

NATIONAL TALENT SEARCH EXAMINATION (NTSE-2020) STAGE -1 STATE - TELANGANA DADED - SAT

STATE : TELANGANA

PAPER : SAT

Date: 03/11/2019

Max. Marks: 100

SOLUTIONS

Time allowed: 120 mins

PHYSICS

	PHISICS				
1.	The speed of light in diam index of diamond will be	ond is 1,24,000 km/sec. If the s	speed of light in air is 3,00,0	00 km/sec, then the refractive	
	(1) 1.49	(2) 2.42	(3) 2.25	(4) None	
Ans.					
• •	$n = \frac{c}{v} = \frac{300000}{124000} = 2.42$				
Sol.	$n = \frac{1}{v} = \frac{124000}{124000} = 2.42$				
2.	Which of the following is \$	Snell's law?			
	(1) $n_1 \sin i = \frac{\sin r}{n_2}$	(2) $\frac{n_1}{n_2} = \frac{\sin r}{\sin i}$	(3) $\frac{n_2}{n_1} = \frac{\sin r}{\sin i}$	(4) $n_2 \sin i = \text{constant}$	
Ans.	(2)				
Sol.	$\frac{\sin i}{\sin r} = \frac{n_2}{n_1}$				
3.	A car moves with constan	t speed of 10 m/s in a circular p	bath of radius 10m. If the m	ass of the car is 1000 kg, then	
Ans. Sol.	the centripetal force for th (1) 10^4 N (1) v = 10 m/s r = 10 m m = 1000 kg	ne car is (2) 10 ⁶ N	(3) 10 ⁵ N	(4) None	
	$f = \frac{mv^2}{r} = \frac{1000 \times 100}{10} = 2$	10 ⁴ N			
4.	Two spherical balls of ma attraction between them -	ss 10 kg each are placed with	their centres 10 cm apart, t	hen the gravitational force of	
	(1) $G \times 10^2 N$	(2) $G \times 10^4 N$	(3) $G \times 10^{6} N$	(4) None	
Ans.					
Sol.	$F = \frac{G \times 10 \times 10}{10^{-2}} = G \times 10^{-2}$	⁴ N			
5.		oving object is constant, then th			
	(1) Constant speed		(2) Uniform acceleration		
Ans.	(3) Uniform velocity (2)		(4) Instantaneousn velocit	У	
Sol.	Uniform acceleration				

6.	Which of the following converts Mechanical energy into Electrical energy?				
	(1) Motor	(2) Battery	(3) Generator	(4) Switch	
Ans.	(3)				
Sol.	Generator converts mecha	anical energy into electrical ener	gy.		
7.	Symbol for resistance				
	(1) —	(2) ——+ F——	(3) —	(4)(A)	
Ans.	(3)				
Sol.	Option 3 is symbol of resis	stance.			
8.	If the bulb have 100 W ar	nd 220 V, then the resistance of	f the bulb is		
	(1) 284 Ω	(2) 384 Ω	(3) 484 Ω	(4) None	
Ans.	(3)				
Sol.	$R = \frac{V^2}{P} = \frac{220 \times 220}{100} = 4$	84Ω			
0		41			
9.	If the focal length is $+ve$,		(2) Diana	(1) None	
A	(1) Concave	(2) Convex	(3) Plane	(4) None	
Ans. Sol.	(Z) Convex lens has positive f	Cocol longth			
301. 10.	-	-			
10.	(1) enlarged	a convex mirror is always	(2) diminished		
	(3) equal to the size of the	object	(4) None		
Ans.		oojeci	(+) 1 10112		
Sol.	Convex mirror forms dimi	nished image			
11.		a body by virtue of its motion is	called		
	(1) Potential energy	(2) Kinetic energy	(3) Gravitational energy	(4) None	
Ans.		(-)	(2)3)	(-)	
	()	gy possessed by a body by virtu	e of its motion.		
12.	S.I. unit of work	51 5 5 5			
	(1) N-m	(2) Kg-m	(3) N/m	(4) N-m ²	
Ans.					
Sol.	Unit of work is N-m.				
13.	A boy pushes a book kep	t on a table by applying a force	of 4.5 N. Find the work do	ne by the force, if the book is	
	displaced through 30 cm a	along the direction of push.			
	(1) 1.10 J	(2) 1.25 J	(3) 1.35 J	(4) None	
Ans.	(3)				
Sol.	F = 4.5 N				
	s = 30 cm = 0.30 m				
	$W = F.s = 4.5 \times 0.30 = 1$.35 J			

		CHEMIS	OIKY	
14.	Calculate the concentration chloride in 50 ml of KCl sc	on in terms of mass by volum Plution.	e percentage of the solutior	n containing 2.5 g Potassium
	(1) 2%	(2) 10%	(3) 4%	(4) 5%
Ans.	(4)			
Sol.	Concentration (m/v) $\% =$	$\frac{\text{Mass of solute}}{\text{Volume of solution}} \times 100$		
		$=\frac{2.5}{50}\times 100$		
		= 5 %		
15.	If the quantity of solute is	more in a solution is said to b	2	
	(1) Saturated solution	(2) Dilute solution	(3) Concentrated solution	(4) Unsaturated solution
Ans.	(3)			
Sol.	If the quantity of solute is	more in a solution, then the s	olution is said to be concent	rated solution.
16.	A solution turns red litmus	blue, its pH is likely to be -		
	(1) 1	(2) 4	(3) 5	(4) 10
Ans.	(4)			
Sol.	Since $pH = 10$, it is basic i	in nature and hence turns red	litmus blue.	
17.	The quantum number whi	ch explains about size and en	ergy of the orbit or shell is-	
	(1) n	(2)1	(3) m _l	(4) m _s
Ans.	(1)			
Sol.	Principle quantum number	r (n) explains about the size ar	nd energy of the shell.	
18.	Number of elements prese	ent in period-2 of the long form	of periodic table.	
	(1) 2	(2) 8	(3) 18	(4) 32
Ans.	(2)			
Sol.	Period 2 comprises of 8 ele	ements that is Li, Be, B, C, N	, O, F and Ne.	
19.	Number of covalent bonds	s in Methane molecule		
	(1) 1	(2) 2	(3) 3	(4) 4
Ans.				
Sol.	Methane consists of 4 cova	alent bonds.		
		H H—C- H	—Н	
		11		

