

M NATIONAL TALENT SEARCH EXAMINATION (NTSE-2018) STAGE -1 STATE : TELANGANA PAPER : SAT

Date: 05/11/2017

Max. Marks: 100

SOLUTIONS

Time allowed: 90 mins

101. A train of length 50 m is moving with a constant speed of 10 m/s. Calculate the time taken by the train to cross an electric pole and a bridge of length 250 m. (1) 25 sec. (2) 30 sec. (3) 45 sec. (4) 15 sec. Ans. (2) **Sol.** Speed = $\frac{\text{Distance}}{\text{Time taken}}$ $10 \text{ m/s} = \frac{300}{t}$ t = 30 sec**102.** A car travels at a speed of 80 km/h during the first half of its running time and at 40 km/h during the other half, then the average speed of the car (1) 50 km/hr (2) 75 km/hr (3) 60 km/hr (4) 40 km/hr Ans. (3) **Sol.** $V_{avg} = \frac{u+v}{2} = \frac{40+80}{2} = 60 \text{ km/hr}$ 103. The distance travelled by an object in a specified direction is (1) Speed (2) Displacement (4) Acceleration (3) Velocity Ans. (2) **Sol.** Displacement is the distance travelled by an object in a particular direction. **104.** What is the acceleration of the race car that moves at constant velocity of 300 km/hr? (1) 73.32 m/sec. (2) 83.33 m/sec. (3) 63.33 m/sec. (4) 53.33 m/sec. Ans. (Bonus) Sol. Acceleration is zero for a body moving with constant velocity. 105. A car travels from rest with a constant acceleration 'a' for t seconds. What is the average speed of the car for its journey, if the car moves along a straight road? (1) $v = \frac{at^2}{2}$ (2) $v = 2at^2$ (3) $v = \frac{at}{2}$ (4) None Ans. (3) **Sol.** $S = ut + \frac{1}{2}at^2$ u = 0 $S = \frac{1}{2}at^2$

106.	. A table clock has its minutes hand 4 cm long. Find the average velocity of the tip of the minute hand between			
	6.00 am to 6.30 am.			
	(1) 0.04 cm/sec	(2) 0.004 cm/sec	(3) 0.0044 cm/sec	(4) None
Ans.	(3)			
	Displace	ement 8		
Sol.	Average velocity = $\frac{D \text{ lopitude}}{\text{tim}}$	$\frac{1}{e} = \frac{1}{60 \times 30}$		
	V = 0.0044 cm/sec			
107	$V_{avg.} = 0.0044$ cm/ sec.	sec with a combined net	force of 200 N. The impulse	provided to the car
107.	$(1) 400 \text{ N}_{-sec}$	(2) 500 N-sec	(3) 600 N-sec	$(4) 300 \text{ N}_{-sec}$
Anc	(1) 400 N-Sec.	(2) 500 N-sec.	(J) 000 14-sec.	(4) 500 11-sec.
Sal	$I = F \times t = 200 \times 3$			
301.	$J = 1 \times 1 = 200 \times 3$			
109	J = 000 N sec.	ropo to climb which hours	only 450 N. The maximum a	valoration with which ha
100.	can climb safely	Tope to climb which bears	only 450 N. The maximum ac	
	(1) 10 m/sac^2	(2) $15 \mathrm{m}/\mathrm{soc}^2$	$(3) 20 \text{ m}/\text{soc}^2$	(4) 25 m/sec ²
Anc	(1) 10 m/ sec (2)	(2) 10 11/ 500	(3) 20 11/ sec	(4) 20 m/ sec
Sal	(2) F – ma			
501.	1 = 11a $150 = 30 \times a$			
	$a = 15 \text{ m/s}^2$			
109	The value of least distance of	f clear vision is about		
107.	(1) 55 cm	(2) 40 cm	(3) 20 cm	(4) 25 cm
Ans	(4)		(0) 20 011	
Sol	The least distance of clear vi	sion is about 25 cm		
110	The unit of power of a lens (P) is		
110.	(1) cm	(2) mm	(3) diopter	(4) hertz
Ans	(3)	(2)		
Sol.	Unit of power is diopter (D)			
111.	A wire of length 1 m and of	radius () 1 mm has a resist	ance of 100 Q. The resistivity	of the material
	(1) 0.0214 O-m	(2) 0 00314 O-m	(3) 0 0000314 O-m	(4) 0 00214 O-m
Ans.	(Bonus question)	(D) 0.000111111	(0) 0.00000011111	
	(Donido queenon)			
Sol	$R = \frac{\rho \ell}{\rho}$ $\rho = \frac{RA}{R} = \frac{100 \times 100}{100 \times 100}$	$\frac{\pi r^2}{\pi r^2} = \frac{100 \times 3.14 \times (0.1 \times 10^{-1})}{100 \times 3.14 \times (0.1 \times 10^{-1})}$	$(10^{-3})^2$	
0.011	$A P \ell \ell$	1		
	$= 314 \times 10^{-8} \Omega m$			
112.	The S.I. unit of potential diff	erence is		
	(1) ohm	(2) ampere	(3) ohm-meter	(4) volt
Ans.	(4)			
Sol.	S.I. unit of potential differen	ce is volt.		
113.	The value of magnetic field in	nduction, which is uniform,	is 2T. What is the flux passing	through a surface of area
	1.5 m^2 perpendicular to the	field		
	(1) 3 Tesla	(2) 1 Wb/m ²	(3) 2 Tesla	(4) None
Ans.	(4)			
Sol.	$\phi = B \times A$			
	$\phi = 2 \times 1.5$			
	$\phi = 3 W$			

