ALLEN®

Relation 1

RELATION

 Let N be the set of natural numbers and a relation R on N be defined by

$$R = \{(x,y) \in N \times N : x^3 - 3x^2y - xy^2 + 3y^3 = 0\}$$

- Then the relation R is :
- (1) symmetric but neither reflexive nor transitive
- (2) reflexive but neither symmetric nor transitive
- (3) reflexive and symmetric, but not transitive
- (4) an equivalence relation
- 2. Which of the following is **not** correct for relation R on the set of real numbers ?
 - (1) (x, y) $\in \mathbb{R} \iff 0 < |x| |y| \le 1$ is neither transitive nor symmetric.
 - (2) $(x, y) \in R \iff 0 < |x-y| \le 1$ is symmetric and transitive.
 - (3) $(x, y) \in R \iff |x| |y| \le 1$ is reflexive but not symmetric.
 - (4) $(x, y) \in R \iff |x-y| \le 1$ is reflexive and symmetric.

Let A = {2, 3, 4, 5,, 30} and '≃' be an equivalence relation on A × A, defined by (a, b) ≃ (c, d), if and only if ad = bc. Then the number of ordered pairs which satisfy this equivalence relation with ordered pair (4, 3) is equal to :

(1) 5 (2) 6 (3) 8 (4) 7

- 4. Define a relation R over a class of n × n real matrices A and B as "ARB iff there exists a non-singular matrix P such that PAP⁻¹ = B". Then which of the following is true ?
 - (1) R is symmetric, transitive but not reflexive,
 - (2) R is reflexive, symmetric but not transitive
 - (3) R is an equivalence relation
 - (4) R is reflexive, transitive but not symmetric

Ε

ALLEN[®]

SOLUTION	
1.	Official Ans. by NTA (2)
Sol.	$x^3 - 3x^2y - xy^2 + 3y^3 = 0$
	$\Rightarrow x(x^2 - y^2) - 3y (x^2 - y^2) = 0$
	$\Rightarrow (x - 3y) (x - y) (x + y) = 0$
	Now, $x = y \forall (x,y) \in N \times N$ so reflexive
	But not symmetric & transitive
	See, (3,1) satisfies but (1,3) does not. Also (3,1)
	& $(1,-1)$ satisfies but $(3,-1)$ does not
2.	Official Ans. by NTA (2)
Sol.	Note that (1,2) and (2,3) satisfy $0 < x - y \le 1$
	but (1,3) does not satisfy it so
	$0 \le x - y \le 1$ is symmetric but not transitive
	So, (2) is correct.
3.	Official Ans by NTA (4)
Sol.	$A = \{2, 3, 4, 5, \dots, 30\}$
	$(a, b) \simeq (c, d) \implies ad = bc$
	$(4, 3) \simeq (c, d) \implies 4d = 3c$
	$\Rightarrow \frac{4}{3} = \frac{c}{d}$
	$\frac{c}{d} = \frac{4}{3} \& c, d \in \{2, 3, \dots, 30\}$
	$(c, d) = \{(4, 3), (8, 6), (12, 9), (16, 12), (20, 15), $

 $(24, 18), (28, 21)\}$

No. of ordered pair = 7

Official Ans. by NTA (3) **Sol.** A and B are matrices of $n \times n$ order & ARB iff there exists a non singular matrix $P(det(P) \neq 0)$ such that $PAP^{-1} = B$ For reflexive $ARA \Rightarrow PAP^{-1} = A$ \dots (1) must be true for P = I, Eq.(1) is true so 'R' is reflexive For symmetric $ARB \Leftrightarrow PAP^{-1} = B$...(1) is true for BRA iff PBP-1 = A $\dots(2)$ must be true \therefore PAP-1 = B $P^{-1}PAP^{-1} = P^{-1}B$ $IAP^{-1}P = P^{-1}BP$ $\mathbf{A} = \mathbf{P}^{-1}\mathbf{B}\mathbf{P}$...(3) from (2) & (3) $PBP^{-1} = P^{-1}BP$ can be true some $P = P^{-1} \Longrightarrow P^2 = I (det(P) \neq 0)$ So 'R' is symmetric For trnasitive $ARB \Leftrightarrow PAP^{-1} = B...$ is true BRC \Leftrightarrow PBP-1 = C... is true now $PPAP^{-1}P^{-1} = C$ $P^2A(P^2)^{-1} = C \Longrightarrow ARC$ So 'R' is transitive relation \Rightarrow Hence R is equivalence

4.