Carbonyl Compounds

CARBONYL COMPOUNDS 1. Which of the following reagent is used for the following reaction ? $CH_{3}CH_{2}CH_{3} \xrightarrow{?} CH_{3}CH_{2}CHO$ (1) Manganese acetate (2) Copper at high temperature and pressure (3) Molybdenum oxide (4) Potassium permanganate 2. Identify products A and B : dil. KMnO₄ $\xrightarrow{CrO_3} B$ CH₂ (1) A : ΌΗ **B** : ЮH CH. CH. OH **B** : (2) A : OH OH (3) A : OHC—CH,CH,CH B: HOOC—CH,CH,CH,CH, CH. CH₃ CH₃ (4) A : B: ЭH

3. Which one of the following carbonyl compounds cannot be prepared by addition of water on an alkyne in the presence of $HgSO_4$ and H_2SO_4 ?

Which of the following reagent is suitable for the preparation of the product in the above reaction?

(1) $NaBH_4$

node06\B0BA-BB\Kata\IEE MAIN\Jee Main-2021_Subject Topic PDF With Solution\Chemistry\Eng\Carbonyl Compound

Ε

4.

(2)
$$NH_2 - NH_2 / C_2 H_5 \overset{\odot}{O} Na$$

(3) Ni/H_2

(4) Red $P + Cl_2$

5. Which one of the following reactions will not form acetaldehyde? (1) CH₃CH₂OH \xrightarrow{Cu}_{573K} (2) $CH_3CN \xrightarrow{(i)DIBAL-H}{(ii)H_2O}$ (3) $CH_2 = CH_2 + O_2 \xrightarrow{Pd(II)/Cu(II)}$ (4) CH₃CH₂OH $\xrightarrow{\text{CrO}_3-\text{H}_2\text{SO}_4}$ 6. The major product of the following chemical reaction is : (1) $H_{3}O^{+}, \Delta$ (2) SOCl₂ CH₃CH₂CN (3) Pd/BaSO₄,H, (2) CH₃CH₂CH₂OH $(1) CH_3 CH_2 CH_3$ (4) CH₃CH₂CHO (3) (CH₃CH₂CO)₂O Hydrolysis В Α 7. 373K (C_4H_8O) $(C_4H_8Cl_2)$ B reacts with Hydroxyl amine but does not give Tollen's test. Identify A and B (1) 1,1-Dichlorobutane and 2-Butanone (2) 2,2-Dichlorobutane and Butanal (3) 1,1-Dichlorobutane and Butanal (4) 2.2-Dichlorobutane and Butan-2-one 8. 2,4-DNP test can be used to identify : (1) Amine (2) Aldehyde (3) Ether (4) Halogens 9. Identify A in the given chemical reaction, CH₂CH₂CHO $\xrightarrow[C_2H_5OH,H_2O]{NaOH} A(Major product)$ CH₂CH₂CHO CHO (1)CH₂CH₂COOH (2)CH₂CH₂CH₂OH H (3)

10. Identify A in the following chemical reaction

considering the above reaction, the major product among the following is :

The product "P" in the above reaction is :

12.

13. $O_{OC_2H_5} \xrightarrow{\text{Ethylene Glycol}} A_{(Major Product)}$

ALLEN®

The product "A" in the above reaction is:

Consider the above reaction, the product 'X' and 'Y' respectively are :

4 Carbonyl Compounds

23. Which one of the following compounds will give orange precipitate when treated with 2,4-dinitrophenyl hydrazine ?

- 24. $R CN \xrightarrow{(i) DIBAL-H} R Y$ Consider the above reaction and identify "Y"
 (1) -CH₂NH₂
 (2) -CONH₂
 (3) -CHO
 (4) -COOH $R CN \xrightarrow{(i) DIBAL-H} R Y$
- 25. The major products formed in the following reaction sequence A and B are :

26. Match List-I with List-II :

ALLEN[®]