114.	Precipitate in a reaction is indicated by which arrow mark?					
	$(1) \rightarrow$	(2) ↑	(3)↓	(4) ←		
Ans.	(3)					
Sol.	The symbol of precipitate is	↓.				
115.	What colour would Hydroch	loric acid (pH = 1) turn univ	versal indicator?			
	(1) Orange	(2) Purple	(3) Yellow	(4) Red		
Ans.	(4)					
Sol.	Red					
116.	The pain due to honey-bee	sting can be relieved by usi	ng			
	(1) Washing soda	(2) Salt	(3) Acid	(4) Baking soda		
Ans.	(4)					
Sol.	Baking soda					
	Honey bee injects methanoi	c acid which is neutralised	by mild base like baking soo	la (NaHCO ₃).		
117.	The quantum number which	explains about size and en	nergy of the orbit or shell is			
	(1) n	(2) ℓ	(3) m _l	(4) m _s		
Ans.	(1)					
Sol.	Principal quantum no is den	oted by 'n' which explain al	bout size and energy of orb	it or shell.		
118.	The maximum number of el	ectrons in any shell is given	n byrule.			
	(1) 2n	(2) n ²	(3) 2n ²	(4) 4n ²		
Ans.	(3)					
Sol.	2n ²					
	The maximum no. of electro	on present in any shell is giv	ven 2n ²			
119.	Example of Dobereiner's tria	ad is				
	(1) Li, Al, Ca	(2) Li, Na, K	(3) Li, K, Na	(4) K, Al, Ca		
Ans.	(2)					
Sol.	Li, Na, K are Dobereiner's tr	iad. The atomic mass of mi	ddle element was approxim	nately the arithmetic mean of		
120	Unit of ionization energy					
	(1) J/m	(2) KJ · mol	(3) J · mol	(4) KJ \cdot mol ⁻¹		
Ans.	(4)			(1)120 11101		
Sol.	$KJ \cdot mol^{-1}$					
	Unit of ionization energy is h	$J \cdot mol^{-1}$.				
121.	The concept hybridisation o	f orbits of an atom was intr	oduced by			
	(1) Linus Pauling	(2) Moseley	(3) Lewis	(4) Kossel		
Ans.	(1)					
Sol.	Linus Pauling					
122.	Which one of the following i	s available in three states				
	(1) Petrol	(2) Water	(3) Milk	(4) Kerosene		
Ans.	(2)					
Sol.	Water exist in three states as ice(s), water (liquid) and water vapour (gas)					

123.	The gas that diffuses from blood to lungs is				
	(1) Oxygen	(2) Carbon dioxide	(3) Hydrogen	(4) Helium	
Ans.	(2)				
Sol.	Lungs purify the impure bloc	d which contains CO_2 gas.			
124.	If 100 gm of salt solution con	ntains 20 g of salt dissolved	l in it, the percentage of ma	ass of the solution is	
	(1) 10%	(2) 20%	(3) 15%	(4) 25%	
Ans.	(2)				
Sol.	Mass by mass% = $\frac{\text{mass of}}{\text{mass of s}}$	$\frac{\text{solute}}{\text{solution}} \times 100 = \frac{20 \text{ g}}{100 \text{ g}} \times 1$	100 = 20%		
125.	Miscible liquids can be separ	ated by			
	(1) Distillation process	(2) Fractional distillation	(3) Chromatography	(4) Separating funnel	
Ans.	(1,2)				
Sol.	We use distillation and fractic	nal distillation process for s	eparating miscible liquids in	the diffrence of their boiling	
	points.				
126.	Molecular mass of water				
	(1) 18 u	(2) 16 u	(3) 15 u	(4) 10 u	
Ans.	(1)				
Sol.	Formula of water = H_2O				
	molecular mass of water = 2	×[Atomic mass of hydroge	$en] + 1 \times [Atomic mass of c]$	oxygen]	
	$= 2 \times [1] + 1 \times [16]$				
	= 18 u				
127.	According to the compatibili	ty of Antigen and Antibody	, select the correct pair.		
	(1) Antigen B and Antibody b).	(2) Antigen A and Antiboo	dy b.	
	(3) Antibody a and Antigen E	8.	(4) Both (2) and (3)		
Ans.	(4)				
Sol.	Antigen and antibody reacts B reacts with antibody B.	with each other and produc	ce reactions. Antigen A rea	cts with antibody A, Antigen	
128.	In atmosphere, Ozone hole r	efers to			
	(1) A hole in Ozone layer.				
	(2) Decrease in Ozone layer	hickness in troposphere.			
	(3) Decrease in thickness of (Ozone layer in stratosphere	2.		
	(4) Increase in the thickness of	of Ozone layer in troposph	ere.		
Ans.	(3)				
Sol.	Ozone is a protective layer prolayer mainly due to CFC's.	resent in the stratosphere, o	ozone hole refers to the dec	crease in the thickness of this	
129.	The function of enzyme Tryp	sin is to			
	(1) breakdown fats.		(2) breakdown proteins.		
	(3) synthesise proteins.		(4) breakdown carbohydr	ates.	
Ans.	(2)				
Sol.	Trypsin is produced by pancreas and is responsible for digestion of proteins.				

