		\sim
	ALLEN	R
ALLER	CAREER INSTITUTE	
path to success	CAREER INSTITUTE	

Pre Nurture & Career Foundation Division

For Class 6th to 10th, NTSE & Olympiads

<u>SOLUTION</u> THEASSOCIATION OF MATHEMATICS TEACHERS OF INDIA <u>KAPREKAR CONTEST - FINAL - SUB JUNIOR</u> CLASS - VII & VIII

Instructions:

- 1. Answer as many questions as possible.
- 2. Elegant and novel solutions will get extra credits.
- 3. Diagrams and explanations should be given wherever necessary.
- 4. Fill in FACE SLIP and your rough working should be in the answer book.
- 5. Maximum time allowed is THREE hours.
- 6. All questions carry equal marks.

1. (a) In the grid given here, the numbers against each row or column is the sum of all the numbers in that respective row or column.

For example, in the top row, a + b + c + d = 17, etc.

Find the value of a, b, c and d.

(b) If
$$\frac{a}{b} + \frac{b}{a} = x$$
, $\frac{b}{c} + \frac{c}{b} = y$, $\frac{c}{a} + \frac{a}{c} = z$ find the numerical value of

$$(x^2 + y^2 + z^2 - xyz).$$

Sol. (a) From the given grid :-

a + b + c + d = 17	(1)
a + 2c + b = 19	(2)
a + 2b + c = 15	(3)
a + b + 2d = 15	(4)
2a + c + d = 16	(5)
2b + c + d = 18	(6)
2a + 2c = 18	(7)
3b + d = 14	(8)
From equation (7) $a + c = 9$	(9)
equation (6) = equation (7)	
$2\mathbf{b} + \mathbf{c} + \mathbf{d} = 2\mathbf{a} + 2\mathbf{c}$	
2a + c = 2b + d	(10)
equation $(3) = (4)$	

Γ	a	b	c	d	17
Γ	a	c	c	b	19
Γ	с	b	a	b	15
Γ	d	d	а	b	15
	16	18	18	14	

Path to success Recareer INSTITUTE KOTA (RAJASTHAN)	Pre Nurture & Career Foundation Division For Class 6th to 10th, NTSE & Olympiads
THEASSOCIATION KAPREK	SOLUTION ON OF MATHEMATICS TEACHERS OF INDIA AR CONTEST - FINAL - SUB JUNIOR CLASS - VIII & VIII
b + a - 2d	
b + c = 2u From equation (9) (10) and	(11)
18 - 2c + c - 2b + d	u (11)
18 - 2c + c = 20 + d 18 - c - 4d - 2c + d	
18 = 5d - c	(12)
equation $(1) - (2)$	
d - c = -2	(13)
From equation (12) and (12)	3)
$\frac{18+c}{5} - c = -2$	
c = 7 Put this value	in equation (13) will give you $d = 5$
From equation (9) $a=2$ a	nd from equation (1) $b=3$
(b) If $\frac{a}{b} + \frac{b}{a} = x$, $\frac{b}{c} + \frac{c}{b} = y$, $\frac{c}{a}$	$+\frac{a}{c} = z$ then
Putting the above values in	the equation $(x^2 + y^2 + z^2 - xyz)$
$\left(\frac{a}{b} + \frac{b}{a}\right)^2 + \left(\frac{b}{c} + \frac{c}{b}\right)^2 + \left(\frac{c}{a}\right)^2$	$\left(+\frac{a}{c}\right)^{2} - \left(\frac{a}{b} + \frac{b}{a}\right) \times \left(\frac{b}{c} + \frac{c}{b}\right) \times \left(\frac{c}{a} + \frac{a}{c}\right)$
$\frac{a^2}{b^2} + \frac{b^2}{a^2} + 2 + \frac{b^2}{c^2} + \frac{c^2}{b^2} + 2 + \frac{b^2}{c^2} + \frac{c^2}{b^2} + 2 + \frac{c^2}{c^2} + $	$\frac{c^2}{a^2} + \frac{a^2}{c^2} + 2 - \left(\frac{ab}{bc} + \frac{ac}{b^2} + \frac{b^2}{ac} + \frac{bc}{ab}\right)\left(\frac{c}{a} + \frac{a}{c}\right)$
$\frac{a^2}{b^2} + \frac{b^2}{a^2} + 2 + \frac{b^2}{c^2} + \frac{c^2}{b^2} + 2 + \frac{c^2}{b^2} + 2 + \frac{c^2}{c^2} + $	$\frac{c^2}{a^2} + \frac{a^2}{c^2} + 2 - \left(\frac{abc}{abc} + \frac{a^2}{c^2} + \frac{c^2}{b^2} + \frac{a^2}{b^2} + \frac{b^2}{a^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} + \frac{abc}{abc}\right)$
= 4	