CHEMISTRY

20. Chemical formula for Calcium sulphate hemihydrate is -

	(1) CaSO ₄	(2) CaSO ₄ .2H ₂ O	(3) CaSO ₄ . $\frac{1}{2}$ H ₂ O	(4) None		
Ans.	(3)					
Sol.	$CaSO_4 : 2H_2O \xrightarrow{373 \text{ K}} CaSO_4 : \frac{1}{2}H_2O + \frac{3}{2}H_2O$					
	(Gypsum)	(Plaster of paris)				
21.	Law of conservation of m	ass was proposed by -				
	(1) Lavoisier	(2) Proust	(3) Dalton	(4) None		
Ans.	(1)					
Sol.	Lavoisier stated the law o	f conservation of mass.				
22.	Valency of Aluminium is -					
	(1) 1	(2) 2	(3) 3	(4) 4		
Ans.	. (3)					
Sol.	Al belong to group 13 and	l Period 3. Its electronic configu	uration is 2,8,3. Hence its va	alency is 3.		
23.	The sum of the number o	f Protons and Neutrons in an a	tom is known as its -			
	(1) Mass number	(2) Atomic number	(3) Valency	(4) None		
Ans.	(1)					
Sol.	Mass number = Number	of protons + Number of neutro	ons			
24.	The valency of Neon is -					
	(1) 2	(2) 6	(3) 2 and 6	(4) 0		
Ans.	(4)					
Sol.	Neon is noble gas, hence	iť s valency is zero.				
25.	Latent heat of Vapourisat	ion of water-				
	(1) 540	(2) 90	(3) 80	(4) 100		
Ans.	(1)					
Sol.	Latent heat of vaporisation	on of water is 540 cal/g.				
26.	Bleaching powder is repre	sented by formula -				
	(1) NaHCO ₃	(2) Na ₂ CO ₃	(3) CaOCl ₂	(4) None		
Ans.	(3)					
Sol.	CaOCl ₂ is often named as	bleaching powder.				

BIOLOGY

		BIOL	.OGY			
27.	There is a very yellow	dust which comes away on fing	gers whenever we touch the m	niddle of the flower. These tiny		
	yellow grains are one of the most precious substances in nature because they contain the secret of plant life. What					
	is the dust called?					
	(1) Pollen	(2) Sperm	(3) Spore	(4) Sporocyst		
Ans.	(1)					
Sol.	• The tiny yellow grains which are precious substance in nature is pollen grains, which are act as male gamete in pollination.					
28 .	Preparation of soil helps the soil to turn and loosen. This turning and loosening of soil is necessary as -					
	(1) The loose soil helps	roots to breathe easily				
	(2) The loose soil helps	in the growth of earthworms a	nd microbes present in the soi	1		
	(3) Nutrients held in the	e dead organisms are released	back to the soil			
	(4) All the above					
Ans.	(4)					
Sol.		oughing of soil,which helps in b	etter breathing of roots with gro	owth of earthworm & microbes		
		ne soil & increase soil fertility.				
29 .	The species of plant or	animal which is found exclusive	ely in particular area and is not	found naturally anywhere else		
	is known as -					
	(1) Endemic species	(2) Epidemic species	(3) Endomorphic species	(4) Entomorphic species		
Ans.						
Sol.	-	ic to large or small areas of the v		the particular continent, some		
	-	a continent & others to a singl	e island.			
30.	Chipko movement (19					
	(1) Chamoli district of		(2) Jabalpur district of Ma	-		
	(3) Jorhat district of As	ssam	(4) Kannur district of Kera	ala		
Ans.	. ,					
Sol.		al village of Chamoli district of	Uttarakhand.			
31.	Which of the following					
	Organelle	Presence				
	(1) Ribosome	Plant and Animal cell.				
	(2) Mitochondria	Animal cell only				
	(3) Chloroplast	Plant cell only.				
Ano	(4) All of the above					
Ans. Sol.	. ,	is present in both plant and an	simal call			
301. 32.		is present in both plant and ar is incorrect about Dolly, the clo				
32.		in Wilmut and his colleagues	me:			
		-	acted from the udder of a fame	la Finn Dorcat chaon		
	(2) During the process(3) It died its natural d	s of its cloning, the cell was colle	ccied from the udder of a rema	ale i min Doisei sheep		
	()					
Ans.		by the Scottish Blackface ewe				
лііэ.	(9)					

- Ans. (3)
- $\textbf{Sol.} \quad \text{Dolly sheep died on 14th feb. 2003 due to lung disease \& severe arthritis.}$

33. Read the given statements and select the correct option.

Statement - I : In humans, the gamete contributed by the male determines whether the child produced will be the male or female.