130. The offspring resulting' from a cross between two pure homozygous recessives would be....

(1) 50% homozygous recessive and 50% homozygous dominant.

- (2) 75% homozygous recessive and 25% heterozygous dominant.
- (3) 75% homozygous recessive and 25% homozygous dominant.
- (4) 100% homozygous recessive.

Ans. (4)

Sol. Cross between two pure homozygous recessive parents.

tt ×tt

	t	t
t	tt	tt
t	tt	tt

produce all recessive offsprings.

131. Match the following pairs correctly.

(i) Fish	(a) Three chambered heart.			
(ii) Lizard	(b) Incomplete four chambered heart.			
(iii) Man	(c) Two chambered heart.			
(iv) Frog	(d) Complete four chambered heart.			
(1) (i)-b, (ii)-c, (iii)-a, (iv)-d	(2) (i)-c, (ii)-b, (iii)-d, (iv)-a			
(3) (i)-a, (ii)-c, (iii)-d, (iv)-b	(4) (i)-c, (ii)-a, (iii)-d, (iv)-b			

Ans. (2)

Sol. Fish – 2 chambered heart.

Lizard – Incomplete 4 chambered heart.

- Man Complete 4 chambered heart
- Frog 3 chambered heart.
- **132.** The significance of Greenhouse gases in earth's atmosphere is.....
 - (1) They maintain a warm temperature on earth by absorbing short wave-length radiations.
 - (2) They do not allow earth's temperature to drop very low by absorbing long wavelength radiations.
 - (3) They reflect Sun's heat back to atmosphere.
 - (4) Both (1) and (2).

Ans. (2)

- **Sol.** Green house gases increase the temperature of earth by absorbing long wave length radiations reflected from earth.
- $\label{eq:133.} \ensuremath{\text{Which of the below given statements stands true}}\ ?$
 - (1) A person can contract AIDS due to unprotected sexual intercourse with an infected person.
 - (2) A person can contract AIDS while getting permanent tattooing with an infected needle.
 - (3) A person cannot contract AIDS by donating blood to a HIV infected person.
 - (4) All the statements are true.

Ans. (4)

Sol. AIDS usually spreads due to unprotected sexual intercourse with infected person and also by sharing infected needle.

134.	Among the vertebrates, v	which organism exhibits m	aximum power of re-gene	ration ?			
	(1) Dog	(2) Lizard	(3) Pigeon	(4) Man			
Ans.	(2)						
Sol.	Lizard has very good rege	eneration capacity.					
135.	What will happen if the d	eer is missing in the food o	chain given below :				
	Grass \rightarrow Deer \rightarrow Tiger (1) The population of tiger increases.						
	(2) The population of gr	ass decreases.					
	(3) Tiger will start eating	grass.					
	(4) The population of tig	zer decreases and the pop	ulation of grass increases.				
Ans.	(4)						
Sol.	$Grass \to Deer \to Tiger$						
	If deer is removed from for grass and decreased pop	ood chain then entire food ulation of tiger.	chain get's disturbed it wil	l lead to increase in population of			
136.	One gram mole of Glucos	se on complete oxidation t	to CO_2 and H_2O produces	about:			
	(1) 6,86,000 Cal	(2) 6,860 Cal	(3) 68,600 Cal	(4) 68,60,000 Cal			
Ans.	(1)						
Sol.	One gram mole of glucos	se on complete oxidation g	gives 6,86,000 cal. energy	J.			
137.	The transport of soluble p tissue called	products of photosynthesis	is called Translocation, wh	hich occurs in the part of vascular			
	(1) Xylem	(2) Sclerenchyma	(3) Phloem	(4) Collenchyma			
Ans.	(3)						
Sol.	Phloem, is responsible fo	r the translocation of solut	ple products in plants.				
138.	What will be the genotyp	ic ratio of the cross betwee	en Rr and rr ?				
	(1) 1:2:1	(2) 3:1	(3) 1:1	(4) 1:1:1			
Ans.	(3)						
Sol.	A cross between Rr and r	rr					
	Offspring produced are -	- Rr, Rr, rr, rr.					
	Genotypic ratio is 1 : 1						
139.	By studying analogous str	ructures, we look for					
	(1) Similarities in appeara	ance and function but diffe	erence in structure.				
	(2) Similarities in appeara	ance but difference in funct	tion.				
	(3) Similarities in organ st	tructure.					
	(4) Similarities in cell mal	ke up.					
Ans.	(1)						
Sol.	Analogous structures are	having similar function but	t different structure.				
140.	Placenta is the structure	formed					
	(1) by fusion of germ laye	rs.	(2) by foetus only.				
	(3) by the union of foetal	and uterine tissue.	(4) by uterus only.				
Ans.	(3)						
Sol.	Placenta is formed by the union of foetus and mother's uterine tissue.						

