

NATIONAL TALENT SEARCH EXAMINATION (NTSE-2020) STAGE -1 STATE : DELHI | PAPER : MAT

Date: 17-November-2019

Max.	Marks: 10	00	SOLUTIONS	Time allowed: 120 mins
1.	What is sun	n of all positive factors	of 256.	
	(1) 526	(2) 511	(3) 625	(4) 562
Sol.	Option (2)			
	Sum of all +	⊦ ve factore of 256		
		$256 \rightarrow 1, 2, 4, 8, 1$	6, 32, 64, 128, 256	
		Sum \rightarrow 511		
2.	Value of $\frac{1}{X}$	$\frac{X}{x+1} + \frac{X+1}{X} - \frac{1}{X(X+1)}$	will be	
	(1) X ²	(2) 1	(3) X	(4) 2
Sol.	Option (4)	ζ,		
		$\frac{x}{x+1} + \frac{x+1}{x} - \frac{1}{x^2 + x}$		
		$\frac{x^2 + (x+1)^2}{x^2 + x} - \frac{1}{x^2 + x}$	ĸ	
		$\frac{x^2 + x^2 + 2x + 1 - 1}{x^2 + x}$		
		$\frac{2x^2 + 2x}{x^2 + x} \Rightarrow \frac{2(x^2 + x)}{x^2 + x}$	$\frac{x}{x} \Rightarrow 2$	
3.	Sum of seq	uence 5 + 6 + 7 + 8 +	+ 19 will be?	
	(1) 180	(2) 175	(3) 185	(4) 190
Sol.	Option (1)			
		1 + 2 + 3 + 19		
		$\frac{n(n+1)}{2} - (1+2+3+$	- 4)	
		$\frac{19\times20}{2}$		
		190 - 10 = 180		

4. If three Numbers are in ratio $\frac{1}{2}:\frac{2}{3}:\frac{3}{4}$, difference between largest and smallest is 27 then numbers are

(1) 54, 72, 81 (2) 24, 45, 51 (3) 64, 72, 91 (4) 54, 65, 81 Sol. Option (1)

$$\frac{1}{2}:\frac{2}{3}:\frac{3}{4}$$
$$\frac{1}{2}\times12:\frac{2}{3}\times12:\frac{3}{4}\times12$$
6:8:9

Let common factor is x then sssss

$$3x = 27$$

$$x = 9$$

$$6x \Rightarrow 54$$

$$8x \Rightarrow 72$$

$$9x \Rightarrow 81$$

5. Which of the following number will completely divide the value of $(3^{25} + 3^{26} + 3^{27} + 3^{28})$

(1) 35	(2) 40	(3) 50	(4) 45

Sol. Option (2)

 $3^{25} + 3^{26} + | 3^{27} + 3^{28}$ $3^{25} (1 + 3^1 + 3^2 + 3^3)$ $3^{25} (1 + 3 + 9 + 27)$ $3^{25} (40) = 80$

6. Rohan's score on the mid-term exam was 75, and his score on the final exam was 90. if the weight of the final exam is twice that of mid-term, what is Rohan's final score in the course?

(1) 82.5 (2) 80 (3) 85.5 (4) 85

Sol. Option (4)

75, 90

$$\frac{75+2\times90}{3} = \frac{255}{3} = 85$$

7. A grandmother, mother and daughter wish to arrange themselves in a row in order to be photographed. How many different ways can they arrange themselves?

(1) 6	(2) 3	(3) 18	(4) 9
(1)0	(2)0	(0) 10	

Sol. Option (1)

 $3! = 3 \times 2 \times 1 = 6$

- 8. At the time of marriage a man was 6 year older than his wife, but 12 year after the marriage his age was 6
 - $\frac{6}{5}$ times the age of his wife. Their ages (in years) at the time of the marriage were?

(1) 26, 20	(2) 24, 18	(3) 27, 21	(4) 30, 24
(1) 20, 20	(L) L I, IO	(0) LI, LI	(1)00, 21

Sol. Option (2)

At the time of marriage

Age of man $\rightarrow x + 6 = 24$ Wife $\rightarrow x = 18$ Now $\rightarrow x + 6 + 12 = x + 18$ Wife x + 12 = x + 18

M W $x + 18 = (x + 12) \frac{6}{5}$ $x + 18 = \frac{6x}{5} + \frac{72}{5}$ $18 - \frac{72}{5} = \frac{6x}{5} - x$ $\frac{18}{5} = \frac{x}{5}$

x = 18age of wire = 18

age of man = 24

9. If we throw a dies, what is the probability of obtaining a result that is less than 4. If we know that the result obtained was an even number?

(1)
$$\frac{1}{2}$$
 (2) $\frac{2}{3}$ (3) $\frac{1}{3}$ (4) $\frac{4}{5}$

Sol. Option (3)

1, 2, 3, 4, 5, 6
2, 4, 6
Less
$$4 \rightarrow \frac{1}{3}$$

10. There are 10 balls in a box, 5 white and 5 black. Two balls are removed randomly form the box, one after another. The first ball that is removed is black and it is not returned to the box. What is the probability that the second ball that is removed is also black?