Statement - II : Sex in humans is dependant on the X-chromosome or Y-chromosome of the father.

- (1) Both Statements I and II are true and Statement II is the correct Explanation of statement I
- (2) Both Statements I and II are true, Statement II is not the correct explanation of Statement I.
- (3) Statement I is true and Statement II is false.
- (4) Both Statements I and II are false.
- Ans. (1)
- **Sol.** Sex in human is determined by sex chromosome of the male.(male X chromosome \times female X chromosome=XX) (male Y chromosome \times female X chromosome=XY) In human Y chromosome is male determining factor.
- 34. Why will marine organisms be affected, when there is an oil spillage at Sea?
 - (1) There will be a shortage of light and heat in the water.
 - (2) There will be a shortage of Oxygen and excessive heat will be trapped in the water.
 - (3) There will be a shortage of Oxygen and the chemicals in the oil will affect marine organisms.
 - (4) All the above are the correct reasons.

Ans. (4)

- **Sol.** Oil spillage on sea water will severly damage the marine life by forming a thick layer of oil on water which causes shortage of light and oxygen, and heat exchange does not take place.
- **35.** Which of the following describes Moulting?
 - (1) The Resting stage in the cycle of a Silkworm.
 - (2) Change in appearance during the different stages in the life cycle of a Silkworm.
 - (3) Spinning of Cocoon.
 - (4) Casting off old skin.

Ans. (4)

- **Sol.** Moulting is a process in which an insect routinely cast off outer skin of its body. It is under the control of hormone "ecdysone".
- 36. Match column I with column II and select the correct option from the codes given below.
 - Column I
 - (A) Ribosomes
 - (B) Lysosomes
 - (C) Endoplasmic Reticulum
 - (D) Cytoplasm
 - (E) Mitochondria
 - (1) A-(iii), B-(v), C-(iv), D-(i), E-(ii)
 - (3) A-(iii), B-(v), C-(i), D-(iv), E-(ii)

Ans. (1)

- Sol. Column I
 - (A) Ribosomes
 - (B) Lysosomes
 - (C) Endoplasmic Reticulum
 - (D) Cytoplasm
 - (E) Mitochondria

- Column II (i) Jelly like substance (ii) Powerhouse of the Cell (iii) Site of Protein synthesis (iv) Transporting Tubules (v) Suicide Bags (2) A-(iv), B-(v), C-(iii), D-(i), E-(ii) (4) A-(iv), B-(v), C-(ii), D-(i), E-(iii)
- Column II (iii) Site of Protein synthesis (v) Suicide Bags (iv) Transporting Tubules (i) Jelly like substance (ii) Powerhouse of the Cell

- **37.** Which of the following is incorrect match?
 - (1) Alexander Fleming Penicillin.
 - (3) Edward Jenner Vaccination

(2) Louis Pasteur - Fermentation.

(4) Karl Landsteiner-Tissue Culture.

- Ans. (4)
- **Sol.** Karl landsteiner is known for his work on ABO blood grouping system.
- **38.** Select the incorrect statement regarding AIDS. ,
 - (1) It is an immuno-deficiency disease.
 - (2) HIV virus has RNA as its genetic material.
 - (3) HIV positive mother can give birth to HIV positive baby.
 - (4) The time lag between the infection and appearance of AIDS symptoms may vary from week to month.

Ans. (4)

- Sol. The time lag between the infection and appearance of AIDS symptoms take long time(in years).
- **39.** Air pollutants are harmful to living things. Which of the following is/are their harmful effects?
 - (i) This forms acid rain
 - (ii) They cause breathing problems in animals.
 - (iii) They cause interface with photosynthesis in plants.
 - (iv) They cause diseases in the respiratory system of man and animal
 - (1) (i) only
 - (2) (i) and (ii) only
 - (3) (i),(ii) and (iii)
 - (4) (i),(ii),(iii) and (iv)

Ans. (4)

- **Sol.** It cause acid rain, breathing problems in animals by damaging respiratory system & interface photosynthesis in plants.
- **40.** Match the following
 - (A) Oviparous
 - (B) Metamorphosis
 - (C) Embryo
 - (D) External Fertilization
 - (1) A-(ii) ,B-(i), C-(iv), D-(iii)
 - (2) A-(iv) ,B-(iii),C-(ii), D-(i)
 - (3) A-(i) , B-(ii), C-(iii), D-(iv)
 - (4) A-(iii) ,B-(ii), C-(iv), D-(i)

Ans. (1)

- Sol. (A) Oviparous
 - (B) Metamorphosis
 - (C) Embryo
 - (D) External Fertilization

(i) Tadpole of adult (ii) Birds (iii) Fertilization outside the body

(iv) Developed Zygote

- (ii) Birds
- (i) Tadpole of adult
- (iv) Developed Zygote
- (iii) Fertilization outside the body