141. When 31513 and 34369 are divided by a certain three digit number, the remainders are equal, then the remainder is

	(1) 86	(2) 97	(3) 374	(4) 113		
Ans.	(2)					
Sol.	$31513 = n + m \times abc$					
	$34369 = n + s \times abc$					
	34369 - 31513 = (s - m)ab	с				
	$2856 = 2 \times 2 \times 2 \times 3 \times 7 \times 1$	17				
	Possibilities for abc are :-					
	$abc = 2 \times 2 \times 2 \times 3 \times 7 = 1$	68	R = 97			
	$abc = 2 \times 2 \times 2 \times 3 \times 17 = 4$	108	R = 97			
	$abc = 2 \times 2 \times 2 \times 17 = 136$		R = 97			
	$abc = 2 \times 2 \times 3 \times 17 = 204$		R = 97			
	$abc = 2 \times 2 \times 7 \times 17 = 476$		R = 97			
	and so on.					
	In all the cases remainder is a	always 97.				
142.	The greatest number of four of	digits which when divided by	y 3, 5, 7, 9 leaves the remainded	ers $1, 3, 5, 7$ respectively,		
	is					
	(1) 9763	(2) 9673	(3) 9367	(4) 9969		
Ans.	(1)					
Sol.	3 - 1 = 5 - 3 = 7 - 5 = 9 - 5	7 = 2				
	So number = $L.C.M.$ (3, 5, 7)	7, 9) – 2				
	L.C.M. (3, 5, 7, 9) = 315					
	For greatest 4-digit number = $\frac{9999}{315}$ = 31					
	So, 315 × 31 – 2					
	\Rightarrow 9765 – 2 = 9763					
143.	e f g h is a four digit number.	One hundredth of e fgh	is the mean of ef and gh, ther	n the four digit number is		
	(1) 3648	(2) 4950	(3) 4590	(4) 3468		
Ans.	(2)					
Sol.	$\frac{efgh}{100} = \frac{ef + gh}{2}$					
	$\frac{1}{100}[1000e + 100f + 10g + h] = \frac{1}{2}[(10e + f) + (10g + h)]$					
	$(10e + f) + \frac{1}{100} (10g + h) = \frac{1}{2} (10e + f) + \frac{1}{2} (10g + h)$					
	$\frac{1}{2}(10e + f) = \frac{49}{100}(10g + h)$					
	\Rightarrow 50 (10e + f) = 49 (10g +	⊦ h)	(1)			
	So that	10e + f = 49				
		10g + g = 50				
	efgh = 4950					

144. If $x^2 + xy + x = 12$ and $y^2 + xy + y = 18$, then the value of x + y is (1) 5 or – 6 (2) 3 or 4 (3) 5 or 3 (4) 6 or – 3 Ans. (1) **Sol.** $x^2 + xy + x = 12$ (1) $v^2 + xv + v = 18$ (2) Adding eq (1) and (2) \Rightarrow x² + 2xy + y² + x + y = 30 \Rightarrow (x + v)² + (x + v) = 30 \Rightarrow (x + y) (x + y + 1) = 30 So x + y = 5 or -6**145.** If 217x + 131y = 913 and 131x + 217y = 827, then the value of x + y is (2)5(3)7(1) 8 (4) 6Ans. (2) **Sol.** 217 x + 131y = 913..... (1) 131 x + 217y = 827..... (2) Adding equation (1) and (2) 348x + 348y = 1740x + y = 5**146.** If $x = \frac{1}{2 - \frac{1}{2 - \frac{1}{2 - x}}}$, (x \ne 2) then the value of x is (2) 3 (3) 2 (1) 1 (4) 5 Ans. (1) **Sol.** $x = \frac{2}{2 - \frac{1}{2 \Rightarrow \frac{1}{2 - \frac{2 - x}{3 - 2y}} \Rightarrow \frac{1}{\frac{6 - 4x - 2 + x}{3 - 2y}}$

$$\Rightarrow \frac{3-2x}{4-3x} = x$$

$$\Rightarrow 3-2x = 4x - 3x^{2}$$

$$\Rightarrow 3x^{2} - 6x + 3 = 0$$

$$\Rightarrow x^{2} - 2x + 1 = 0$$

$$\Rightarrow (x - 1)^{2} = 0$$

$$\Rightarrow x = 1$$

147. $x_1, x_2, x_3 \dots$ are in A.P. If $x_1 + x_7 + x_{10} = -6$ and $x_3 + x_8 + x_{12} - 11$, then $x_3 + x_8 + x_{22} = ?$ (1) -21 (2) -15 (3) –18 (4) - 31Ans. (1) **Sol.** $x_1 + x_7 + x_{10} = -6$ \Rightarrow 3a + 15d = -6 (1) and $x_3 + x_8 + x_{12} = -11$ \Rightarrow 3a + 20d = -11 (2) Subtracting equation (1) from (2) \Rightarrow d = -1 From (1), a = 3So, $x_3 + x_8 + x_{22}$ \Rightarrow a + 2d + a + 7d + a + 21d \Rightarrow 3a + 30d \Rightarrow -21 **148.** If $\frac{2+5+8+....n}{7+11+16+...n} = \frac{23}{35}$, then n value is (1) 17 (2) 15 (3) 18(4) 23 Ans. (2) **Sol.** $\frac{4+(n-1)3}{14+(n-1)4} = \frac{23}{35}$ $\Rightarrow \frac{3n+1}{4n+10} = \frac{23}{35}$ $\Rightarrow 105n + 35 = 92n + 230$ \Rightarrow 13n = 195 \Rightarrow n = 15

149. If the co-ordinates of the midpoints of the sides of a triangle are (1, 1), (2, -3) and (3, 4), then the centroid of the triangle is

(1)
$$\left(3,\frac{1}{3}\right)$$
 (2) $\left(1,\frac{2}{3}\right)$ (3) (3, 1) (4) $\left(2,\frac{2}{3}\right)$

