was marked as 'Black Thurs	sday' in U.S.A. because		
	(a) Terrorist Attack		(b) Natural Calamity		
	(c) The Great Economic Depression (d) Change of Political Background				
Ans.	(c)				
Sol.	The day 24th October, 19	929 was marked as 'Black Thurs	sday' in USA because of the	Great Economic Depression.	
64 .	The father of British Socia	alism			
	(a) Louis Blanc	(b) Karl Marx	(c) Robert Owen	(d) Saint Simon	
Ans.	(c)				
Sol.	The father of British socia	lism was Robert Owen			
65 .	Jagannath Singh Dhol wa	as the leader of			
	(a) Kol Rebellion	(b) Santhal Rebellion	(c) Munda Rebellion	(d) Chuar Rebellion	
Ans.	· · /				
Sol.		as the leader of Chuar Rebellion	l		
66.	The editor of the 'Samacl	nar Chandrika' was			
	(a) Rammohan Roy		(b) Iswar Gupta		
•	(c) Bhabani Charan Band	lyopadhyay	(d) Gangakishore Bhattacharya		
Ans.					
Sol.	The editor of the "Samachar Chandrika" was Bhabani Charan Bandyopadhyay				
67.	Madari Pasi was the leade	erof			
	(a) Santhal Rebellion		(b) Munda Uprising		
A	(c) Bhil Revolt		(d) Eka Movement		
Ans.	(a) Madari Pasi was the leade	er of Elia movement			
Sol. 68.		l for the first time in India at			
00.	(a) Bombay	(b) Calcutta	(c) Madras	(d) Kanpur	
Ans.	(a) Bollioay (c)		(0) Maulas		
Sol.		d for the first time in India at M	adras		
501.	may day was celebrate	a for the first time in findia at M	uurus		

69.	The Mahad Satyagraha w	vas organised by		
	(a) Dayananda Saraswati	i	(b) Swami Vivekananda	
	(c) Sree Narayan Guru		(d) Dr. B. R. Ambedkar	
Ans.	(d)			
Sol.	."Mahad Satyagraha" was	s organised by Dr. B.R Ambedk	ar	
70 .	The incident of Chauri Ch	noura took place in		
	(a) 1919 AD	(b) 1920 AD	(c) 1922 AD	(d) 1925 AD
Ans.	(c)			
Sol.	The incident of Chauri Cl	noura took place in 1922 AD		
71.	The first language state w	as formed in Independent India	1:	
	(a) Andhra Pradesh	(b) West Bengal	(c) Tamil Nadu	(d) Gujarat
Ans.	(a)			
Sol.	The first language state fo	ormed in independent India was	Andhra Pradesh.	
72 .	The writer of the book na	med "Chhere Asha Gram" was		
	(a) Manikuntala Sen	(b) Dakshina Ranjan Basu	(c) Sankha Ghosh	(d) Selina Hossain
Ans.	(b)			
Sol.	The writer of the book na	med "Chhere Asha Gram" was	Dakshina Ranjan Basu.	
73.	The time difference betwe	een Greenwich Mean Time and	the Indian Standard Time is	6
	(a) 6 hours	(b) 5 hours 30 minutes	(c) 5 hours 15 minutes	(d) 5 hours
Ans.	(b)			
Sol.	The time difference betwe	een Greenwich Mean Time and	l the Indian Standard Time i	s 5 hours 30 minutes.
74.	By nature, the Western G	hat is a/an		
	(a) Old fold mountain	(b) Young fold mountain	(c) Block mountain	(d) Igneous mountain
Ans.	(d)			
Sol.	By nature, the Western G	hat is an Igneous mountain.		
75.	The process by which, the	e height of the earth surface inc		
	(a) Aggradation	(b) Degradation	(c) Weathering	(d) Denudation
Ans.	()			
		e height of the earth surface inc		
76.		ce of the mountain glacier are c		
	(a) Nunatak	(b) Arete	(c) Crevasse	(d) Cirque
Ans.				
Sol.	Crevasse is simply a deep crack in a glacier or ice sheet.			
77.		nd in the Cape Town of South A		
•	(a) Equatorial climate	(b) Tropical Monsoon climate	e (c) Mediterranean climate	(d) Hot Desert climate
Ans.	• •		С · · Ъ. и 1· · · · · · · · · · · · · · · · · ·	
Sol.	The climate which is found in the Cape Town of South Africa is Mediterranean climate, with rainy winters and dry summers.			
78 .	New South wales current	flows along theof A	ustralia.	
	(a) northern side	(b) southern side	(c) eastern side	(d) western side
Ans.				
Sol.	The New South Wales cu	rrent flow along the eastern side	e of Australia.	