	(1) $\frac{5}{9}$	(2) $\frac{4}{9}$	(3) $\frac{3}{9}$	(4) $\frac{1}{2}$
Sol.	Option (2) SW, 5B			
	SW,, 4B	$\frac{4}{9}$		
11.	=	tions are based on the basis of a certa $10 - 3 = 12, 12 - 4 = 13, 14 - 5 = 12$		-
	(1) 10	(2) 15	(3) 16	(4) 18
Sol.	Option (2)			
		10 - 3 = 12		
		7 + 5 = 12		
		12 - 4		
		8 + 5 = 13		
		14 - 5		
		9 + 5 = 14		
		16 - 6 = 10 + 5 = 15		
12.		toppages, the speed of a bus is 54 ki tes does the bus stop per hour?	mph and including	stoppages, it is 45 kmph. For how
	(1) 9	(2) 10	(3) 12	(4) 20
Sol.	Option (2)			
	Loss in spe	ed = 54 – 45 = 9 kmph		
	1 hr Bus co	ourse 9 kmph less due to stiffer		
	Time in wh	ich the buy stops per h		
		$T = \frac{D}{5 \text{ Res}} = \frac{9}{54} = \frac{1}{6} \text{ hr}$		
		$\frac{1}{6} \times 60 = 10 \text{ min}$		
13.	If 40% of 1	620 + 30% of 960 = ? % of 5200.		
	(1) 12	(2) 24	(3) 5	(4) 18

Sol. Option (4)

40% of 1620 + 30% of 960 = x% of 5200 $\frac{40}{100} \times 1620 + \frac{30}{100} \times 960 = \frac{x}{100} \times 5200$ 648 + 288 = 52x 936 = 52x $\frac{936}{524} = x \qquad x = 18$

14. In a row, 25 trees are planted at equal distance from each other. The distance between 1^{st} and 25^{th} tree is 30m. what is the distance between 3^{rd} and 15^{th} tree?

	(1) 8m	(2) 15m	(3) 16m	(4) 18m
Sol.	Option (2)			
		24x = 30		
		$X = \frac{30}{24}$		
		$12 \Longrightarrow x = \frac{30}{24} \times 12$	X = 15	
15	In a school	the bell is rung once after teach be	alf an hour. The school star	rts at 8.00 AM and close

15. In a school, the bell is rung once after teach half an hour. The school starts at 8:00 AM and close at 1:30PM. The bell is rung 4 times continuously, at the time beginning, at the time of lunch break at 10:00 and 10:30 AM and at the end. How many times is the bell rung every day?

(1) 21 (2) 22 (3) 19) (4) 20 Option (4)

 $8 \Rightarrow 1:30$

Sol.

$ \begin{cases} 8 \text{ am} \\ 10 \text{ am} \\ 10:30 \text{ am} \\ 1:30 \text{ pm} \end{cases} $ 3 time	8:30 9:00 11:00 11:30 12:00 12:30 01:00
4 × 3 = 12	12 + 8 = 20

16.If 80% of A = 50% of B and B = x% of A then value of x will be?(1) 145(2) 170(3) 150

(4) 160

Sol. Option (4)

$$\frac{48}{5100} = \frac{201}{100}$$
$$\frac{4A}{5} \frac{B}{2}$$
$$B = \frac{x}{100} A \frac{8A}{5} = 8$$
$$\frac{8100}{5100}, \frac{8}{5} A, \frac{8}{5} = 160 B$$
$$\frac{80}{100} \times A = \frac{50}{100} \times B$$
$$\frac{8A}{5} = B$$

Now

18.

Find

 $B = \frac{x}{100} \times A$

$$\frac{8}{5}A = \frac{x}{120} \times A \Longrightarrow x = 160$$
 So 160%

17. The mean of five consecutive numbers is 7. Which is the highest number? (1) 10 (2) 7 (3) 9 (4) 8 Sol. Option (3) x + x + 1 + 2 + x + 3 + 4

x, x +1, x + 2, x + 3, x + 4

$$\frac{5x + 10}{5} = 7$$

$$5x + 10 = 35$$

$$5x = 25$$

$$x = 5$$
highest = 5 + 4 = 9
the value of x² + y² - x³ - 3xyz. If x + y + z = 15 and x² + y² + z² = 51.

Sol. Option (2)

$$(x + y + z)^{2} = 15$$

$$x^{3} + y^{3} + z^{3} - 3xyz = (x + y + z) (x^{2} + y^{2} + z^{2} - xy - yz - zx)$$

$$= (x + y + z) [x^{2} + y^{2} + z^{2} - (xy + yz + zx)] \qquad \dots (1)$$

$$\Rightarrow \qquad (x + y) + z)^{2} = (15)^{2}$$

$$x^{2} + y^{2} + z^{2} + 2zy + 2yz + 2zx = 225$$

$$51 + 2(xy + yz + zx) = 225$$

$$2(xy + xz + zx) = 225 - 51$$

$$2 (xy + yz + zx) = 174$$

$$Xy + yz + zx = 87$$
So
$$15 [51 - 87] = -540$$

- 19.If area of any triangle is 384 cm² and its sides are in ratio 3 : 4 : 5 then perimeter of triangle will be?(1) 60cm(2) 48cm(3) 64cm(4) 96cm
- Sol. Option (4)

3x, 4x, 5x

$$3x$$
 $5x$ $4x$

$$\frac{1}{2} \times 4x \times 3x$$

$$6x^{2} = 384$$

$$x^{2} = \frac{384}{6}$$

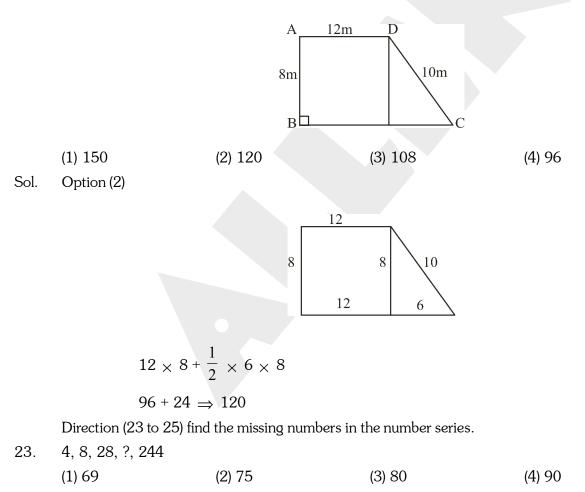
$$x = 8$$


$$24 + 32 + 40 = 96$$

20.