Ans. (4)

Sol. Let A, B, C be the vertices and P, Q, R be the mid point of the sides of a triangle. Then,

$$\Rightarrow a_{1} + a_{2} + a_{3} = 1 + 2 + 3 = 6 \text{ and } b_{1} + b_{2} + b_{3} = 2$$

$$\therefore \text{ Centroid is } \left(\frac{a_{1} + a_{2} + a_{3}}{3}, \frac{b_{1} + b_{2} + b_{3}}{3}\right)$$

$$= \left(2, \frac{2}{3}\right)$$

$$P(1, 1)$$

$$B(a_{2}, b_{2}) \quad Q(2, -3) \quad C(a_{3}, b_{3})$$

150. If two vertices of an equilateral triangle be (0, 0) and $(3,\sqrt{3})$, then the third vertex is

(1) $(1, 3\sqrt{3})$ (2) $(0, 2\sqrt{3})$ (3) $(3, \sqrt{3})$ (4) $(1,\sqrt{3})$

Ans. (2)

Sol. Let the third vertex be C(x, y)

Then,

151. As shown in the given figure, $\triangle ABC$ is divided into six smaller triangles by lines drawn from the vertices through a common interior point. The areas of four of 6 triangles are as indicated, then the area of $\triangle ABC$ is

(4) 412

Ans. (3)

(1) 238

Sol. Let a & b be the area of \triangle APM and \triangle BPN respectively Then,

$$\Rightarrow \quad \frac{\text{area}(\Delta \text{BPL})}{\text{area}(\Delta \text{PLC})} = \frac{\text{ar}(\Delta \text{ABL})}{\text{ar}(\Delta \text{ALC})}$$

 $\frac{40}{30} = \frac{84 + b + 40}{a + 35 + 30}$ (1)

Also,

$$\frac{\operatorname{ar}(\Delta CPM)}{\operatorname{ar}(\Delta APM)} = \frac{\operatorname{ar}(\Delta BCM)}{\operatorname{ar}(\Delta ABM)}$$

$$\Rightarrow \frac{35}{a} = \frac{40 + 30 + 35}{a + b + 84} \qquad \dots \dots (2)$$

from (1) and (2), we get

$$a = 56 and b = 70$$

$$\therefore$$
 ar($\triangle ABC$) = 315

152. ABC is a right angled with $\angle B = 90^\circ$, m is the midpoint of AC and B m = $\sqrt{177}$ cm, AB + BC = 30 then the

153. Let p be an interior point of \triangle ABC and extend lines from the vertices through p to the opposite sides. Let a, b, c and d divides the lengths of the segments indicated in the figure. Find the product of abc, if a + b + c = 43 and d = 3.

Ans. (4)

Sol. Call the cevians AD, AE, and CF. Using area ratios (\triangle PBC and \triangle ABC have the same base), we have : d [PBC]

 $\frac{d}{a+d} = \frac{[PBC]}{[ABC]}$ Similarily, $\frac{d}{b+d} = \frac{[PCA]}{[ABC]}$ and $\frac{d}{c+d} = \frac{[PAB]}{[ABC]}$ Then, $\frac{d}{a+d} + \frac{d}{b+d} + \frac{d}{c+d} \frac{[PBC]}{[ABC]} + \frac{[PCA]}{[ABC]} + \frac{[PAB]}{[ABC]} = \frac{[ABC]}{[ABC]} = 1$ The identity $\frac{d}{a+d} + \frac{d}{b+d} + \frac{d}{c+d} = 1$ is a form of Ceva's Theorem. Plugging in d = 3, we get $\frac{3}{a+3} + \frac{3}{b+3} + \frac{3}{c+3} = 1$ 3[(a+3) (b+3) + (b+3) (c+3) + (c+3) (a+3)] = (a+3) (b+3) (c+3) 3(ab+bc+ca) + 18(a+b+c) + 81 = abc + 3 (ab+bc+ca) + 9 (a+b+c) + 27 $9(a+b+c) + 54 = abc = \boxed{441}$ **154.** As shown in the figure in $\triangle ABC$, p is an interior point. Through the point p, three lines are drawn parallel to three sides as shown in the figure. If the areas of smaller triangles are 16, 25 and 36 square units respectively, then the area of $\triangle ABC$ in square units is

Ans. (2)

Sol. $\angle AOT = 58^{\circ}$ $\therefore \angle ABT = 29^{\circ}$ $\ln \triangle ABT, \angle ABT + \angle BTA + \angle TAB = 180^{\circ}$ $29^{\circ} + \angle BTA + 90^{\circ} = 180^{\circ}$ $\angle BTA = 61^{\circ}$ $\therefore \angle ATQ = 61^{\circ}$

- **157.** The radii of two cylinders are in the ratio 2 : 3 and their heights are in the ratio 5 : 3, then the ratio of their volumes is ..
 - (1) 15:16 (2) 14:17 (3) 20:27 (4) 4:9
- Ans. (3)

Sol.
$$\frac{V_1}{V_2} = \frac{\pi r_1^2 h_1}{\pi r_2^2 h_2} = \left(\frac{r_1}{r_2}\right)^2 \frac{h_1}{h_2} = \left(\frac{2}{3}\right)^2 \frac{5}{3} = \frac{20}{27}$$

158. If the area of three adjacent faces of a cuboid are x, y and z respectively, then the volume of a cuboid is

- (1) \sqrt{xyz} (2) x + y + z (3) x²yz (4) xy + z
- Ans. (1)