79 .	Which of the following, parallel of latitude, passes through middle of India?					
	(a) Equator	(b) Tropic of Capricon	(c) Prime Meridian	(d) Tropic of Cancer		
Ans.	(d)					
Sol.	Tropic of cancer is the latit	ude which passes through mid	dle of the India.			
80 .	The lake located, in betwe	en the deltas of the Godavari r	iver and the Krishna river is			
	(a) Kolleru	(b) Pulicat	(c) Chilka	(d) Vembnad		
Ans.	(a)					
Sol.	Kolleru Lake is the largest	natural freshwater Lake locate	d between the deltas of Goo	lavari and Krishna rivers		
81.	Salty sea breeze is needed	for				
	(a) Sugarcane cultivation	(b) Tea cultivation	(c) Jute cultivation	(d) Coffee cultivation		
Ans.	(c)					
Sol.	Salty sea breeze is needed	for jute cultivation.				
82 .	Which of the following ind	ustry is called Foot loose Indus	try?			
	(a) Iron and Steel Industry		(b) Engineering Industry			
	(c) Automobile Industry		(d) Cotton textile Industry			
Ans.	(d)					
Sol.	The cotton industry concer	ns principally on twirling and kr	itting.Uniquely in the cotton	industry, Ginning, the thread,		
	whirling and weaving was	s controlled and maintained b	by diverse state and master	s. Henceforth it is called the		
	footloose industry.					
83.	Diamond Quadrilateral pro	oject is related to				
	(a) Air Transport	(b) Rail Transport	(c) Road Transport	(d) Water Trasport		
Ans.						
Sol.		al is a project of Indian railway		ilway network in India		
84.		ng of contour lines in a topogra	phical map is			
	(a) Black	(b) Brown	(c) Red	(d) Blue		
Ans.						
Sol.		to denote most contour lines of	-	tures and elevations.		
85.		abha and Lok Sabha Election		years.		
	(a) 25	(b) 26	(c) 27	(d) 29		
Ans.	(a)					
Sol.		for the candidate for fighting \	idhan Sabha and Lok Sabh	na election is 25 years.		
86.	'MONEY BILL' is first intro	oduced in the				
	(a) Lok Sabha	(b) Rajya Sabha	(c) Supreme Court	(d) High Court		
Ans.						
Sol.	Money bill first introduced in Lok Sabha because Lok Sabha have more power on it in comparison to Rajya Sabha.					
87.	The number of judges of International Court of Justice is					
	(a) 9	(b) 10	(c) 15	(d) 16		
Ans.	(c)					
Sol.		s of International Court of Just				

88 .	The age of retirement of the judges of the High Court is				
	(a) 65 years	(b) 60 years	(c) 62 years	(d) 70 years	
Ans.	(c)				
Sol.	The retirement age of the j	judge of High Court is 62 years			
89 .	The headquarter of World	Health Organization is			
	(a) London	(b) Manchester	(c) Geneva	(d) Paris	
Ans.	(c)				
Sol.	The headquarter of the We	orld Health Organization is Ger	neva.		
90.	The minimum age for the the	citizen to exercise their right to	vote has been reduced to 18	3 years from 21 years through	
	(a) 42 nd Amendment Act	(b) 44 th Amendment Act	(c) 61 st Amendment Act	(d) 73 rd Amendment Act	
Ans.	(c)				
Sol.	The minimum age for the of the 61st amendment act.	citizen to exercise their right to	vote has been reduced to 18	3 years from 21 years through	
91.	The Panch-Sheel Agreeme	ent was signed between			
	(a) India and China	(b) India and Nepal	(c) India and Pakistan	(d) Pakistan and China	
Ans.	(a)				
Sol.	The Panch-Sheel Agreeme	ent was signed between India a	nd China.		
92 .	The World Trade Organiza	ation was founded in	<u>-</u>		
	(a) 1990	(b) 1995	(c) 2000	(d) 2005	
Ans.	(b)				
Sol.	The World Trade Organisa	tion was founded in 1995			
93.	Which of the following is r	not a function of Commercial E			
	(a) Collecting deposits from	n public	(b) Lending loans		
	(c) Issuing Notes		(d) Working as an agent of	f Client.	
Ans.	(c)				
Sol.	Issuing notes is not a funct				
94.	Stagflation is a situation w				
	(a) production increases an		(b) production decreases a	-	
	(c) production decreases a	nd price level decreases.	(d) production increases an	nd price level decreases.	
Ans.					
Sol.	Stagflation is a situation where production decreases and price level increases				
95 .	Which of the following is a direct tax?				
	(a) Sales Tax	(b) Income Tax	(c) Entertainment Tax	(d) Service Tax	
Ans.					
Sol.	Income tax is a direct tax.				

96 .	In which economy is the policy of Laissez faire adopted?			
	(a) Capitalist Economy		(b) Socialist Economy	
	(c) Mixed Economy		(d) Any Economy	
Ans.	(a)			
Sol.	The policy of Laissez faire	is adopted in the Capitalist Eco	onomy.	
97 .	Exclusion principle is not a	applicable in the case of		
	(a) Capital goods	(b) Consumer goods	(c) Public goods	(d) Private goods
Ans.	(c)			
Sol.	Exclusion principle is not a	applicable in the case of public	goods.	
98 .	Railway in India are highlig	ghted by which of the following	g market form?	
	(a) Perfect competition	(b) Monopolistic competition	(c) Monopoly	(d) Oligopoly
Ans.	(c)			
Sol.	Railways in India are highl	ighted by monopoly form of m	arket	
99 .	Which of the following tax	es follows the ability to pay prin	nciple?	
	(a) Wealth Tax	(b) Entertainment Tax	(c) Goods and Services Ta	x (d) Excise Duty
Ans.	(c)			
Sol.	Goods and services tax follows the ability to pay principle.			
100.	In underdeveloped countries most of the labour force are generally engaged in			
	(a) Industrial sector	(b) Service sector	(c) Agricultural sector	(d) Banking sector
Ans.	(c)			
Sol.	In underdeveloped countri	ies most of the labour force are	generally engaged in agricu	ltural sector