ALLEN®

	EM WAVES		7.	For an electromag	gnetic wave travelling in free
1.	An electromagnetic wave of frequency 5 GHz, is travelling in a medium whose relative electric permittivity and relative magnetic permeability both are 2. Its velocity in this medium is			space, the relation between average energy densities due to electric (U_e) and magnetic (U_m) fields is :	
	$_$ × 10 ⁷ m/s.			(1) $U_{a} = U_{m}$	(2) $U_a > U_m$
2.	Match List - I with List - II.				(4) II \rightarrow II
	List - I	List - II (i) Padioactive decay		$(3) U_e < U_m$	$(4) U_e \neq U_m$
	microwave	(1) Radioactive decay	8.	The electric field	I intensity produced by the
	frequency			radiation coming	from a 100 W bulb at a
	(b) Source of infrared	(ii) Magnetron		distance of 3m is	E. The electric field intensity
	frequency			produced by the ra	adiation coming from 60 W at
	(c) Source of Gamma Rays	electrons			$\sqrt{\mathbf{x}}$
	(d) Source of X-rays	(iv) Vibration of		the same distance	is $\sqrt{-E}$. Where the value of x $\sqrt{5}$
		atoms and		_	, -
		molecules	0	A plane electron	nagnetic wave of frequency
		(v) LASER (vi) RC circuit	7.	100 MILT is trove	alling in years along the y
	Choose the correct answer from the options given below : (1) (a)-(vi), (b)-(iv), (c)-(i), (d)-(v) (2) (a)-(vi), (b)-(v), (c)-(i), (d)-(iv) (3) (a)-(ii), (b)-(iv), (c)-(vi), (d)-(iii))			100 MINZ IS LIAVE	shing in vacuum along the x
				direction. At a part	icular point in space and time,
				$\vec{B} = 2.0 \times 10^{-8} \hat{k}T$. (where, \hat{k} is unit vector
				along z-direction)	What is \vec{E} at this point ?
	(4) (a)-(ii), (b)-(iv), (c)-	(i), (d)-(iii)			
3.	An electromagnetic wave of frequency 3 GHz			(1) 0.6j V/m	(2) $6.0 \text{ k} \text{ V/m}$
	enters a dielectric mec	lium of relative electric		(3) 6.0 j V/m	(4) $0.6 \hat{k} V/m$
	this wave in that medium	will be $\times 10^{-2}$ cm.	10	A plane electron	magnetic wave propagating
4.	The peak electric field produced by the		10.	along v direction	can have the following pair of
	radiation coming from the 8 W bulb at a			along y-direction (\vec{a} and \vec{a} and \vec{a} and \vec{a}
	distance of 10 m	is $\frac{x}{10} \sqrt{\frac{\mu_0 c}{\pi}} \frac{V}{m}$. The		components) and magnetic field (B)
S	efficiency of the bulb i	is 10% and it is a point		(1) E B or E B	(2) E B or E B
^DM W 5	source. The value of x is A radiation is emitted	8 by 1000 W bulb and it		(1) E_y , D_y or E_z , D_z	(4) E D or E D
∏ vila ∎ •	generates an electric fie	eld and magnetic field at		$(3) \mathbf{E}_{\mathbf{X}}, \mathbf{D}_{\mathbf{Z}} \mathbf{O} \mathbf{E}_{\mathbf{Z}}, \mathbf{D}_{\mathbf{Z}}$	$x \qquad (4) E_x, D_y OI E_y, D_x$
sics/Eng	P, placed at a distance of 2 m. The efficiency of		11.	In an electromag	netic wave the electric field
on/Phy	the bulb is 1.25%. The	e value of peak electric		vector and magnet	ic field vector are given as $\dot{E} =$
h Soluti	(Rounded-off to the nea	rest integer)		$E_0 \hat{i}$ and $\vec{B} = B_0 \hat{k}$	respectively. The direction of
	[Take $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2\text{N}^{-1} \text{ m}^{-2}, c = 3 \times 10^8 \text{ ms}^{-1}$] A plane electromagnetic wave of frequency 500 MHz is travelling in vacuum along			propagation of elec	ctromagnetic wave is along :
6.				$(1) \begin{pmatrix} \hat{k} \end{pmatrix} \qquad (2) \hat{J}$	$(3) \left(-\hat{k}\right) \qquad (4) \left(-\hat{j}\right)$
2021_5	y-direction. At a partic	cular point in space and	12.	Intensity of sunlig	t is observed as 0.092 Wm^{-2}
e Main-	time, $\vec{B} = 8.0 \times 10^{-8} \hat{z}T$. The value of electric field at this point is : (speed of light = 3×10^{8} ms ⁻¹) \hat{x} , \hat{y} , \hat{z} are unit vectors along x, y and z			at a point in free space. What will be the peak	
AINUe				value of magnetic	field at that point ?
∩ee ≫				value of magnetic $(a = 0.95 \times 10^{-12})$	$\gamma^2 N^{-1} m^{-2}$
8 \Kota	direction.	(2) (2) (2) (2)		$(50 = 3.85 \times 10^{-10})^{-1}$, IN III)
BOBA-E	(1) $-24x V/m$	(2) 2.6x V/m		(1) $2.77 \times 10^{-6} \text{ T}$	(2) 1.96×10^{-6} T
ode061	(3) $24 \times V/m$	(4) -2.6 y V/m		(3) 8.31 T	(4) 5.88 T
ĉ					