 $\frac{13}{48}$ is equal to

(1)
$$\frac{1}{3 + \frac{1}{1 + \frac{1}{16}}}$$
 (2) $\frac{1}{3 + \frac{1}{1 + \frac{1}{1 + \frac{1}{8}}}}$ (3) $\frac{1}{3 + \frac{1}{1 + \frac{1}{2 + \frac{1}{4}}}}$ (4) $\frac{1}{3 + \frac{1}{1 + \frac{1}{8}}}$


Sol. Option (3)

21. If for any two number a and b, the operation S is defined as follows: a $b = a \times (a + b)$, then (2 $0 \ 1 = ?$ (1) 12 (2) 10 (3) 20 (4) 4 Sol. Option (3)

a \$ b = a (a + b)
2 \$ 0 = 2 (2 + 0) = 4\$ 1
$$\implies$$
 4 (4 + 1) = 20

22. The accompanying figure shown a right + trapezoid (AD || BC) Based on this information and the information in the figure, the area of the trapezoid (in m²) is

Sol.	Option (3)				
		4 8	28	244	
		3 +1 = 4			
		$3^2 - 1 = 8$			
		$3^3 + 1 = 28$			
		$3^4 - 1 = 80$			
		$3^5 + 1 = 244$			
24.	4 7 12 1	.9, 28, 39, ?			
21.	(1) 48	(2) 52		(3) 55	(4) 58
Sol.	Option (2)	(_) = _		(0) 00	(1) 00
		4, 7, 12, 19, 28, 39 3 5 7 9 11	9, 52 13		
25.	10080, 16	80, ?, 84, 28, 14			
	(1) 840	(2) 168		(3) 108	(4) 336
Sol.	Option (4)				
	-	10080, 1680, ? 84, 2	28, 14		
		$\frac{10080}{6} = 1680$	_	$\frac{1680}{5} = 336$	
		6	\Rightarrow	5 - 550	
	\Rightarrow	$\frac{336}{4} = 84$	\Rightarrow	$\frac{84}{3} = 28$	
				5	
	\Rightarrow	$\frac{28}{2} = 14$			
06	T 1	-		· D 4047 /	
26.		ound interest on Rs. 30,0	000 at 7% pe		
	(1) 1	(2) 2		(3) 3	(4) 3.5
Sol.	Option (2)				
		P = 30, 0000			
		R = 75			
		CI = 4347			
		(7) ⁿ		
		34347 = 30, 0000 (1	$1 + \frac{7}{100}$		
		$34,347 (107)^n$			
		$\frac{34,347}{30,000} = \left(\frac{107}{100}\right)^n$			
		$\left(\frac{107}{100}\right)^2 = \left(\frac{107}{100}\right)^n \Longrightarrow n$	n = 2		
		$(100)^{-}(100)^{-}$	n – 2 9		

_

27. Among the numbers $\sqrt{2}$, $\sqrt[1]{9}$, $\sqrt[4]{16}$, $\sqrt[1]{32}$ the greatest one is:

(1) $\sqrt{2}$ (2) $\sqrt[3]{9}$ (3) $\sqrt[4]{16}$ (4) $\sqrt[5]{32}$

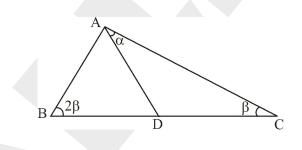
Sol. Option (2)

$$\sqrt{2}, \sqrt{5}, \sqrt{16}, \sqrt[4]{32}$$

 $(2)^{\frac{1}{2}}, (9)^{\frac{1}{3}}, (16)^{\frac{1}{4}}, (32)^{\frac{1}{2}}$
 $(9^{\frac{1}{3}})^3 = (k)$
 $(9^{\frac{1}{3}})^3 = (k)$
 $(9^{\frac{1}{3}})^3, (2)^3$
9, 8
So $9^{\frac{1}{3}} > 2$
28. If $x + \frac{1}{x} = 2$ and x is real, then the value of $x^{17} + \frac{1}{x^{16}}$ is
(1) 1 (2) 0 (3) 2 (4) -2
Sol. Option (3)
 $x + \frac{1}{x} = 2 \Rightarrow x^3 - 2x + 1 = 0$
 $x^{17} + \frac{1}{x^{16}} \Rightarrow x = 1$
 $1^{17} + \frac{1}{x^{16}} \Rightarrow x = 1$
 $1^{17} + \frac{1}{x^{16}} \Rightarrow x = 1$
 $1^{17} + \frac{1}{x^{16}} \Rightarrow x = 1$
(1) 1.2 (2) 13.2 (3) 10.8 (4) 12
Sol. Option (3)
Total sum = 20 × 7.2 - 144.0
If the sum rank in 6 at the end of the 15th over
Required run = 144 - 90 = 54 run
Sum run rate = 10.8

- 30. If P and Q are H.C.F. and L.C.F of two algebraic expression respectively and P + Q = x + y then what will be value of $P^3 + Q^3$?
 - (1) $x^3 + y^3$ (2) $x^3 y^3$ (3) x + y (4) x y
- Sol. Option (1)

 $\begin{array}{l} \text{HCF} \times \ \text{LCM} = \text{mul. Of} = \text{Algebraic equation} \\ P \times \ Q = xy \\ P + Q = x + y \\ (P + Q)^3 = (x + y)^3 \\ P^3 + Q^3 + 3PQ \ (P + Q) = x^3 + y^3 + 3xy \ (x + y) \\ P^3 + Q^3 + 3xy \ (x + y) = x^3 + y^3 + 3xy(x + y) \\ P^3 + Q^3 = x^3 + y^3 \end{array}$


31. Pipe A and B can fill a tank in 12 minutes and 16 minutes respectively. Both pipe are kept open for x minutes and then b is closed and A fills the rest of tank in 5 minutes. The value of x will be
(1) 4 is the rest of tank in 5 minutes. (2) 5 is the rest of tank in 5 minutes.