Sol. $\ell b = x$ (1) bh = y (2) $h\ell = z$ (3) Multiplying equation (1), (2) and (3), $(\ell bh)^2 = xyz$ $V^2 = xyz$ $V = \sqrt{xyz}$

- **159.** If $\tan \theta + \cot \theta = 2$, then the value of $\tan^2 \theta + \cot^2 \theta$ is ...
 - (1) 4 (2) 2 (3) $\frac{3}{2}$ (4) 5

Ans. (2)

Sol. $\tan\theta + \cot\theta = 2$ $\tan^2\theta + \cot^2\theta + 2 \cdot \tan\theta \cdot \cot\theta = 4$ $\tan^2\theta + \cot^2\theta = 2$

160. A bag contains 15 balls of which x are black and remaining are red. If the number of red balls are increased by 5, the probability of drawing the red balls doubles, then the probability of drawing red ball is

(1)
$$\frac{1}{5}$$
 (2) $\frac{4}{5}$ (3) $\frac{3}{5}$ (4) $\frac{2}{5}$

Ans. (1)

- **Sol.** Let the number of black balls be x
 - \therefore Number of red balls = 15 x

$$2\left(\frac{15-x}{15}\right) = \frac{20-x}{20}$$

$$\Rightarrow x = 12$$

then number of red balls = $15 - 12 = 3$
Probability (red ball) = $\frac{3}{15} = \frac{1}{5}$

- 161. "On the basis of iron, coal and textiles, Britain built up a type of civilisation which has been copied all round the world." Who said these words praising Britain ?
 - (1) Fisher (2) James Watt (3) Henry Fort (4) Friedrich Engels
- **Ans.** (1)
- **Sol.** Fisher used these words to praise Britain.

162. "Which no European power would be allowed to build colonies in the American continents and US will not interfere in the affairs of Europe or colonies in other continents." Name the American President who declared this.

(1) James Monroe (2) Franklin Roosevelt (3) Harry S. Truman (4) George W. Bush

Ans. (1)

- **Sol.** James Monroe declared the quote given in the question.
- **163.** Find the wrong statement about Cricket.
 - (1) The first written laws of Cricket were drawn up in 1744.
 - (2) The stumps must be 22 inches high and the bail across them six inches.
 - (3) The world's first Cricket Club was formed in Hambledon in the 1760's:
 - (4) The Sikhs founded the first 'Indian Cricket Club, the Punjab Club in Amritsar in 1820.

Ans. (4)

- **Sol.** The Parsis founded the first Indian cricket club not the Sikhs.
- 164. What is the reason for increase in industrialisation in Germany after 1870?.
 - (1) Invention of Dynamo by Werner Siemens.
 - (2) Unification of Germany.
 - (3) Capturing of Loraine from France by Germany.
 - (4) All the above.

Ans. (3)

- **Sol.** The capturing of Loraine from France increased the industrialization in Germany after 1870.
- **165.** Find out the one, which is not related to French Revolution.
 - (1) Estate General Meeting in 1789. (2) Destroy of Bastille Fort.
 - (3) Tennis Court Oath. (4) Glorious Revolution.

Ans. (4)

- **Sol.** Glorious revolution is related with Britain not with France.
- **166.** Which of the following is not the result of the Treaty of Vienna of 1815?
 - (1) France lost the territories it had annexed under Napoleon.
 - (2) Poland was given to Prussia.
 - (3) Prussia was handed over to England.
 - (4) None of the above.

Ans. (3)

- **Sol.** Prussia was not handed over to England after Treaty of Vienna 1815.
- **167.** Hearing about this incident, Mahatma Gandhi called a halt to the Non-Cooperation movement.
 - (1) Chauri Chaura incident (2) Jalian Wala Bagh incident
 - (3) Awadh incident (4) Forest Revolt in Kumaon
- Ans. (1)
- Sol. Mahatma Gandhi called off Non Cooperation movement because of the violent Chauri Chaura incident.
- **168.** Name the Viceroy of India during Civil Disobedience Movement.
 - (1) Lord Linlithgow (2) Lord Irwin (3) Lord Reading (4) Lord Chelmsford
- Ans. (2)
- Sol. Lord Irwin was the Viceroy of India during the Civil Disobedience Movement.