Pre Nurture & Career Foundation Division

For Class 6th to 10th, NTSE & Olympiads

<u>SOLUTION</u> THEASSOCIATION OF MATHEMATICS TEACHERS OF INDIA <u>KAPREKAR CONTEST - FINAL - SUB JUNIOR</u> CLASS - VII & VIII

2. ABC is a triangle. ℓ_1 , ℓ_2 , ℓ_3 are three lines that are perpendicular to the sides BC, CA and AB at A_1 , B_1 and C_1 respectively. Prove that l_1 , l_2 and l_3 are concurrent if and only if $A_1B^2 + C_1A^2 + B_1C^2 = A_1C^2 + C_1B^2 + B_1A^2$

Sol. Let us first prove if perpendiculars are concurrent then results hold.

Let O be point of concurrency and OA₁, OB₁, OC₁ are drawn perpendicular to the sides

BC, CA, AB respectively of a triangle ABC

$$\mathbf{BA}_{1}^{2} = \mathbf{OB}^{2} - \mathbf{OA}_{1}^{2}$$

KOTA (RAJASTHAN)

$$A_1C^2 = OC^2 - OA_1^2$$

 $\Rightarrow BA_1^2 - A_1C^2 = OB^2 - OC^2 \qquad(1)$

Similarly

$$CB_1^2 - B_1A^2 = OC^2 - OA^2$$
(2)

$$AC_1^2 - C_1B^2 = OA^2 - OB^2$$
(3)

Adding equation (1), (2) and (3), we get

 $BA_{1}^{2} - A_{1}C^{2} + CB_{1}^{2} - B_{1}A^{2} + AC_{1}^{2} - C_{1}B^{2} = OB^{2} - OC^{2} + OC^{2} - OA^{2} + OA^{2} - OB^{2} = 0$

Proof of Converse : If A_1 , B_1 , C_1 be points on the sides BC, CA, AB of a triangle ABC such that $BA_1^2 - A_1C^2 + CB_1^2 - B_1A^2 + AC_1^2 - C_1B^2 = 0$, then the perpendiculars at A_1 , B_1 , C_1 to the respective sides are concurrent.

Proof : Let the perpendiculars at A_1 , B_1 to BC, CA respectively meet at O. Let OC_2 be the perpendicular from O to AB

Using previous result :

$$A_1B^2 - A_1C^2 + B_1C^2 - B_1A^2 + C_2A^2 - C_2B^2 = 0$$
(1)

But it is given that

$$BA_{1}^{2} - A_{1}C^{2} + CB_{1}^{2} - B_{1}A^{2} + AC_{1}^{2} - C_{1}B^{2} = 0 \quad \dots (2)$$

 \therefore From equation (1) and (2)