Sol. Option (1)

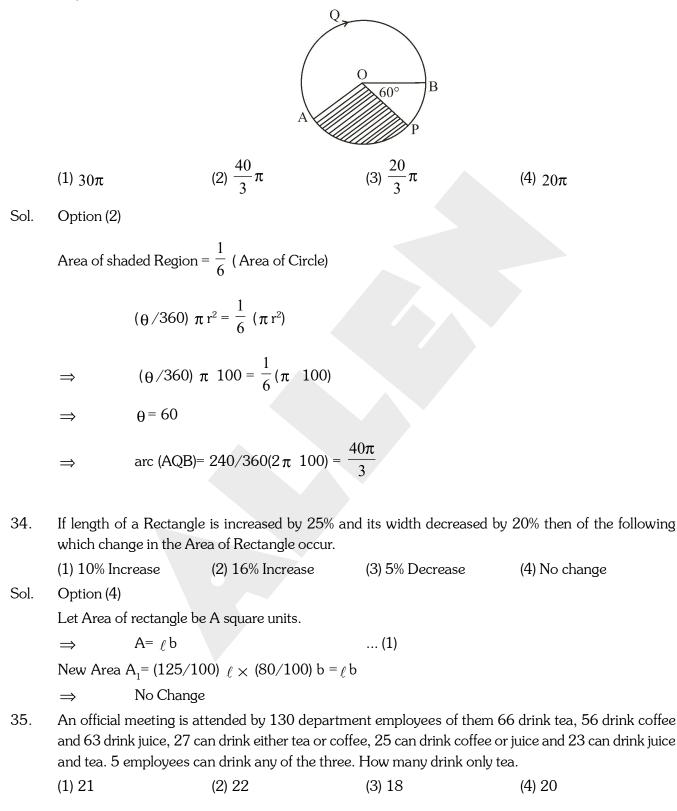
$$A \xrightarrow{12} 48 \xrightarrow{4} 3 \xrightarrow{74} 7x + 20 = 48$$

$$7x = 48 - 20 \qquad \Rightarrow \qquad 7x = 28 \qquad \Rightarrow \qquad x = 4 \text{ min}$$

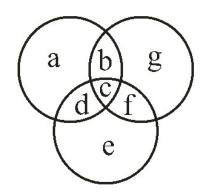
32. The accompanying figure shows right triangle ABC and isosceles triangle ABD (AB = AD).

Based on this information and the information in the figure, the value of angle α is.

Sol. Option (3)


Using Exterior Angle Property

$$\alpha + \beta = 2\beta \implies \alpha = \beta$$


Now in \triangle ABD, Using Angle Sum property

$$\Rightarrow \qquad 4\beta + 90 - \alpha = 108$$

$$\Rightarrow \qquad 3\beta = 90$$

$$\Rightarrow \qquad \beta = 30, \qquad \text{Thus} \qquad \alpha = 30$$

33. The accompanying figure shows a circle whose centre is O and radius is 10cm. The shaded sector equals $\frac{1}{6}$ of the area of the circle. Based on this information and the information in figure the length (in cm) of the arc AQB is:

Sol. Option (1)

$$a + b + c + d = 60 \dots (1)$$

$$b + c + g + f = 56 \dots (2)$$

$$d + c + e + f = 63 \dots (3)$$

Now As $c = 5, b + c = 27, c + f = 25, c + d = 23,$

On solving above, a = 21

36. Of the three number, the sum of first two is 55, sum of second and third is 65, and sum of third with thrice of the first is 110. The third number is?

(1) 25	(2) 30	(3) 35	(4) 28

Sol. Option (3)

a + b=55	(1)
b + c = 65	(2)
3a + c = 110	(3)

On solving above equations,

c = 35

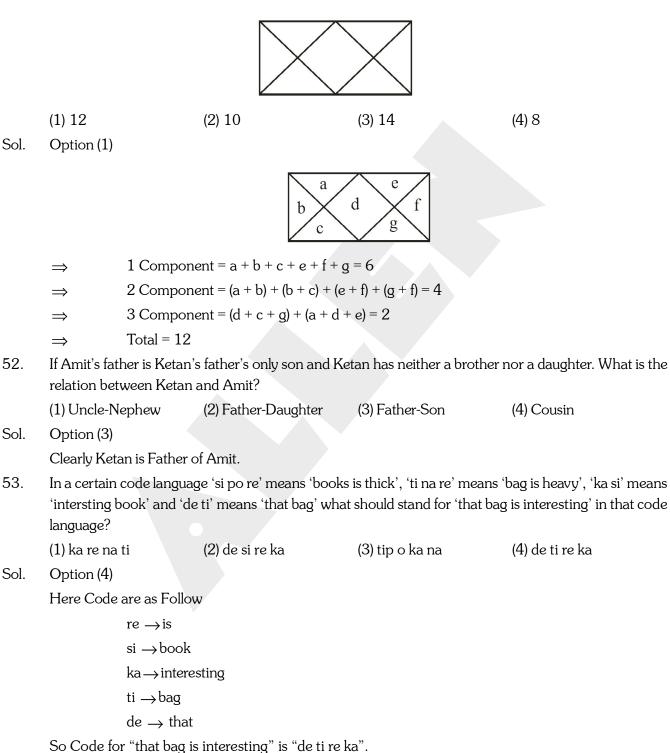
Direction: (37 to 40) Study the following table and answer questions given below:

EMPLOYEES SOURCE OF INCOME					
	K	L	М	Ν	0
Salary	12000	6000	21000	9000	12000
Bonus	2400	1200	4500	2400	3000
Overtime	5400	2100	6000	5100	6000
Arrears	6000	5400	12000	4200	7500
Miscellaneous	1200	300	1500	300	1500
Total	27000	15000	45000	21000	30000