169.	In which year, did Gar	ndhiji	relaunch Civil Disobediene	ce Movement?			
	(1) 1931		(2) 1932	(3) 1933	(4) 1934		
Ans.	(2)						
Sol.	Gandhiji re-launched	the C	Civil Disobedience Moveme	ent in 1932			
170.	• Which of these is not a demand of Vladimir Lenin in April Theses?						
	(1) Land to be transfe	erred	to the peasants.	(2) Nationalisation of fa	actories and banks.		
	(3) War be brought to	o a cl	ose.	(4) Transfer of political	power to middle class		
Ans.	(4)						
Sol.	Transfer of political p	ower	to middle class was not a c	demand of Lenin in his Api	ril Thesis.		
171.	Who wrote about the	injus	tices of the Caste system ir	n his "Gulamgiri"?			
	(1) E.V Ramaswamy	Naik	ar	(2) Kashi baba			
	(3) Jyotiba Phule			(4) B.R Ambedkar			
Ans.	(3)						
Sol.	The famous book Gul	amgi	iri was written by Jyotiba P	hule.			
172.	Who is the author of t	he n	ovel "The Jungle Book"?				
	(1) R.L Stevenson			(2) Charles Dickens			
	(3) Thomas Hardy			(4) Rudyard Kipling			
Ans.	(4)						
Sol.	Rudyard Kipling is the	e autł	nor of 'Jungle Book'.				
173.	In which congress ses	sion,	the resolution of Purna S	waraj was passed?			
	(1) Lahore session		(2) Karachi session	(3) Nagpur session	(4) Wardha session		
Ans.	(1)						
Sol.	The resolution of Poo	rna S	Swaraj was passed in Lahor	re Session of Indian Congre	285.		
174.	On 15th August 1947	7, in	which place to reduce the	riots?			
	(1) Noakhali		(2) Satara	(3) Nawadwip	(4) Jalandhar		
Ans.	(1)						
Sol.	On 15th August 1947	7, Ga	andhi was in Noakhali tryin	g to bring peace to reduce	riots.		
175.	Which party gave its s	uppo	ort to the Britishers during	Second World War?			
	(1) Congress			(2) Muslim league			
	(3) Communist party	of Ir	ndia	(4) All the above.			
Ans.	(2)						
Sol.	Muslim League suppo	orted	the British during the Seco	ond World War.			
176.	Match the list A with I	Band	d select the answer using th	ne codes given below the lis	st:		
	A		В				
	A Kankar	I	Small streams disappear				
	B Khader	II	Contains calcareous depos	its			
	C Bhaber	III	deal for intensive agricultu	re			
	D Terai	IV	Thickly forested region full	of wild life			
	(1) i-a, iii-b,iv-c,ii,d		(2) ii-a, iv-b,iii-c,i,d	(3) ii-a, iii-b,i-c,iv,d	(4) iii-a, iii-b,i-c,iv,d		
Ans.	(3)						
Sol.	Kankar : Contains cal	cared	ous deposits				
	Khader : Ideal for inte	nsive	agriculture				
	Bhaber: Small stream	ns dis	appear				
	Terai : Thickly foreste	ed reg	gion full of wild life				

177.	. The time at 20° West longitude is 2.00 AM. Then what is the time at 90° East longitudes?				
	(1) 6.40 AM	(2) 9.20 AM	(3) 8.40 AM	(4) 10.20 AM	
Ans.	(2)				
Sol.	If the time at 20 degree Wes	t longitude is 2:00 AM the	en it will be 9:20 AM at 90	degree East longitude.	
178.	Which of the following Indus	tributaries does not join Ka	shmir region?		
	(1) Zaskar	(2) Jhelum	(3) Shyok	(4) Nubra	
Ans.	(4)				
Sol.	Nubra is the tributary that do	es not join the Indus River	in the Kashmir region.		
179.	Consider the following Stater	nent.			
	(1) The amount of annual ra	infall in the northern plains	s of India decreases from e	ast to west.	
	(2) The Coromandel Coast r	eceives winter rainfall			
	(3) The delta region of the e	astern coast is frequently st	trucked with cyclones		
	(4) The speed of Jet Stream	s increases during winter			
	Which of the statement giver	n above is/are correct?			
	(1) a only	(2) a,b,c	(3) b,c,d	(4) a,b,c,d	
Ans.	(4)				
Sol.	All four statements are corre	ct with respect to the clima	ate of India.		
180.	Name the Indian forests cont	aining upper canopy .			
	(1) Tropical deciduous forest	s	(2) Mangrove forest		
	(3) Tropical evergreen forest	S	(4) Thorny forest		
Ans.	(3)				
Sol.	Tropical Evergreen Forests co	ontains upper canopy.			
181.	Identify the pull factor that is	not related to migrations.			
	(1) Better living conditions		(2) Employment opportur	nities	
	(3) Medical facilities		(4) None of the above		
Ans.	(4)				
Sol.	Given are not related to the p	pull factor of migration.			
182.	The famous hill station udgar	mandalam, popularly know	n as Ooty, is located in the	2	
	(1) Nilgiris	(2) Palani hills	(3) Anaimalai hills	(4) Cardamom hills	
Ans.	(1)				
Sol.	The famous hill station Ooty	is situated in Nilgiris.			
183.	What is the reasons for the T	Troposphere to be at a grea	ater height at the Equator	?	
	(1) Conventional Current		(2) Conduction		
	(3) Terrestrial radiation		(4) All the above		
Ans.	(3)				
Sol.	The Troposphere is at greate	er height at equator due to	Terrestrial radiation.		
184.	Name the Planetary winds th	at meet the Inter Tropical	Convergence Zone.		
	(1) Westerlies and Easterlies				
	(2) North east trade winds, S	South east trade winds			
	(3) South east trade winds, V	Vesterlies			
_	(4) Trade winds, Easterlies				
Ans.	(2)				
Sol.	The North East trade wind an	nd South east trade winds o	converged at ITCZ.		