$$AC_{2}^{2} - C_{2}B^{2} = AC_{1}^{2} - C_{1}B^{2}$$

$$(AC_{2} + C_{2}B) (AC_{2} - C_{2}B) = (AC_{1} + C_{1}B)(AC_{1} - C_{1}B)$$

$$AB(AC_{2} - C_{2}B) = AB(AC_{1} - C_{1}B)$$

$$\Rightarrow AC_{2} - C_{2}B = AC_{1} - C_{1}B \quad (As AB \neq 0)$$

$$\therefore AC_{1} - AC_{2} = C_{1}B - C_{2}B$$

$$\Rightarrow C_{1}C_{2} = -C_{2}C_{1}$$

$$\Rightarrow 2C_{1}C_{2} = 0 \quad \Rightarrow C_{1}C_{2} = 0$$

That is, C_1 and C_2 coincide

VHV	ALLEN R Pre Nurture & Career Foundation Division For Class 6th to 10th, NTSE & Olympiads
path	to success KOTA (RAJASTHAN)
	<u>SOLUTION</u> THE ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA
	KAPREKAR CONTEST - FINAL - SUB JUNIOR
	CLASS - VII & VIII
2	
з.	(a) If a, b are real numbers each greater than 1, prove : (1 + c)(1 + b) < 2(cb + 1)
	(1 + a) (1 + b) < 2(ab + 1).
	$\frac{8(abcd + 1) \times (a + 1) (b + 1) (c + 1) (d + 1)}{2}$
	o(abcu + 1) > (a + 1) (b + 1) (c + 1) (u + 1),
	(b) The seven digit number $123/4***$ is a perfect square number, where each * represents a digit (may
	be same or distinct). Find the square root of this seven digit number.
Sol.	(a) Given $a > 1$, $b > 1$
	So, $a - 1 > 0$
	b(a - 1) > a - 1
	ab - b > a - 1
	1 + ab > a + b
	adding (ab + 1) both side
	2(ab + 1) > a + b + ab + 1
	2(ab+1) > (a+1)(b+1)(1)
	a > 1, b > 1, c > 1, d > 1
	So, ab > 1, cd > 1
	Using equation (1) $2(ab \cdot cd + 1) > (ab + 1) (cd + 1)$
	Multiplying with 4 both the sides
	$8(ab \cdot cd + 1) > 2(ab + 1) 2(cd + 1)$ (2)
	Using equation (1)
	2(ab+1) > (a+1)(b+1)
	2(cd + 1) > (c + 1) (d + 1)
	Multiply the above two equations we will get
	2(ab + 1) 2(cd + 1) > (a + 1) (b + 1) (c + 1) (d + 1)
	Using equation (2)
	$8(ab \cdot cd + 1) > (a + 1) (b + 1) (c + 1) (d + 1)$
	(b) The given number is 1234***
	The smallest number of this format is 1234000 and
	$\sqrt{1234000} = 1110.85$
	So, the required 7 digit number should be $(1111)^2 = 1234321$
	So, The answer is $\sqrt{1234321} = 1111$

path	BALLER INSTITUTE Pre Nurture & Career Foundation Division For Class 6th to 10th, NTSE & Olympiads SOLUTION THE ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA <u>KAPREKAR CONTEST - FINAL - SUB JUNIOR</u> CLASS - VII & VIII
4.	(a) If a, b, c are integers (a, b, c are not zero) such that $a + b + c = 0$, prove that $(2a^4 + 2b^4 + 2c^4)$ is the
	square of an integer.
	(b) Find the smallest positive integer 'n' such that $4^{27} + 4^{1000} + 4^{n}$ is a perfect square.
Sol.	(a) If $a + b + c = 0$ (1)
	$2a^4 + 2b^4 + 2c^4$
	Replacing c from equation (1)
	$2a^4 + 2b^4 + 2(a + b)^4$
	$= 2[a^4 + b^4 + a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4]$
	$= 4[a^4 + b^4 + 2a^3b + 3a^2b^2 + 2ab^3]$
	$= 4[a^4 + a^2b^2 + b^4 + 2(a^2 \cdot ab + a^2b^2 + ab \cdot b^2)]$
	$= 4[a^2 + ab + b^2]^2$
	$\Rightarrow [2a^2 + 2ab + 2b^2]^2$
	(b) $4^{27} + 4^{1000} + 4^{n}$
	$(2^{27})^2 + (2^{1000})^2 + 2^{2n}$
	To minimize the value of n and make it a perfect square, let us arragne it in the following way
	$(2^{27})^2 + 2^{2n} + (2^{1000})^2$
	$\Rightarrow 2^{2n} = 2.2^{27}.2^{1000}$
	$2^{2n} = 2^{1028}$
	\Rightarrow n = 514
5.	PQRS is a convex quadrilateral.
5.	$2^{2n} = 2^{1028}$ $\Rightarrow n = 514$ PQRS is a convex quadrilateral.

Point O is inside the quadrilateral such that OP = OQ and OS = OR. If $\angle POQ = \angle SOR = 120^{\circ}$ and A, B, C are respectively the mid points of PQ, QR and RS, prove that ABC is an equilateral triangle.

Let D be the mid-points of PS A, B, C, D are mid points of PQ, QR, RS, PS

Pre Nurture & Career Foundation Division

For Class 6th to 10th, NTSE & Olympiads

<u>SOLUTION</u> THEASSOCIATION OF MATHEMATICS TEACHERS OF INDIA <u>KAPREKAR CONTEST - FINAL - SUB JUNIOR</u> CLASS - VII & VIII

In ΔQOS and ΔPOR

OS = OR

OQ = OP

 $\angle POR = \angle QOS$

So, $\triangle QOS \cong \triangle POR$

By CPCT (1) QS = PR, As Using mid point theorem we can say ABCD is rhombus.

(2) \angle QSO = \angle PRO \Rightarrow MORS is cyclic quadrilateral

$$\Rightarrow \angle SMR = \angle SOR = 120^{\circ}$$

 $\Rightarrow \angle SMP = 60^{\circ}$ (Using linear pair)

As MN||DL and LM||DN So, LMND is a parallelogram so \angle LDN = \angle LMN = 60°

and as ABCD is a rhombus so $\angle ABC = \angle LDN = 60^{\circ}$ and AB = BC

$$\Rightarrow \angle ABC = \angle BAC = \angle ACB = 60^{\circ}$$

 $\Rightarrow \Delta ABC$ is equilateral triangle.