37.	The employee who has minimum ratio of income from arrear to income form salary is				
	(1) K	(2) L	(3) M	(4) N	
Sol.	Option (4)				
	-	N = 4200/9000 = 7/15			
		K = 6000/12000 = 1/2			
		L = 5400/6000 = 9/10			
		M = 12000/21000 = 4/7			
	Thus N ha	s minimum ratio.			
38.	The emplo	yee who earns maximum bonus ir	n comparison to his to	otal income?	
	(1) M	(2) N	(3) L	(4) K	
Sol.	Option (2)				
		N = 2400/21000 = 4/5			
		K = 2400/27000 = 4/45			
		L = 1200/15000 = 2/25			
		M = 4500/45000 = 1/10			
	Thus N ear	rns maximum bonus			
39.	The emplo	yee who has maximum percentag	e of his salary out of	the income?	
	(1) K	(2) L	(3) M	(4) O	
Sol.	Option (3)				
		O = 12000/30000 = 2/5			
		K = 12000/27000 = 4/9			
		L = 6000/15000 = 2/5			
		M= 21000/45000 = 7/15			
		s maximum percentage of his sala			
40.	The incom category C		ge of the income from	n the arrears in case of employee in	
	(1) 80	(2) 75	(3) 25	(4) 20	
Sol.	Option (1)				
	Percentage	$e \text{ of } O = (6000/7500) \ 100 = 809$	%		
41.	The ratio of the present ages of Mohan and Suresh is 4:5. Five year ago, the ratio of their ages was 7:9. Their present ages was (in year) are:				
	(1) 40, 50	(2) 18, 25	(3) 40, 60	(4) 20, 25	
Sol.	Option (1)				
	Let five yea	ars ago ages of Mohan was 7x and	d Suresh was 9x.		
	Thus (7x +	(-5)/(9x+5) = 4/5			
	\Rightarrow	x = 5			
	Thus present age of Mohan = 40 and Suresh = 50 .				

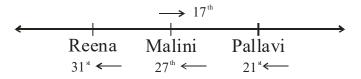
42. For a business lunch in a certain restaurant, you may choose one of 3 different first course and one of 4 different main course. In addition to first course and the main courses, you have a choice of a soup or dessert. How many different combinations of three course business lunch does this restaurant offer? (1) 12(2) 14(3) 18(4) 24Sol. Option (4) Choices for first course = 3Choices for main course = 4Choices of soup or desert = 2Thus Total = $3 \ 4 \ 2 = 24$. 43. If the length of rectangular plot of land is increased by 12% and the breadth is decreased by 10%, its area is: (1) Decreased 1.25% (2) Decreased by 2.5 %(3) Increased by 2.5% (4) Increased by 1.25%Sol. Option (4) Let Area of rectangle be A square units. $A = \rho b$... (1) \Rightarrow New Area $A_1 = (225/200)_{\ell} (90/100)b = (81/80)_{\ell} b$ % increase = $[\{(81/80) \not| b - \not| b\} / \not| b]$ 100 = 1.25 % \Rightarrow 44. K is an even number and P is odd number. Which of the following statement is not correct? (2) P + K + 1 is an even number (1) P - K - 1 is an odd number (4) $P^2 + K^2 + 1$ is an even number (3) P K + P is an odd number Sol. Option (1) P - K - 1 is even as odd - even - odd = even45. All of the liquid filling a cuboidal container that measures 2cm 10cm 20cm is poured into a cylindrical container with a base radius of 5 cm. What height (in cm) will the surface of the liquid reach in the cylindrical container? (2) $\frac{40}{\pi}$ (1) $\frac{16}{\pi}$ (3) 8π (4) 8Sol. Option (1) Volume of cuboidal container = Volume of cylindrical container $2 \times 10 \times 20 = \pi \times 25 \times h$ \Rightarrow $h = \frac{16}{\pi}$ \Rightarrow

46. $(O < \theta < 90)$. If $\tan \theta + \cot \theta = 2$ then what will be value of $\tan^{100} \theta + \cot^{100} \theta$?

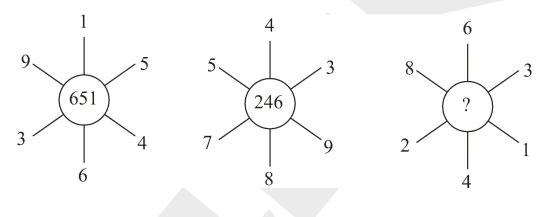

(1) 2 (2) $2\sqrt{3}$ (3) 1 (4) $\frac{1}{\sqrt{3}}$

Sol. Option (1) $\tan \theta + \cot \theta = 2$ $\tan \theta + 1/\tan \theta = 2$ \Rightarrow $\tan^2(\theta) - 2\tan\theta + 1 = 0$ \Rightarrow $(\tan\theta-1)^2=0$ \Rightarrow $\tan \theta = 1$ \Rightarrow $\theta = 45^{\circ}$ \Rightarrow $(\tan 45^\circ)^{100} + (\cot 45^\circ)^{100} = (1)^{100} + (1)^{100} = 1 + 1 = 2.$ Thus 47. What is the coefficient of $a^2 b^2$ in the expansion of $(a + b)^2$. (4) 3 (2) 6(3) 2(1) 1Sol. Option (2) $(a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$ Thus coefficient of a^2b^2 is 6. 48. In a class composed of x girls, y boys. What part of the class is composed of girls? (2) $\frac{x}{xy}$ (3) $\frac{x}{(x+y)}$ (4) $\frac{y}{xy}$ (1) y(x + y)Sol. Option (3) girls = x, boys = yThus Girls Part = $\frac{x}{(x+y)}$ The expression 2^{6m} – 4^{2m} , where n is a natural number is always divisible by -49. (1) 15(2) 18 (3) 36 (4) 48 Sol. Option (4) 2⁶ⁿ - 4²ⁿ 64ⁿ - 16ⁿ \Rightarrow This is always divisible by 64 - 16 = 48. \Rightarrow If $x = 2 - 2^{\frac{1}{2}} + 2^{\frac{1}{2}}$ then the value of $x^3 - 6x^2 + 18x + 18$ is -50. (1) 22(2) 33 (3) 40(4) 45