MATHEMATICS

	MAINEMAIICS					
41.	The value of 'x' satisfyin $5^2.5^{4.56}5^{2x} = (0.04)^{10}$					
	(1) 5	(2) 10	(3) 8	(4) 7		
Ans.	(4)					
	$5^2 \cdot 5^4 \cdot 5^6 \cdot \dots \cdot 5^{2x} = (0.04)$)-28				
001.	0.00 (0.01	/				
	$5^{2+4+6+\dots+2x} = \left(\frac{4}{100}\right)^{2}$	$\left(\overline{\mathbf{D}}\right)^{-28}$				
	$5^{2(1+2+3+\dots+x)} = (5^{-2})^{-2}$	-28				
	$5^{2(1+2+3+\dots+x)} = (5^2)^{28}$					
	By comparing the powe	r				
	\Rightarrow 1 + 2 + 3 + x	= 28	$[1+2+3n = \frac{n(n+1)}{2}]$	+1) 2]		
	\Rightarrow x = 7					
42.	The value of cosec(75	$(+ \theta) - \sec(15 - \theta) - \tan(55 + \theta)$	$) + \cot(35 - \theta)$			
				0		
	(1) –1	(2) 0	(3) 1	(4) $\frac{3}{2}$		
Ans.	(2)					
Sol.		$5^\circ - \theta$) – tan($55^\circ + \theta$) + cot(35	$(^{\circ} - \theta)$			
con	$cosec (75^{\circ} + \theta) = sec [$		0)			
	$\csc (75^\circ + \theta) = \sec (\theta)$					
	Also, $\cot(35^\circ - \theta) = \tan(25^\circ)$					
	$\cot (35^{\circ} - \theta) = \tan (55^{\circ})$					
	. , .	$15^{\circ} - \theta) - \tan(55^{\circ} + \theta) + \cot(\theta)$				
43 .	The average age of three	e girls is 15 years. If their ages are	in the ratio $3:5:7$, then the	age of the youngest girl among		
	them is					
	(1) 12 years	(2) 10 years	(3) 9 years	(4) 8 years		
Ans.	(3)					
Sol.	Let age of Girl $(1) = 3x$					
	age of Girl $(2) = 5x$					
	age of Girl $(3) = 7x$					
		-				
	$\Rightarrow \overline{\mathbf{x}} = 15 = \frac{3\mathbf{x}+5}{3}$	$\frac{x+7x}{3}$				
	\Rightarrow 45 = 15x					
	$\Rightarrow x = 3$					
	age of yougest girl					
	\Rightarrow 3x = 9 years					
	\rightarrow 3x = 9 years					

44. If
$$a + b + c = 0$$
, $a^2 + b^2 + c^2 = 10$, then the value of $a^4 + b^4 + c^4$ is
(1) So (2) 25 (3) 75 (4) 100
Ans. (1)
50. $a + b + c = 0$, $a^2 + b^2 + c^2 = 10$
 $(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)$
 $0 = 10 + 2(ab + bc + ca)^2 = (-5)^2$
 $a^3b^2 + b^2c^2 + c^2a^2 + 2abc^2 + 2abc^2 + 2a^2bc = 25$
 $a^3b^2 + b^2c^2 + c^2a^2 + 2abc (b + c + a) = 25$
 $\Rightarrow a^3b^2 + b^2c^2 + c^2a^2 + 2abc (b + c^2 + 2(a^2b^2 + b^2c^2 + c^2a^2) = (10)^2$
 $\Rightarrow a^4 + b^4 + c^4 + 2(25) = 100$
 $\Rightarrow a^4 + b^4 + c^4 + 2(25) = 100$
 $\Rightarrow a^4 + b^4 + c^4 = 50$
45. A ball of diameter 13 cm is floating in a pond. If the top of the ball is 4 cm above the surface of the pond, then the radius of the circle formed by the contract of water surface with the ball is
(1) 13 cm (2) 6.5 cm (3) 6 cm (4) 9 cm
Ans. (3)
50. Let radius of circle formed
by contact of water surface = 'x' cm
By pythogorus theom
 $x = \sqrt{(6.5)^2 - (2.5)^2} = 6 \text{ cm}$
46. If $\sqrt{1 + \frac{x}{289}} = 1\frac{1}{17}$, then the value of 'x' is
(1) 1 (2) 13 (3) 15 (4) 35
Ans. (4)
Sol. $\sqrt{1 + \frac{x}{289}} = 1\frac{1}{17}$
 $1 + \frac{x}{289} = (\frac{18}{17})^2$
 $\frac{x}{289} = \frac{324 - 289}{289}$
 $x = 35$

47. If $3 \sin \theta + 5 \cos \theta = 5$, then the value of $5 \sin \theta - 3 \cos \theta$ is

(1) 3 (2) 5 (3)
$$\frac{1}{3}$$
 (4) $\frac{1}{5}$

Ans. (1)

Sol. $3 \sin \theta + 5 \cos \theta = 5$... (1) $5 \sin \theta - 3 \cos \theta = x$ (let) ... (2) Squaring & Adding $(3 \sin \theta + 5 \cos \theta)^2 + (5 \sin \theta - 3 \cos \theta)^2 = 25 + x^2$ $9 \sin^2 \theta + 25 \cos^2 \theta + 30 \sin \theta \cos \theta + 25 \sin^2 \theta + 9 \cos^2 \theta - 30 \sin \theta \cos \theta = 25 + x^2$ $9(\sin^2 \theta + \cos^2 \theta) + 25 (\sin^2 \theta + \cos^2 \theta) = 25 + x^2$ $9 + 25 = 25 + x^2$ $34 - 25 = x^2$ $x^2 = 9$ x = 3

48. 'M' is mid-point of line segment AB of length 8 units. S_1 , S_2 are two circles with AM and BM as diameters respectively. The tangent at B meets the tangent from A to circle S_2 at C. If $BC = K\sqrt{2}$, then the value of 'K' is (1) 1