	List-I (Chemical Reaction)	List-II (Reagent used)
	(a) $CH_3COOCH_2CH_3 \rightarrow CH_3CH_2OH$ (b) $CH_3COOCH_3 \rightarrow CH_3CHO$	(i) CH ₃ MgBr / H ₃ O ⁺ (1.equivalent) (ii) H ₂ SO ₄ / H ₂ O
	(c) $CH_3C \equiv N \rightarrow CH_3CHO$	(iii) DIBAL-H/H ₂ O
	(d) $CH_3C \equiv N \rightarrow CH_3$ CH_3 Choose the most appropria	(iv) SnCl ₂ , HCl/H ₂ O ate match :
	(1) a-ii, b-iv, c-iii, d-i	
	(2) a-iv, b-ii, c-iii, d-i	
	(3) a-ii, b-iii, c-iv, d-i	
	(4) a-iii, b-ii, c-i, d-iv	
	$27. \qquad \qquad$	OH ← CN H ↓
$(Major Product) \xleftarrow{\text{LiAlH}_4}{H_3O^+}$		$\frac{\text{LiAlH}_4}{\text{H}_3\text{O}^+}$
	Consider the given react	ion, Identify 'X' and
	' Y ' :	
	(1) X – NaOH Y – 🦯	OH NH ₂
	(2) X – HNO ₃ Y – – – – – – – – – – – – – – – – – –	OH H NH ₂
	(3) X – NaOH Y – 🗡	OH H NH ₂
	(4) X – HNO ₃ Y – – – – – – – – – – – – – – – – – –	H NH ₂

ALLEN[®]

- **28.** A chloro compound "A".
 - (i) forms aldehydes on ozonolysis followed by the hydrolysis.
 - (ii) when vaporized completely 1.53 g of A, gives 448 mL of vapour at STP.

The number of carbon atoms in a molecule of compound **A** is

29. In the following sequence of reactions, the final product D is :

 $CH_{3}-C=C-H+NaNH_{2}\rightarrow A \xrightarrow{OH} CH_{3}\rightarrow B \xrightarrow{H_{2}/Pd-C} C \xrightarrow{CrO_{3}} D$

(1)
$$H_3C-CH_2-CH_2-CH_2-CH_2-CH_2$$

- (2) CH_3 -CH=CH- CH_2 - CH_2 - CH_2 -COOH
- (3) H₃C-CH=CH-CH(OH)-CH₂-CH₂-CH₃

30. The structure of the starting compound **P** used in the reaction given below is :

node06\808A-88\Kota\UEE MAIN\Jee Main-2021_Subject Topic PDF With Solution\Chemistry\Eng\Carbony| Comp

Ε

(4) diol

32. In the following sequence of reactions, $C_3H_6 \xrightarrow{H^+/H_2O} A \xrightarrow{KIO}_{dil KOH} B + C$ The compounds B and C respectively are :

(1) CI₃COOK, HCOOH
(2) CI₃COOK, CH₃I
(3) CH₃I, HCOOK
(4) CHI₃, CH₃COOK

33. Given below are two statements :

Statement I : The nucleophilic addition of sodium hydrogen sulphite to an aldehyde or a ketone involves proton transfer to form a stable ion.

Statement II : The nucleophilic addition of hydrogen cyanide to an aldehyde or a ketone yields amine as final product.

In the light of the above statements, choose the **most appropriate** answer from the options given below :

- (1) Both Statement I and Statement II are true.
- (2) Statement I is true but Statement II is false.
- (3) Statement I is false but Statement II is true.
- (4) Both Statement I and Statement II are false.

6 Carbonyl Compounds

SOLUTION

- 1. Official Ans. by NTA (3)
- Sol. $CH_3-CH_2-CH_3 \xrightarrow{MO_2O_3} CH_3-CH_2-CH=O$

The reagent used will be MO_2O_3

2. Official Ans. by NTA (2)

3. Official Ans. by NTA (3)

Sol. Reaction of $HgSO_4/dil.H_2SO_4$ with alkyne gives addition of water as per markonikoff's rule.