Sol. Option (3)


$$\begin{array}{l} x = 2 - 2^{(1/3)} + 2^{(2/3)} \\ \Rightarrow \qquad (x - 2)^3 = 2^{(2/3)} - 2^{(1/3)} \\ \Rightarrow \qquad x^3 - 6x^2 + 12x - 8 = 2 - 6x + 12 \\ \Rightarrow \qquad x^3 - 6x^2 + 18x + 18 = 40. \end{array}$$

51. In this given figure how many triangle are there?

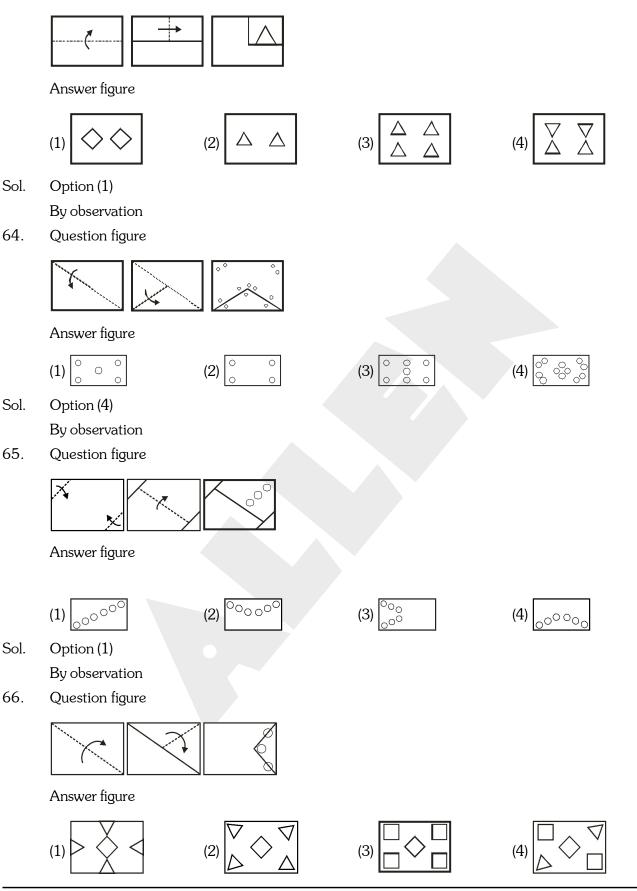


54.		ge 'PRINCIPAL' is written how is 'CAPITAL' written		and 'TEACHER' is written as
	(1) SVMOFVW	(2) SVMODVW	(3) BVMODVM	(4) SVMIDVW
Sol.	Option (1)			
	PRINC	$PAL \rightarrow MBOQSOMVV$	J	
	TEACH	HER \rightarrow FDVSZDB		
	Using observation o	code for $P \rightarrow M, R \rightarrow B$ lik	e all.	
	Thus fo	or CAPITAL \rightarrow SVMOF	/W	
55.		ge ROPE is written as %5 DUBLE is written in that o		35#8* and LIVE is written as
	(1) *%5#8@\$	(2) *%#58@\$	(3) *%5#8@4	(4) *%#58\$@
Sol.	Option (1)			
	Using observation of	code for $R \rightarrow \%, O \rightarrow 5, P$	$2 \rightarrow 7, E \rightarrow $ \$ like all.	
	Thus for TROUBL	$E \rightarrow *\%5\#8@$ \$		
56.	If \$ means 'Plus (+)' the value of 16\$4@		leans multiplied (), and * 1	means 'divided (+)' then what is
	(1) 29	(2) 25	(3) 27	(4) 36
Sol.	Option (3)			
	16\$4@	05#72*8		
	\Rightarrow 16+4	5 – 72 ÷ 8 = 27		
57.		1648' how many digit wil ing order as they are in th		beginning of the number if digit
	(1) None	(2) One	(3) Two	(4) Three
Sol.	Option (1)			
	53216	$48 \rightarrow 1234568,$		
	Thus no digit follow	the above pattern		
58.			venth from the bottom. W the two. What is Kunal's p	There as Sonali is placed ninth position from Pulkit?
	(1) 9 th	(2) 10 th	(3) 11 th	(4) 12 th
Sol.	Option (2)			
		\uparrow	-	
		sonali -	9th 🗘	
		——— Pulkit	19th 🔥	
	Thus 12 1 • 10th (Kunal 29	^{9th} ♥ 7th ᠿ	
	Thus Kunal is $10^{ m th}$ f	rom Pulkit		

- 59. In a row of girls facing north, Reena is 10th to the left of Pallavi. Who is 21st from the right end. If malini, who is 17th from the left end is fourth to the right of Reena, how many girls are there in a row?
 (1) 37 (2) 43 (3) 44 (4) Data inadequate
- Sol. Option (2)

- 60. Anupriya was born on 29th November 1970, which was Sunday. When her next birthday will fall on Sunday?
 - (1) 1975 (2) 1976 (3) 1981 (4) 1982
- Sol. Option (3) Clearly 1970 + 11 = 1981
- 61. Which one will replace the question mark?

- (1) 262 (2) 622 (3) 631 (4) 834 Sol. Option (2)
 - $$\begin{split} |9-3|, \ |1-6|, \ |5-4| &= 651 \ \text{similarly} \ |8-2|, \ |6-4|, \ |3-1| &= 622 \\ \text{If + means +, means} \ , \ \ \text{means + and} \ \div \ \ \text{means then}, \ 4+6 \ \ 9 \ \div \ 6-2 \ \ 5 \end{split}$$


(1)
$$\frac{4}{6}$$
 (2) $\frac{8}{3}$ (3) 2 (4) $\frac{9}{2}$

Sol. Option (2)

62.