- (2) $6.0 \hat{k} V/m$ (4) $0.6 \hat{k} V/m$
- ctromagnetic wave propagating ion can have the following pair of (\vec{E}) and magnetic field (\vec{B})

Ε

2 EM Waves

13. A linearly polarized electromagnetic wave in vacuum is $E = 3.1 \cos \left[(1.8)z - (5.4 \times 10^6)t \right] \hat{i} \text{ N / C}$

is incident normally on a perfectly reflecting wall at z = a. Choose the correct option

- (1) The wavelength is 5.4 m
- (2) The frequency of electromagnetic wave is 54×10^4 Hz.
- (3) The transmitted wave will be $3.1\cos[(1.8)z (5.4 \times 10^6)t]\hat{i} \text{ N/C}$
- (4) The reflected wave will be $3.1\cos\left[(1.8)z + (5.4 \times 10^6)t\right]\hat{i} \text{ N/C}$
- 14. A light beam is described by $E = 800 \sin \omega$ $\left(t - \frac{x}{c}\right)$. An electron is allowed to move normal

to the propagation of light beam with a speed of $3 \times 10^7 \text{ ms}^{-1}$. What is the maximum magnetic force exerted on the electron ?

- (1) 1.28×10^{-18} N (2) 1.28×10^{-21} N (3) 12.8×10^{-17} N (4) 12.8×10^{-18} N
- 15. The magnetic field vector of an electromagnetic wave is given by $B = B_0 \frac{\hat{i} + \hat{j}}{\sqrt{2}} \cos(kz \omega t);$

where \hat{i}, \hat{j} represents unit vector along x and yaxis respectively. At t = 0 s, two electric charges q_1 of 4π coulomb and q_2 of 2π coulomb

located at
$$\left(0,0,\frac{\pi}{k}\right)$$
 and $\left(0,0,\frac{3\pi}{k}\right)$

respectively, have the same velocity of 0.5 c \hat{i} , (where c is the velocity of light). The ratio of the force acting on charge q_1 to q_2 is :-

(1) $2\sqrt{2}:1$ (2) 1: $\sqrt{2}$

(3) 2 : 1 (4)
$$\sqrt{2}$$
 : 1

16. Electric field in a plane electromagnetic wave is given by $E = 50 \sin(500x - 10 \times 10^{10}t) \text{ V/m}$ The velocity of electromagnetic wave in this medium is :

(Given C = speed of light in vacuum)

(1)
$$\frac{3}{2}$$
C (2) C (3) $\frac{2}{3}$ C (4) $\frac{C}{2}$

- 17. A plane electromagnetic wave with frequency of 30 MHz travels in free space. At particular point in space and time, electric field is 6 V/m. The magnetic field at this point will be $x \times 10^{-8}$ T. The value of x is _____.
- **18.** The electric field in an electromagnetic wave is given by $E = (50 \text{ NC}^{-1}) \sin \omega (t-x/c)$ The energy contained in a cylinder of volume V is $5.5 \times 10^{-12} \text{ J}$. The value of V is _____ cm $(\text{given} \in_0 = 8.8 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{m}^{-2})$
- 19. Electric field of plane electromagnetic wave propagating through a non-magnetic medium is given by $E = 20\cos(2 \times 10^{10} \text{ t}-200 \text{ x}) \text{ V/m}$. The dielectric constant of the medium is equal to : (Take $\mu_r = 1$)

(1) 9 (2) 2 (3)
$$\frac{1}{3}$$
 (4) 3

20. The electric field in a plane electromagnetic wave is given by

$$\vec{E} = 200 \cos \left[\left(\frac{0.5 \times 10^3}{m} \right) x - \left(1.5 \times 10^{11} \frac{rad}{s} \times t \right) \right] \frac{V}{m} \hat{j}$$

If this wave falls normally on a perfectly reflecting surface having an area of 100 cm^2 . If the radiation pressure exerted by the E.M. wave on the surface during a 10 minute exposure is

$$\frac{x}{10^9} \frac{N}{m^2}$$
. Find the value of x.