(1) 1 (2) 2 (3) 3 (4) 4
Ans. (2)
Sol. In
$$\Delta AS_2M$$

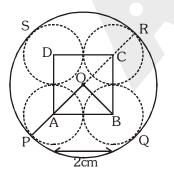
 $AM = \sqrt{6^2 - 2^2}$
 $= \sqrt{36 - 4}$
 $= \sqrt{32}$
 $= 4\sqrt{2}$
In, ΔABC
 $AC^2 = AB^2 + BC^2$
 $(4\sqrt{2} + K\sqrt{2})^2 = 8^2 + (K\sqrt{2})^2$
 $\Rightarrow (4 + K)^2 \cdot 2 = 64 + 2K^2$
 $\Rightarrow 32 + 2K^2 + 16K = 64 + 2K^2$
 $\Rightarrow 16K = 32$
 $\Rightarrow K = 2$
49. If 'A' is the area of triangle with sides 25, 25 and 30 units and 'B' is the area of triangle with sides 25, 25 and 40 units, then
(1) A = B (2) A < B (3) A = 3B (4) A = 2B

Sol. For triangle with area A

$$S_1 = \frac{25 + 25 + 30}{2}$$

$$S_1 = 40$$

$$A = \sqrt{40(40 - 25)(40 - 25)(40 - 30)}$$


 $A = \sqrt{40 \times 15 \times 15 \times 10}$ $= 15 \times 10 \times 2 = 300 \text{ unit}^2$(1) For triangle with area B $S_2 = \frac{25 + 25 + 40}{2} = 45$ $B = \sqrt{45(45 - 25)(45 - 25)(45 - 40)}$ $\Rightarrow \sqrt{45 \times 20 \times 20 \times 5}$ $\Rightarrow 20 \times 5 \times 3 = 300 \text{ unit}^2$(2) From equation (1) & (2) \Rightarrow A = B **50**. If P(x) is a quadratic polynomial with P(0) = 6, P(1) = 1 and P(2) = 0, then the value of P(3) is (2)2(3)3(4) 4(1) 1Ans. (3) **Sol.** P(0) = 6P(1) = 125 25 P(2) = 0P(3) = ?40 30 Let $p(x) = ax^2 + bx + c$ p(0) = cc = 6 1 = a + b + 6a + b = -5... (1) 0 = 4a + 2b + 64a + 2b = -6Subtracting equation (1) from (2)2a + b = -3a + b = -5 $\overline{a = 2}$ b = -7 $\therefore \quad \mathbf{p}(\mathbf{x}) = 2\mathbf{x}^2 - 7\mathbf{x} + \mathbf{6}$ \Rightarrow p(3) = 2.3² - 7.3 + 6 \Rightarrow 18 – 21 + 6 $\Rightarrow 24 - 21 = 3$ If a polygon has 44 diagonals, then its number of sides is **51**. (4)9(1) 10(2) 11(3)8Ans. (2) **Sol.** $\frac{n(n-3)}{2} = 44$ \Rightarrow n(n - 3) = 88 \Rightarrow n(n-3) = 11 × 8 By comparing \Rightarrow n = 11

52. If
$$x = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$$
, $y = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$, then the value of $x^2 + xy + y^2$ is
(1) 49 (2) 78 (3) 98 (4) 99
Ans. (4)
Sol. $x = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} \times \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}} = 3 + 2 - 2\sqrt{6} = 5 - 2\sqrt{6}$
 $\Rightarrow xy = 1$
 $\Rightarrow y = \frac{1}{5 - 2\sqrt{6}} = 5 + 2\sqrt{6}$
 $\Rightarrow x + y = (5 - 2\sqrt{6}) + (5 + 2\sqrt{6}) = 10$
 $\Rightarrow x^2 + y^2 + xy = (x + y)^2 - xy$
 $\Rightarrow (10)^2 - 1 = 99$
53. If a sphere is exactly fitted in a cube, then the ratio of the volume of cube to volume of the sphere is ...
(1) 9 : π (2) 6 : π (3) 3 : π (4) 2 : π
Ans. (2)
Sol. Let side of cube = a
 $a = 2r$
 $V_{cube} = a^3 = 8r^3$
 $V_{sphere} = \frac{4}{3}\pi^3$
 $\frac{V_{cube}}{V_{sphere}} = \frac{8r^3}{4\pi r^3} \times 3 = \frac{6}{\pi}$

54. ABCD is a square of side 2 cm. It each vertex as centre and 1 cm as radius, four circles are drawn, then the radius of the circle which touches these four circles externally is

(4) $\frac{1}{\sqrt{2}}$

- (1) $\sqrt{2} 1$ (2) $\sqrt{2} + 1$
- (3) $\sqrt{2}$
- Ans. (2)
- **Sol.** \therefore r = 1 cm