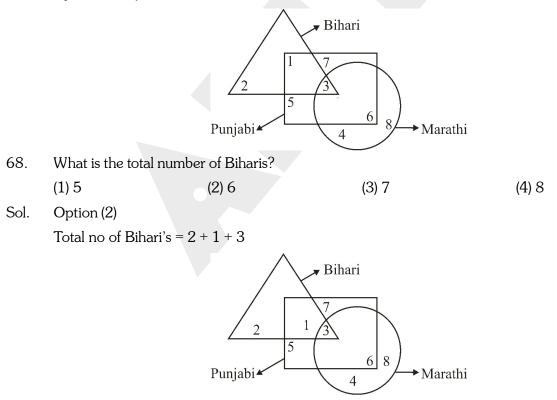
$$4 \div 6 + 9 - 6 \times 2 + 5 = \frac{8}{3}$$

Direction: (63-66) In the Question given below pice of paper folded and cut as shown below in question paper, form the given answer figure.

Sol. Option (3)

Sol.

3 by observation.


67. In the matrix below, the numbers in the cells follow some rule. Identify the number which when substituted for? Maintaing the same rule?

				0
		4	1	2
		13	11	6
		153	120	?
(1) 32	(2) 45			(3) 16
Option (1)				

4	1	2
13	11	6
153	120	?

 $13^2 - 4^2 = 153$ $11^2 - 1^2 = 120$ $6^2 - 2^2 = 32$

Direction (68-72). The venn diagram given below is about a small circle is Marathi and triangle is Bihari square is Punjab.

69.	What is the total nur	mber of Punjabis?		
	(1) 22	(2) 28	(3) 29	(4) 35
Sol.	Option (1)			
	Total number of Pu	njabi's		
	= 1 + 7	+3+5+6 = 22		
70.	What is the total nur	nber of Marathis?		
	(1) 20	(2) 15	(3) 22	(4) 21
Sol.	Option (4)			
	Total number of Ma			
	3 + 6 +	4 + 8 = 21		
71.	-	hich are not Punjabi?		
	(1) 1	(2) 2	(3) 3	(4) 4
Sol.	Option (2)			
	Bihari's not Marathi			
	,	(-3) - (1 + 3) = 2		
72.		which are not Marathi	(0) 10	(4) 10
0.1	(1) 10	(2) 11	(3) 12	(4) 13
Sol.	Option (4)			
	Punjabi not Marathi			
73.	,	+6) = 13	0 Which day of the w	vaale waa it?
75.	(1) Monday	ıblic on 26 th January, 195 (2) Tuesday	(3) Thursday	(4) Saturday
Sol.	Option (3)	(Z) Tuesday	(J) Mursuay	(+) Saturday
001.		nuary 1950		
		ears completed from start:	ing of calendar.	
	-	1600 + 320 + 49	5	
		$\downarrow \downarrow \downarrow \downarrow$		
	Odd days =	= 0 + 1 + 49 + 12		
	2	$y_{\rm S} = 62 \implies 6$		
	Now odd days in 19			
	26 Jan			
	Odd days $=\frac{26}{7}$ =	⇒ 5		
	Total odd days = 6	+ 5 = 11 = 4		
	So one 26 January	1950, it was Thursday		

74. At what angle (larger) are two hands of a clock inclined at 48 minute past 12?

(1) 264(2) 263(3) 265(4) 266

Sol. Option (1)

12:48

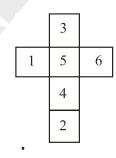
Angle =
$$|30 \text{ H} - \frac{11}{2} \text{ M}|$$

$$Angle = \left| 30(0) - \frac{11}{2} \times 48 \right|$$

Angle = 264

- 75. A clock is set right at 4am. The clock loses 20 minutes in 24 hours. What will be the time, when the clock indicate 3am. On 4th day?
 - (1) 5am (2) 4am (3) 3am (4) 4pm
- Sol. Option (2)

from 4 am to 3 am on next 4^{th} day = 71 hours time in right clock


$$=\frac{1440}{1420}$$
 × 71 = 72 Horus

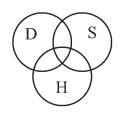
So correct time = 4 am

76. A die has four different positions. Find the number on the face opposite to 3.

			$\begin{array}{c c} 2 \\ 4 \\ 6 \\ 1 \\ 5 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	
	(1) 1	(2) 2	(3) 4	(4) 6
1	Option (3)			

Sol. Option (3)

Direction: (77 to 79) are based on given information:- A solid cube is painted red on all faces. The side of the cube is 8 cm. it is cut into smaller cubes of side 2 cm. answer the following equation.


77. How many cubes have three faces coloured?

	(1) 4	(2) 6	(3) 8	(4) 12
--	-------	-------	-------	--------

Sol.	Option (3)			
	No of 3 side coloure	d cubes = 8		
78.	How many cubes ha	ave two faces o	coloured?	
	(1) 8	(2) 16	(3) 36	(4) 24
Sol.	Option (4)			
	No of two face colou	ured cubes		
	= (n - 2)) _× 12		
	(4 – 2) 1	2 = 24		
79.	How many cubes ha	ive only one fa	ce coloured?	
	(1) 16	(2) 24	(3) 32	(4) 36
Sol.	Option (2)			
	No of only one face	coloured cube	$= 6 \times (n-2)^2$	
	6 × (4 ·	$(-2)^2 = 24$		
80.	Choose the correct o	ption to comp	lete the matrix?	
			4C 2B 3A	
			28A 10C 45B	
			7C ? 15B	
	(1) 15A	(2) 12B	(3) 5A	(4) 8c
Sol.	Option (3)			
	By observation.			
			4C 2B 3A	
			28A 10C 45B	
			7C 5A 15B	
81.	Which of following is	s the best repre	esented in diagram?	
			(\mathcal{A})	
			XX	

(1) Chair, Table, Furniture
 (3) Family, Parents, Children

(2) Doctor, Social Person, Honest(4) Gold Jewellary, Silver Jewellary, Ornaments

Direction: (82 to 84) Study the letter series given and answer the questions that follows. HDYSMWNBQPOCRTBLZVEGUF