Ε

SOLUTION

5. Official Ans. by NTA (137) **Sol.** $I_{avg} = \frac{1}{2} \varepsilon_0 E_0^2 C$ $\frac{1.25}{100} \times \frac{1000}{4\pi(2)^2} = \frac{1}{2} \times 8.85 \times 10^{-12} \times 3 \times 10^8 \times 10^{-12}$ E_0^2 $E_0^2 = 187.4$ $\therefore E_0 = 13.689 \text{ V/m}$ $= 136.89 \times 10^{-1} \text{ V/m}$ ∴ x = 136.89 Rounding off to nearest integer x = 1376. Official Ans. by NTA (1) **Sol.** $f = 5 \times 10^8 \text{ Hz}$ EM wave is travelling towards $+\hat{j}$ $\vec{B} = 8.0 \times 10^{-8} \hat{z}T$ $\vec{E} = \vec{B} \times \vec{C} = (8 \times 10^{-8} \hat{z}) \times (3 \times 10^{8} \hat{y})$ $= -24 \hat{x} V / m$ 7. Official Ans. by NTA (1) Sol. In EMW, Average energy density due to electric (U_e) and magnetic (U_m) fields is same. 8. Official Ans. by NTA (3) **Sol.** $c \in_0 E^2 = \frac{100}{4\pi \times 3^2}$ $c \in \left(\sqrt{\frac{x}{5}}E\right)^2 = \frac{60}{4\pi \times 3^2}$ $\Rightarrow \frac{x}{5} = \frac{3}{5} \Rightarrow x = 3$ Official Ans. by NTA (3) 9. **Sol.** E = BC = 6(Dir. of wave) $\| (\vec{E} \times \vec{B}) \|$ $\hat{i} = \hat{j} \times \hat{k}$ $\vec{E} = 6\hat{j} V / m$ Official Ans. by NTA (3) 10. Sol. **Öfficial Ans. by NŤA (4)** 11. Direction of propagation = $\vec{E} \times \vec{B} = \hat{i} \times \hat{k} = -\hat{j}$ Sol.

Е

4 EM Waves

ALLEN[®]

12. Official Ans. by NTA (1)
Sol.
$$I_{avg} = \frac{B_0^2 C}{2\mu_0} & \frac{1}{\mu_0} = \epsilon_0 C^2$$

$$I = \frac{B_0^2}{2} \epsilon_0 C^3$$

$$B_0 = \sqrt{\frac{21}{\epsilon_0 C^3}}$$

$$B_0 = 2.77 \times 10^{-8} T$$
13. Official Ans. by NTA (4)
Sol. Reflected wave will have direction opposite incident wave.
14. Official Ans. by NTA (4)
Sol.
$$\frac{E_0}{C} = B_0$$

$$F_{max} = eB_0 V$$

$$= 1.6 \times 10^{-19} \times \frac{800}{3 \times 10^8} \times 3 \times 10^7$$

$$= 12.8 \times 10^{-18} N$$
Ans. 4
15. Official Ans. by NTA (3)
Sol. $\vec{F} = q(\vec{V} \times \vec{B})$
 $\vec{F}_1 = 4\pi \left[0.5c\hat{i} \times B_0 \left(\frac{\hat{i} + \hat{j}}{2} \right) cos \left(K. \frac{\pi}{K} - 0 \right) \right]$

$$cos \pi = -1, \quad cos 3\pi = -1$$

$$\therefore \frac{F_1}{F_2} = 2$$
16. Official Ans. by NTA (3)
Sol. $V = \frac{\omega}{K} = \frac{10 \times 10^{10}}{500} = 2 \times 10^8$

$$V = \frac{2C}{3}.$$

to

17. Official Ans. by NTA (2)

Sol.
$$|B| = \frac{|E|}{C} = \frac{6}{3 \times 10^8}$$

= 2 × 10⁻⁸ T
 \therefore x = 2

18. Official Ans. by NTA (500) **Sol.** $E = 50 \sin \left(\omega t - \frac{\omega}{c} \cdot x \right)$ Energy density = $\frac{1}{2} \in_0 E_0^2$ Energy for volume V = $\frac{1}{2} \in_0 E_0^2$.V = 5.5 × 10⁻¹² $\frac{1}{2}8.8 \times 10^{-12} \times 2500 \,\mathrm{V} = 5.5 \times 10^{-12}$ $V = \frac{5.5 \times 2}{2500 \times 8.8} = .0005 \text{m}^3$ $= .0005 \times 10^{6} (c.m)^{3}$ $= 500 (c.m)^3$ 19. Official Ans. by NTA (1) **Sol.** Speed of wave = $\frac{2 \times 10^{10}}{200} = 10^8 \, \text{m/s}$ Refractive index = $\frac{3 \times 10^8}{10^8} = 3$ Now refractive index = $\sqrt{\varepsilon_r \mu_r}$ $3 = \sqrt{\epsilon_r(1)} \implies \epsilon_r = 9$ Option (1) 20. Official Ans. by NTA (354) **Sol.** $E_0 = 200$ $\mathbf{I} = \frac{1}{2} \varepsilon_0 \mathbf{E}_0^2 \cdot \mathbf{C}$ Radiation pressure $P = \frac{2I}{C}$ $= \left(\frac{2}{C}\right) \left(\frac{1}{2}\epsilon_0 E_0^2 C\right) = \epsilon_0 E_0^2$ $= 8.85 \times 10^{-12} \times 200^{2}$ $=8.85\times10^{-8}\times4$ $=\frac{354}{10^{9}}$ Ans. 354.0

Е