	$2(OA)^2 = (AB)^2$ $2(OA)^2 = 4$			
	$OA = \sqrt{2}$			
	then radius of circle touch = $OA + PA$	es externally		
	$(\sqrt{2} + 1)$ cm			
55.	If A = $\log_2 \log_2 \log_4 256 +$	$\cdot 2\log_{\sqrt{2}}2$, then the value of A	A is	
	(1) 2	(2) 3	(3) 7	(4) 5
Ans.				
Sol.	$A = \log_2 \log_2 \log_4 256 + $	$2\log_{\sqrt{2}}2$		
	$= \log_2 \log_2 4 + 4$			
	$= \log_2 2 + 4$			
	= 1 + 4 = 5	11 1 1		
56.	$15^3 - 8^3 - 7^3$ is completely (1) 32	y divisible by (2) 49	(3) 56	(4) 25
Ans.	()	(2) 49	(3) 50	(4) 25
	$(a^3 + b^3 + c^3 = 3abc, if$	a + b + c = 0		
	15 + (-8) + (-7) = 0, the			
	$15^3 - 8^3 - 7^3 = 3(15) \ (-8)^3 - 8^3 $) (-7)		
	$= 3 \times 15 \times 8 \times 7$			
	$\Rightarrow 45 \times 56$			
57	Therefore is divisible by 50		V then the new parts as in success	a in ita anga ia
57.	(1) 60%	(2) 120%	%, then the percentage increase(3) 80%	(4) 44%
Ans.		(2) 120 /0		(1) 11/0
Sol.	% increaxe in area = x +	$y + \frac{xy}{100}$		
		100		
	20×20			
	$= 20 + 20 + \frac{20 \times 20}{100}$			
	=40 + 4 = 44%			
58 .	$a_1, a_2, a_3, \dots a_{24}$ are in A	arithmetic progression. If $a_1 +$	$a_5 + a_{10} + a_{20} + a_{24} = 225, t$	then the sum of its first 24
	terms is			
A	(1) 360 (9)	(2) 900	(3) 1800	(4) 2700
Ans. Sol.	. ,	+ a		
001.	$\therefore a_1 + a_2 + a_5 + a_{10} + a_{15}$	10 10		
	$3(a_1 + a_{24}) = 225$	20 25		
	225			
	$a_1 + a_{24} = \frac{225}{3} =$	75		
	24	19 × 7E 000		
	$S_{24} = \frac{24}{2} [a_1 + a_{24}] = 2$	$12 \times /5 = 900$		

50		105 0 110		
59 .		nd CF measure 9 cm and 12 cm 2		
•	(1) 24 cm ²	(2) 54 cm ²	(3) 72 cm ²	(4) $108 \mathrm{cm}^2$
Ans.				
501.	BE = 9			
	CF = 12		A	
	CG = 8, GF = 4		\land	
	BG = 6, GE = 3		$F \left(A \right) = E$	
	Where G is centroid		4 3	
	1	2	6 8	
	Ar (\triangle BGC) = $\frac{1}{2} \times 8 \times$	$6 = 24 \text{ cm}^2$	B	2
	$Ar (\Delta ABC) = 3Ar (\Delta BG)$	$(1) = 2 \times 24 = 72 \text{ sm}^2$		
60.	. , .	+ 22222 is expressed as a singl	a desimal number than the	our of its digits is
00.		(2) 15 expressed as a singl		-
Ans.	(1) 10	(2) 15	(3) 20	(4) 25
Sol.	$(33333)^2 + 22222$			
301.	$(33333)^{+}$ + 22222 $(3 \times 11111)^{2}$ + 111	11×9		
	$(3 \times 11111)^{2} + 111$ $9 \times (11111)^{2} + 111$			
	11111 (9 × 11111 -			
	$11111 (9 \times 11111 - 11111 + 111111$	F 2)		
	11111 (99999 + 2) 11111 (100000 + 1)			
	11111(100000 + 1) 1111100000 + 1112			
	1111100000 + 1111			
		+1+1+1+1+1+1+1	I = 10	
		HISTO		
	—			
61.	-	ment about Montesquieu.		
	(1) He wrote the book "T	-		
		on of power within the governm		
	(3) He introduced the div	vision of powers type of Govern	nment in United States of Am	nerica
	(4) None of the above.			
Ans.	(4)			
Sol.	1, 2 & 3 are representir	ng correct statement about Mo	ontesquieu.	
62 .	Period of Reign of Terror	in France.		
	(1) 1793 to 1794	(2) 1789 to 1791	(3) 1799 to 1805	(4) 1813 to 1817
Ans.				
Sol.	• •	or in France is from 1793 to 1	794.	
63 .	-	nich supported the Monroe Doct		nroe, the President of America
	(1) Russia	(2) Britain	(3) Poland	(4) Turkey
Ans.				
Sol.		oprop Doctring formulated her	Jamas Manroa Brasidant	of America
		onroe Doctrine formulated by		UI AIHEIILA.
64.	-	is not related to the unification	-	
•	(1) Victor Emmanuel II	(2) Giuseppe Garibaldi	(3) Count of Cavour	(4) Frederick William IV
Ans.			· · ·	
Sol.	Frederick William IV is r	not related to the unification of	t Italy.	

