DIFFERENTIABILITY

1. Let a function $g:[0, 4] \rightarrow \mathbf{R}$ be defined as

$$g(x) = \begin{cases} \max_{0 \le t \le x} \{t^3 - 6t^2 + 9t - 3\}, & 0 \le x \le 3\\ 4 - x, & 3 < x \le 4 \end{cases},$$

then the number of points in the interval (0, 4) where g(x) is NOT differentiable, is _____.

2. Let $f: \mathbf{R} \to \mathbf{R}$ be defined as

$$f(x) = \begin{cases} \frac{x^{3}}{(1 - \cos 2x)^{2}} \log_{e} \left(\frac{1 + 2xe^{-2x}}{(1 - xe^{-x})^{2}} \right) &, & x \neq 0 \\ \alpha &, & x = 0 \end{cases}$$

If f is continuous at x = 0, then α is equal to :

- (1) 1
- (2) 3
- (3) 0
- (4) 2
- 3. Let $f: \mathbf{R} \to \mathbf{R}$ be a function defined as

$$f(x) = \begin{cases} 3\left(1 - \frac{|x|}{2}\right) & \text{if } |x| \le 2\\ 0 & \text{if } |x| > 2 \end{cases}$$

Let $g : \mathbf{R} \to \mathbf{R}$ be given by g(x) = f(x+2) - f(x-2). If n and m denote the number of points in \mathbf{R} where g is not continuous and not differentiable, respectively, then n + m is equal to _____.

- 4. Let $f : \mathbf{R} \to \mathbf{R}$ be a function such that f(2) = 4 and f'(2) = 1. Then, the value of
 - $\lim_{x\to 2} \frac{x^2 f(2) 4f(x)}{x 2}$ is equal to:
 - (1)4
- (2) 8
- (3) 16
- (4) 12

5. Let $f:[0,3] \to \mathbb{R}$ be defined by

$$f(x) = \min \{x - [x], 1 + [x] - x\}$$

where [x] is the greatest integer less than or equal to x. Let P denote the set containing all $x \in [0, 3]$ where f is discontinuous, and Q denote the set containing all $x \in (0, 3)$ where f is not differentiable. Then the sum of number of elements in P and Q is equal to ______.

माना $f:[0,3] \rightarrow \mathbf{R}$

6. Let $f:[0,\infty) \to [0,3]$ be a function defined by

$$f(x) = \begin{cases} \max\{\sin t : 0 \le t \le x\}, 0 \le x \le \pi \\ 2 + \cos x, & x > \pi \end{cases}$$

Then which of the following is true?

- (1) f is continuous everywhere but not differentiable exactly at one point in $(0, \infty)$
- (2) f is differentiable everywhere in $(0, \infty)$
- (3) f is not continuous exactly at two points in $(0, \infty)$
- (4) f is continuous everywhere but not differentiable exactly at two points in $(0, \infty)$
- 7. Let [t] denote the greatest integer less than or equal

to t. Let
$$f(x) = x - [x]$$
, $g(x) = 1 - x + [x]$, and

- $h(x) = min\{f(x), g(x)\}, x \in [-2, 2].$ Then h is :
- (1) continuous in [-2, 2] but not differentiable at more than four points in (-2, 2)
- (2) not continuous at exactly three points in [-2, 2]
- (3) continuous in [-2, 2] but not differentiable at exactly three points in (-2, 2)
- (4) not continuous at exactly four points in [-2, 2]

2

8.

- 11. Let the functions $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be
- The function $f(x) = |x^2 2x 3| \cdot e^{|9x^2 12x + 4|}$ is not differentiable at exactly:
 - (1) four points
- (2) three points
- (3) two points
- (4) one point
- 9. The number of points, at which the function $f(x) = |2x + 1| - 3|x + 2| + |x^2 + x - 2|, x \in R$ is not differentiable, is _____.
- 10. A function f is defined on [-3, 3] as

$$f(x) = \begin{cases} \min\{|x|, 2 - x^2\}, -2 \le x \le 2 \\ [|x|], 2 < |x| \le 3 \end{cases}$$

where [x] denotes the greatest integer \leq x. The number of points, where f is not differentiable in (-3, 3) is _____.