82. Which two neighbors in the given arrangement are farthest in the alphabetical order?

(1) B and Q	(2) D and Y	(3) U and F	(4) V and E
	()	()	· · ·

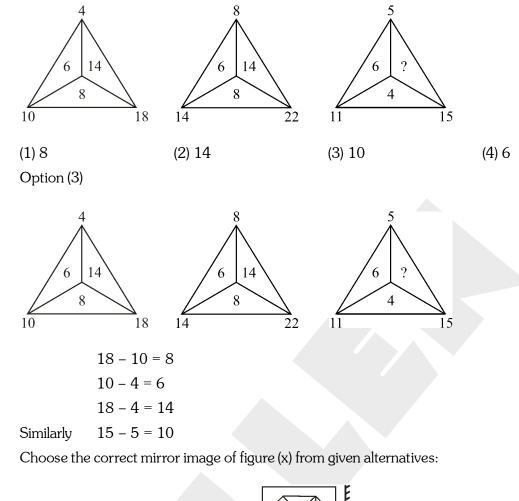
Sol. Option (2)

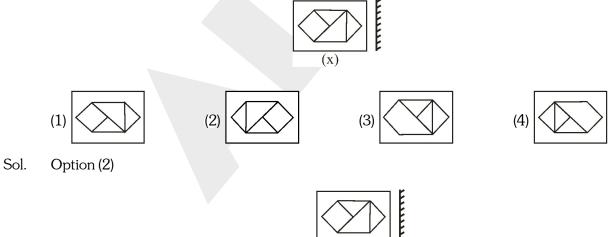
		Difference
B = 2	Q = 17	17 - 2 = 15
D = 4	Y = 25	25 - 4 = 24
U= 21	F = 9	21 - 9 = 12

So maximum difference is between D and Y

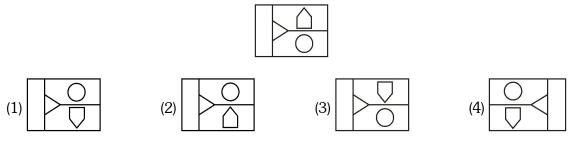
83. Which letter has the same neighbors as in the alphabetical order through they have change places? (1) M (2) N (3) O (4) F

- Sol. Option (3)
- 84. Which three letters have the same distance as they have in the alphabetical order through they have changed places?
 - (1) HMP (2) NQZ (3) QOE (4) YLF
- Sol. Option (4)
- 85. A and B are sistors R and S are brothers, Daughter of A is she sister of R. Then which relation between B and S.


	(1) Aunt	(2) Grand Mother	(3) Sister	(4) Mother	
Sol.	Option (1)				
			(A)-B		
		S R	$-\bigcirc$		
86.	-	band of Neena and Sunita is th tween Sohan and Neena?	ne Father of Abhay. S	Sohan is the uncle of NEerja.	Who
	(1) Jeth	(2) Devar	(3) Bhatija	(4) Jeth/Devar	


Sol. Option (Bonus)

Sol.


88.

87. Which one will replace the question mark

89. Choose the correct water image of figure (x) from given alternatives:

Sol. Option (1) By observation

90. Which is the minimum number of straight lines needed to construct the following figure?

	(1) 13	(2) 15	(3) 16	(4) 17	
Sol.	Option (3)				
	By observa	ation			
		(91 to 95) A cube in coloured 1 The smaller cube so obtained a		t is then cut into 64 smaller cub	oe of
91.	How many	y smaller cubes have no surface	e coloured?		
	(1) 24	(2) 16	(3) 8	(4) 10	
Sol.	Option (3)				
	No face co	bloured = $(n - 2)^3$ (2) ³ = 8			
92.	How many	y smaller cube will be have atlea	ast two surface painted	with red coloured?	
	(1) 4	(2) 18	(3) 32	(4) 24	
Sol.	Option (3)				
	At least tw	o face painted			
		2 face + 3 face			
		$(n - 2) \times 12 + 8$			
	\Rightarrow	24 + 8 = 24			

93.	How many smal	ler cubes have two surface pa	ainted with red colou	red?		
	(1) 24	(2) 8	(3) 12	(4) 20		
Sol.	Option (1)					
	(n –	2) × 12 = 24				
94.	How many smal	ler cubes have only three sur	face painted with red	coloured?		
	(1) 0	(2) 12	(3) 24	(4) 6		
Sol.	Option (Bonus)					
95.	A 6 cm cube is c	cut into 2 cm smaller cube. He	ow many smaller cub	es can be obtained from their-		
	(1) 108	(2) 156	(3) 27	(4) 64		
Sol.	Option (3)					
	$\frac{6^3}{2^3} = 3^3 = 27$					
	Direction: (96 to	100) Read the following info	ormation's and answe	r the questions which follow:-		
	1. 'A $_{ imes}$ B' mean	ns 'A' is father of 'B'				
	2. 'A + B' means	s 'A' is daughter of 'B'				
	3. 'A ÷ B' mear	ns 'A' is mother of 'B'				
	4. 'A – B' means	s 'A' is brother of 'B'				
96.	If $P + Q - R \div T$	Г. How is T related to P.				
	(1) Aunt	(2) Brother	(3) Father	(4) Cousin		
Sol.	Option (4)					
	P +	$Q - R \div T$, how T related to	Р			
		Q- P	R T			

97. Which of the following means that R is the wife of P?

(1) $P \times R - Q - T$ (2) $P \div T + R - Q$ (3) $P \div R - Q + T$ (4) $P \times T - Q + R$ Sol. Option (4)

$$P \times T - Q + R$$

98. If 'P \times T \div Q + R', how is R related to P? (2) Husband (3) Son in law (4) Daughter in law (1) Daughter Sol. Option (3) P R \cap So in law If P \div R – Q \times T. How is P related to T 99. (1) Grandmother (2) Mother in law (4) Grandfather (3) Sister Sol. Option (1) 0 R Т $P \div R - Q \times T$ 100. If P \div Q + R \times T. How Q is related to T. (1) Aunt (3) Brother (2) Sister (4) None of these Sol. Option (2) $P \div Q + R \times T$ R Т