65.	Who introduced opium in	nto China in the early sixtee	enth century?	
	(1) French	(2) Portuguese	(3) Dutch	(4) Italians
Ans.	(2)			
Sol.	Portuguese introduced of	pium into China in the ea	rrly 16 th Century.	
66 .	Consider the following sta	atements about Cricket.		
	(a) The first written "law	s of Cricket" were drawn u	p in 1744.	
	(b) The world's first Cric	ket Club was formed in Ma	nchester in 1760's.	
	(c) The parsis founded t	he first Indian Cricket Club	and The Oriental Cricket C	lub in Bombay in 1848.
	(d) India entered the wo	rld of Test Cricket in 1932.		
	Which of the following sta	atements given above is/are	e correct?	
	(1) a only	(2) a and d	(3) a, c, d	(4) a, b, c, d
Ans.				
Sol.		club was formed in Hambl		
67.		ndia during Civil Disobedie		
	(1) Lord Irwin	(2) Lord Chelmsford	(3) Lord Reading	(4) Lord Curzoni
Ans.				
Sol.		oy of India during Civil Dis		
68 .			ind compiled long lists of those	se who made a living from crime in
	the mid-nineteenth centur	-		
•	(1) Andrew Mearns	(2) Charles Dickens	(3) C.G. Agarkar	(4) Henry Mayhew
Ans.		atur. Harm Markauru	at a account water as any that	and an labour and somethed lang
Sol.		• • •	Die several volumes on the L	London labour, and compiled long
69.	lists of those who made	-	timate gift of God and greate	act on all in
09.	(1) John Calvin	(2) William Farel	(3) Zwingli	(4) Martin Luther
Ans.	. ,		(O) Zwingi	(4) Martin Lutier
Sol.		the ultimate gift of God ar	nd the greatest one.'	
70.	Find out the wrongly mat		, j , i , i , i	
	(1) Gulamgiri - Jyotiba P	hule.	(2) Aamar Jiban - Ra	assundari Devi.
	(3) Chote aur Bade ka sa	awal - Kashi Baba	(4) None of the above	2.
Ans.	(4)			
Sol.	· ·	ig correct matches of boo		
71.	-	nent about religious reform		
		led Martin Luther started th		
		o called as Protestant Refo		when the Cethelie Church means and
	to retain its influence		pear in rurai areas, while in id	wns the Catholic Church managed
	(4) None of the above			
Ans.	(3)			
Sol.	. ,	ere very popular in towns.		
72.		a part of "April Theses", de		
	(1) Banks be nationalised		-	
	(2) Land be transferred to			
	(3) The war to be brough			
	(4) All the above.			
Ans.	(4)			
Sol.	1, 2 & 3 are parts of Ap	oril Thesis declared by Ler	nin.	

73. "Tebhaga movement" 'took place in this state.

(1) Bengal (2) Punjab

(3) Maharashtra

(4) Kerala

- Ans. (1)
- **Sol.** Tebhaga Movement took place in Bengal.
- 74. Which among the following is not a demand of the Indian Navy Mutiny that took place in 1946?
 - (1) Equal pay for white and Indian soldiers.
 - (2) Withdrawal of Indian troops from Indonesia.
 - (3) Separate nation for muslims.
 - (4) None of the above.
- Ans. (3)
- Sol. Separate nation for Muslims is not the demand of Indian Navy Mutiny that took place in 1946.
- **75.** Find out the wrongly matched about the formation of parties India.
 - (1) Indian National Congress 1885
 - (2) Muslim League 1906
 - (3) Hindu Maha Sabha 1910
 - (4) Communist Party of India 1925
- Ans. (3)
- Sol. Hindu Mahasabha was not formed in 1910.

GEOGRAPHY

- 76. Find out the wrong statement about western cyclonic disturbances.
 - (1) These originate from the Mediterranean sea.
 - (2) They usually influence the weather of the North and North western regions of India.
 - (3) The rainfall received from these disturbances is called as Mahawat. It is a boon for the Kabi crop.
 - (4) None of the above.

Ans. (4)

- **Sol.** 1, 2 & 3 are representing correct statement about Western Cyclonic Disturbances.
- **77.** Match the following.
 - (A)
 - (a) Tropical Deciduous forests
 - (b) Tropical Evergreen forests
 - (c) Mangrove forests
 - (d) Thorn forests

		(a)	(b)	(c)	(d)
	(1)	(ii)	(i)	(iv)	(iii)
	(2)	(iii)	(i)	(ii)	(iv)
	(3)	(iv)	(iii)	(i)	(ii)
	(4)	(iii)	(ii)	(i)	(iv)
Ans.	(4)				

Sol. 4 represents correct matches.

(B)

(i) Grows in Delta region

(ii) Grows upto a height of 60 mts.

- (iii) These are the most widespread forests of India
- (iv) These are found in North-western part of India

78 .	Find out the highest and least Sex Ratio recorded decades.					
	(1) 1901,1991	(2) 1901,2001	(3) 1921,1981	(4) 1911,2011		
Ans.	(2)					
Sol.	The highest decadal	sex ratio was recorded in 2	1901 & lowest was recorded in	1991.		
79 .	Which.of the followin	g lake is the result of Tector	nic activity ?			
	(1) Chilka lake	(2) Sambhar lake	(3) Pulicat lake	(4) Wular lake		
Ans.	(4)					
Sol.	Wular Lake is lake fo	ormed by tectonic activity.				
80.	Which one of the follo	owing drainage patterns dev	velop when streams flow in differe	nt directions from a central peak		
	or dome like structure	?				
	(1) Dendritic	(2) Trellis	(3) Radial	(4) Pinnate		
Ans.	. ,					
Sol.		ern develops when strean	ns flow indifferent direction fro	m a central peak or dome like		
81.	structure.	eak among the following.				
01.	(1) Makalu	(2) Kamet	(3) Kanchenjunga	(4) NandaDevi		
Ans.	. ,	(Z) Ramer	(0) Manchenjunga	(+) I validadevi		
Sol.		swers Kanchenjunga is a h	ighest neak in India			
82 .			the concept of "Sustainable Deve	elopment" and advocated it as a		
02.	means for resource co					
	(1) Leopold report, 19	969.	(2) Brundtland report, 2	(2) Brundtland report, 1987.		
	(3) Sunita Narayan re	port, 2012.	(4) Rome report, 1968.	(4) Rome report, 1968.		
Ans.	(2)					
Sol.	Brundtland Commiss	sion Report 1987 talks ab	out sustainable development.			
83 .	Consider the following	g statements about soils.				
	(a) Red laterite soils in	n Tamilnadu, Andhra Prade	esh and Kerala are more suitable t	for cashew nut crop.		
	(b) Arid soils are gene	erally sandy in texture and s	aline in nature.			
	(c) Red soil develops	on crystalline igneous rocks	in areas of low rainfall.			
		ound in interior part of Deco				
		nt/s given above is / are com				
	(1) a only.	(2) a and b.	(3) a,b,c.	(4) a,b,c,d.		
Ans.						
Sol.	a, b, c are correct					
84.		on the Coromandel coast in				
	(1) Western cyclonic d		(2) North-west monsoo			
•	(3) South-west monso	oons.	(4) North-east monsoor	IS .		
Ans.		Later - and a fault in a state of a fa				
Sol.		bring rainfall in winters at	coromandal coast.			
85.	Salal project is built o		(2) Domodor	(1) Deriver		
Ana	(1) Chenab	(2) Chambal	(3) Damodar	(4) Periyar		
Ans. Sol.	. ,	on Chanah River				
301.	Salal Project is build	UN CHEHAU MIVEI				