defined as:

 $f(x) = \begin{cases} x+2, & x<0 \\ x^2, & x \ge 0 \end{cases} \text{ and } g(x) = \begin{cases} x^3, & x<1 \\ 3x-2, & x \ge 1 \end{cases}$

Then, the number of points in \mathbb{R} where $(f \circ g)(x)$

is NOT differentiable is equal to:

- (1) 3
- (2) 1
- (4) 2
- If $f(x) = \begin{cases} \frac{1}{|x|} & ; |x| \ge 1 \\ ax^2 + b & ; |x| < 1 \end{cases}$ is differentiable at

every point of the domain, then the values of a and b are respectively:

- $(1) \frac{1}{2}, \frac{1}{2}$
- $(2) \frac{1}{2}, -\frac{3}{2}$

- Let $f : \mathbb{R} \to \mathbb{R}$ satisfy the equation 13. f(x + y) = f(x).f(y) for all $x, y \in R$ and $f(x) \neq 0$ for any $x \in R$. If the function f is differentiable at x = 0 and f'(0) = 3, then

$$\lim_{h\to 0} \frac{1}{h} (f(h)-1)$$
 is equal to _____.

SOLUTION

1. Official Ans. by NTA (1)

Sol.
$$f(x) = x^3 - 6x^2 + 9x - 3$$

$$f'(x) = 3x^2 - 12x + 9 = 3(x - 1)(x - 3)$$

$$f(1) = 1 f(3) = -3$$

$$g(x) = \begin{bmatrix} f(x) & 0 \le x \le 1 \\ 0 & 1 \le x \le 3 \\ -1 & 3 < x \le 4 \end{bmatrix}$$

g(x) is continuous

$$g'(x) = \begin{bmatrix} 3(x-1)(x-3) & 0 \le x \le 1 \\ 0 & 1 \le x \le 3 \\ -1 & 3 < x \le 4 \end{bmatrix}$$

g(x) is non-differentiable at x = 3

2. Official Ans. by NTA (1)

Sol. For continuity

$$\lim_{x\to 0} \frac{x^3}{4\sin^4 x} \left(\ln \left(1 + 2xe^{-2x} \right) - 2\ln \left(1 - xe^{-x} \right) \right)$$

$$= \alpha$$

$$\lim_{x \to 0} \frac{1}{4x} [2xe^{-2x} + 2xe^{-x}] = \alpha$$

$$=\frac{1}{4}(4)=\alpha=1$$

3. Official Ans. by NTA (4)

Sol.
$$f(x-2)$$

$$\begin{cases} \frac{3x}{2} & -4 \le x \le -2 \\ -\frac{3x}{2} & -2 < x \le 0 \\ 0 & x \in (-\infty, -4) \cup (0, +\infty) \end{cases}$$

$$f(x-2) \begin{cases} \frac{3x}{2} & 0 \le x \le 2 \\ -\frac{3x}{2} + 6 & 2 \le x \le 4 \\ 0 & x \in (-\infty, 0) \cup (4, +\infty) \end{cases}$$

$$g(x) = f(x+2) - f(x-2) \begin{cases} \frac{3x}{2} + 6 & -4 \le x \le -2 \\ -\frac{3x}{2} & -2 < x < 2 \\ \frac{3x}{2} - 6 & 2 \le x \le 4 \\ 0 & x \in (-\infty, -4) \cup (4, \infty) \end{cases}$$

$$n = 0$$

$$m = 4 \Rightarrow (n + m = 4)$$

4. Official Ans. by NTA (4)

Sol. Apply L'Hopital Rule

$$\lim_{x\to 2} \left(\frac{2xf(2) - 4f'(x)}{1} \right)$$

$$=\frac{4(4)-4}{1}=12$$

node06\B0BA-BB\Kota\JEE MAIN\Jee Main-2021_Subject Topic PDF With Solution\Mathematics\Eng\ Differentiability

5. Official Ans. by NTA (5)

Sol.