185.	East , west corridor does not	pass through					
	(1) Udaipur	(2) Jhansi	(3) Guwahati	(4) Gurgaon			
Ans.	(4)						
Sol.	The East-West Corridor does	not pass through Gurgaor	٦.				
186.	• Magnetite is the						
	(1) Highest quality coal		(2) Finest iron ore				
	(3) Finest copper ore		(4) Highest quality limesto	one			
Ans.	(2)						
Sol.	Magnetite is the finest iron or	e.					
187.	Which of the following is not	correctly related to Jowar	2				
	(1) Jowar is a Karif crop						
	(2) Jowar is the third most in	nportant food crop with re	espect to area and producti	on			
	(3) Maharashtra is the larges	t producer of Jowar					
	(4) None of the above						
Ans.	(4)						
Sol.	All the statements are correct	tly related to the Jowar.					
188.	North eastern states are most	tly covered with this soil.					
	(1) Red and yellow soil		(2) Alluvial Soil				
	(3) Forest and mountainous s	oils	(4) Laterite soils				
Ans.	(1)						
Sol.	North eastern states of India a	are mostly covered with re	ed and yellow soil.				
189.	Find out the wrong one about	t National Parks.					
	(1) Gir National Park - Gujar	at	(2) Simlipal National Parl	k- Odisha			
	(3) Sanjay Gandhi National F	Park- Uttar Pradesh	(4) Guindi National Park-	Tamilnadu			
Ans.	(3)						
Sol.	Sanjay Gandhi National Park	is situated in Maharashtra	à.				
190.	Name the longest range in H	imachal ranges ?					
	(1) Mahabharath range	(2) Pir Panjal range	(3) Dhrula Dhar range	(4) Nagatiba range			
Ans.	(2)						
Sol.	Pir Panjal range is the longes	t among all the Himachal	ranges.				
191.	Which of the following freedo	om is not available to Indiar	n citizens?				
	(1) Freedom to assemble pea	acefully without arms.					
	(2) Freedom to move freely.						
	(3) Freedom to resides and se	ettle in any part of the terr	ritory of India				
	(4) None of the above						
Ans.	(3)						
Sol.	Freedom to reside and settle	in any part of the territory	of India is not available to	Indian citizens.			
192.	Find the wrong statements.						
	(1) There was unanimity of op	pinions on all provisions du	uring constitutions assembly	У			
	(2) The makers of Constitution	on represented all regions	of the country				
	(3) Constitution provides cert	tain provisions to amend a	rticles in it				
	(4) Supreme Court of India h	has said basic features of co	onstitution may also be am	ended.			
Ans.	(4)						
C 1							

Sol. 4 is incorrect as basic features of Indian Constitution cannot be amended in any case.

193.	. As Per census 2001, what is the percentage of people with Hindi as their mother tongue?				
	(1) 41.03%	(2) 52.02%	(3) 32.14%	(4) 64.91 %	
Ans.	(1)				
Sol.	As per the census 2001, 41	.03% percent people recog	gnized Hindi as their moth	er tongue.	
194.	Which Lok Sabha elections	recorded heavy voting's ?			
	(1) 10th Lok Sabha election	IS	(2) 12th Lok Sabha elect	ions	
	3) 14th Lok Sabha election	IS	(4) 16th Lok Sabha elect	ions	
Ans.	(4)				
Sol.	The 16th Lok Sabha Electio	n recorded the heaviest vot	ing in Indian electoral histo	ory.	
195.	Which of the following subje	cts is nor under concurrent	list?		
	(1) Adoption	(2) Trade Union	(3) Commerce	(4) Succession	
Ans.	(3)				
Sol.	Commerce is the subject that	t is not under Concurrent L	_ist.		
196.	Largest income under direct	taxes is obtained from			
	(1) Income tax	(2) Corporation tax	(3) Gift tax	(4) Custom Duty	
Ans.	(1)				
Sol.	Largest income under direct	taxes is obtained from Inco	ome Tax.		
197.	Which of the following states	ment is wrong about organi	sed sector?		
	(1) People who work in the	government or with compa	anies or large establishmer	it are all in organised sector	
	(2) They get paid leave pays	ment during holidays provid	dent fund etc.		
	(3) Workers in the organised	d sector enjoys security of e	employment		
	(4) 92 % of workers in India	are found in organised sec	ctor		
Ans.	(4)				
Sol.	Statement 4 is not correct re	egarding the organize secto	or in India.		
198.	Find out the wrong statemer	nt about Ford Motors			
	(1) Ford Motors is the larges	st automobile manufacturer	rs which belongs to Americ	a	
	(2) It came to India in 1995	and established a plant nea	ar Chennai		
	(3) The plant near Chennai	was established in collabora	ation with Ashok Leyland		
	(4) None of the above				
Ans.	(3)				
Sol.	The plant of Ford Motors ne	ar Chennai was not establis	shed in collaboration with A	Ashok Leyland.	
199.	Find out the correct stateme	ent regarding Mid-Day Meal	l Scheme.		
	a) This is the largest school	l feeding programme in the	e world		
	b) About 14 crore children	studying in schools ,eat mi	d-day meal today .		
	c) The Supreme Court rule	ed that prefernces be given	to dalit cooks , widows an	nd destitute women	
	d) The schemes was first in	nplemented in Tamil Nadu			
	(1) a,b,c	(2) b,c,d,	(3) a,c,d,	(4) a,b,c,d	
Ans.	(4)				
Sol.	All four statements are corre	ect regarding Mid Day Mea	l Scheme.		
200.	The most common route for	investments by MNC's in c	ountries around the world	, is to	
	(1) Establish new factories				
	(2) Buy existing local compa	anies			
	(3) Form partnership with lo	ocal companies			
	(4) Giving loans to the gover	rnment			
Ans.	(2)				

Sol. The most common route for investment by MNC's in countries around the world is to buy existing local companies.