86.	. The Balaghat mines in Madhya Pradesh are famous for -					
	(1) Bauxite	(2) Copper	(3) Manganese	(4) Gold		
Ans.	(2)					
Sol.						
87 .	National waterway No-2	joins these two cities.				
	(1) Allahabad and Haldi	a.	(2) Kolkata and Cuttack.			
	(3) Sadiya and Dhubri.		(4) Kocchi and Kollam.			
Ans.						
Sol.	Sadiya and Dubri are jo	ned by National Waterway 2.				
88.	India's highest population	n growth rate is recorded during	g this decade			
	(1) 1951-1961	(2) 1961-1971	(3) 1971-1981	(4) 1981-1991		
Ans.	(3)					
Sol.	The highest growth rate	is recorded between 1971-19	981			
89.	Thal ghat and Bhor ghat	passes are in these mountains				
	(1) Eastern ghats	(2) Aravail mountains	(3) Satpura mountains	(4) Western ghats		
Ans.	(4)					
Sol.	Thal and Bhor Ghat pas	sses are in Western Ghats.				
90.	Which one of the followi	ng is the most wide spread and	l most productive category o	of soil in India?		
	(1) Forest soil	(2) Laterite soil	(3) Alluvial soil	(4) Arid soil		
Ans.	(3)					
Sol.	The most widely spread	soil in India is Alluvial Soil.				
91.	Which fo the following d	oes nto influence the making of	f Indian Constitution ?			
	(1) Ideals of French revol	ution.	(2) Practice of Parliament	ary democracy in Britain.		
	(3) Bill of Rights in U.S.		(4) Armed struggle in Chin	าล		
Ans.	. ,					
Sol.	Armed struggle in China	has no role in making of the I	ndian Constitution.			
92.		s to contest in election has to m	ake a legal declaration, givi	ng full details of		
	(1) Eductional qualificati					
		nd liabilities of the candidate a	-			
		s pending against the candidate	2.			
	(4) All the above.					
Ans.	(4)					
Sol.	All the given Answers a					
93.		atements about the judiciary is				
		he Parliament needs approval	of the Supreme court.			
	(2) Judiciary is independe					
		bach the court if his/her rights an				
		own a law if it goes against the	spirit of the Constitution.			
Ans.	()	.				
Sol.	Every law passed by the	Parliament need approval of	the Supreme court.			

94.	Find out the topic which is not in the state list.			
	(1) Trade	(2) Agriculture	(3) Police	(4) Communication
Ans.	(4)			
Sol.	Communication is in Union List			
95 .	Which of the following countries consists of two party system ?			
	(1) India	lia (2) China		
	(3) United States of America (4) All the above.			
Ans.	(3)			
Sol.	USA has two party system.			
96.	A sweet seller purchased sugar. It is a type of capital.			
	(1) Fixed capital		(2) Working capital	
	(3) Human capital		(4) None of the above	
Ans.	(2)			
Sol.	Sweet Seller purchased sugar for raw material hence its working capital			
97 .	Which of the following factors contribute Globalisation ?			
	(1) Technology.		(2) Economical liberalisation	on.
	(3) International organisat	ions.	(4) All the above.	
Ans.	(4)			
Sol.	All the given factors contribute towards Globalisation.			
98.	Find out the wrong statement.			
	(1) The consumption of calories has gone down between 1983 and 2004.			
	(2) Person availability of food grains has gone down between 1991 and 2001.			
	(3) Agricultural diversification affect the production of food grains.			
	(4) Availability of per capita food grains in India is more than in Europe.			
Ans.				
Sol.	Availability of food grains in India is less than in Europe.			
99.	Chipko movement was started in this part of Himalayas.			
	(1) Nepal Himalayas	(2) Garhwal Himalayas	(3) Purvanchal Himalayas	(4) Sikkim Himalayas
Ans.	()			
Sol.	Chipko movement was started in Garhwal Himalayas.			
100.	Antyodaya Anna Yojana was started in the year.			
	(1) 2000	(2) 2004	(3) 2007	(4) 2011
Ans.				
Sol.	AAY started in the year 2000.			