$$1 - \{x\} = 1 - x$$
; $0 \le x < 1$

Non differentiable at

$$x = \frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}$$

6. Official Ans. by NTA (2)

Sol. Graph of max $\{ \sin t : 0 \le t \le x \}$ in $x \in [0, \pi]$

& graph of cos for $x \in [\pi, \infty)$

So graph of

$$f(x) = \begin{cases} \max\{\sin t : 0 \le t \le x, & 0 \le x \le \pi \\ 2 + \cos x & x > h \end{cases}$$

f(x) is differentiable everywhere in $(0,\infty)$

7. Official Ans. by NTA (1)

Sol.
$$\min\{x - [x], 1 - x + [x]\}$$

$$h(x) = \min\{x - [x], 1 - [x - [x])\}\$$

 \Rightarrow always continuous in [-2, 2]

but non differentiable at 7 Points

8. Official Ans. by NTA (3)

Sol.
$$f(x) = |(x-3)(x+1)| \cdot e^{(3x-2)^2}$$

$$f(x) = \begin{cases} (x-3)(x+1).e^{(3x-2)^2} & ; & x \in (3,\infty) \\ -(x-3)(x+1).e^{(3x-2)^2} & ; & x \in [-1,3] \\ (x-3).(x+1).e^{(3x-2)^2} & ; & x \in (-\infty,-1) \end{cases}$$

Clearly, non-differentiable at x = -1 & x = 3.

9. Official Ans. by NTA (2)

Sol.
$$f(x) = |2x+1|-3|x+2|+|x^2+x-2|$$

= $|2x+1|-3|x+2|+|x+2||x-1|$
= $|2x+1|+|x+2|(|x-1|-3)$

Critical points are $x = \frac{-1}{2}, -2, -1$

but x = -2 is making a zero.

twice in product so, points of non

differentiability are $x = \frac{-1}{2}$ and x = -1

 \therefore Number of points of non-differentiability = $\boxed{2}$

10. Official Ans. by NTA (5)

Sol.
$$f(x) = \begin{cases} \min\{|x|, 2 - x^2\} &, -2 \le x \le 2 \\ [|x|] &, 2 < |x| \le 3 \end{cases}$$

$$\Rightarrow$$
 x \in [-3, -2) \cup (2, 3]

Number of points of non-differentiability in (-3, 3) = 5

11. Official Ans. by NTA (2)

Sol.
$$f(g(x)) = \begin{cases} g(x) + 2, & g(x) < 0 \\ (g(x))^2, & g(x) \ge 0 \end{cases}$$

$$= \begin{cases} x^3 + 2, & x < 0 \\ x^6, & x \in [0,1) \\ (3x - 2)^2, & x \in [1, \infty) \end{cases}$$

$$(f \circ g(x))' = \begin{cases} 3x^2, & x < 0 \\ 6x^5, & x \in (0,1) \\ 2(3x-2) \times 3, & x \in (1,\infty) \end{cases}$$

At 'O'

 $L.H.L. \neq R.H.L.$ (Discontinuous)

At '1'

L.H.D. = 6 = R.H.D.

 \Rightarrow fog(x) is differentiable for $x \in \mathbb{R} - \{0\}$

12. Official Ans. by NTA (4)

Sol.
$$f(x) = \begin{cases} \frac{1}{|x|}, & |x| \ge 1 \\ ax^2 + b, & |x| < 1 \end{cases}$$

at x = 1 function must be continuous

So,
$$1 = a + b$$

...(1)

differentiability at x = 1

$$\left(-\frac{1}{x^2}\right)_{x=1} = \left(2ax\right)_{x=1}$$

$$\Rightarrow -1 = 2a \Rightarrow a = -\frac{1}{2}$$

$$(1) \Rightarrow b = 1 + \frac{1}{2} = \frac{3}{2}$$

13. Official Ans. by NTA (3)

Sol. If
$$f(x + y) = f(x).f(y) & f'(0) = 3$$
 then

$$f(x) = a^x \Rightarrow f'(x) = a^x . \ell na$$

$$\Rightarrow f'(0) = \ell na = 3 \Rightarrow a = e^3$$

$$\Rightarrow f(x) = (e^3)^x = e^{3x}$$

$$\lim_{x \to 0} \frac{f(x) - 1}{x} = \lim_{x \to 0} \left(\frac{e^{3x} - 1}{3x} \times 3 \right) = 1 \times 3 = 3$$