(1) HC=CH
$$\xrightarrow{\text{HgSO}_4}_{\text{H}_2\text{SO}_4}$$
 CH₂-CH \Rightarrow CH₃-CH
OH
(2) \bigcirc -C=CH $\xrightarrow{\text{HgSO}_4}_{\text{H}_2\text{SO}_4}$

Hence CH₃--CH₂--CHO cannot be form.

(4)
$$CH_3-C \equiv C-CH_3 \xrightarrow{HgSO_4} CH_3-C = CH-CH_3$$

OH
 H_2SO_4
OH
 $H_3-C = CH-CH_3$
OH
 $H_3-C = CH-CH_3$

4. Official Ans. by NTA (2)

Sol.

$$\underbrace{(i) \text{ NH}_2 - \text{NH}_2}_{\text{(ii) EtO}^-\text{Na}^+/\Delta}$$

To reduce the carbonyl groups into alkane wolf - kischner reduction is used, without affecting the double bond.

5. Official Ans. by NTA (4)

Sol.
$$CH_3-CH_2-OH \xrightarrow{CrO_3 \cdot H_2SO_4} Strong oxidising agent agent CH_3-C-OH (Carboxylic acid is formed by complete oxidation)$$

6. Official Ans. by NTA (4)

Sol. Et-C=N
$$\xrightarrow{(i) H_3O^{1/\Delta}}$$
Et-C-OH $\xrightarrow{(2) SOCl_2}$ Et-C-Cl
Et-C-H $\xleftarrow{(3) Pd/BaSO_4}$
Et-C-CH $\xleftarrow{(3) Pd/BaSO_4}$

Final product of reaction is propanaldehyde.

7. Official Ans. by NTA (4)

Sol.

- 8. Official Ans. by NTA (2)
- **Sol.** 2,4-DNP test is useful for the identification of carbonyl compounds.
- 9. Official Ans. by NTA (3)

Sol.

node0&) B0BA-BBYKota VEE MAIN/Jee Main-2021_Subject Topic PDF With Solution/Chemistry/Eng/Carbonyl Compounds

ALLEN

10. Official Ans. by NTA (3) Sol.

11. Official Ans. by NTA (1)

15. Official Ans. by NTA (2)

Sol. $AgNO_3 + NaOH \rightarrow AgOH + NaNO_3$ $2AgOH \rightarrow Ag_2O + H_2O$

 $Ag_2O + 4NH_3 + H_2O \rightarrow 2Ag(NH_3)_2^+ + 2OH$

Total 2e⁻ transfer to Tollen's reagent

- 16. Official Ans. by NTA (3)
- Sol. Aldehydes give ⊕ve Tollen's Test (Silver mirror test) Tollen's test

(I) CHO

Positive

(II) $\stackrel{OH}{\longleftarrow}$ $\stackrel{Tauto}{\longleftarrow}$ $\stackrel{O}{\longleftarrow}$ Ketone

Negative

(III) $H \xrightarrow{\text{Tauto}} H$ Positive (IV) $H \xrightarrow{\text{Tauto}} H \xrightarrow{O} H$

$$\begin{array}{c} (H) & (H) &$$

Positive

Carbonyl Compounds 9

ALLEN®

26. Official Ans. by NTA (3)

Sol.

$$CH_3$$
-C-O-CH₂CH₃ $\xrightarrow{H_3O^+}$ CH₃CO₂H+CH₃CH₂OH

$$\begin{array}{c} \text{CH}_{3}\text{-}\text{C}\text{-}\text{O}\text{-}\text{CH}_{3} \xrightarrow{\text{DIBALH/H}_{2}\text{O}} \text{CH}_{3}\text{CH}_$$

$$CH_3$$
-CN $\xrightarrow{SnCl_2+HCl}$ CH₃CH=O

$$CH_{3}-C \equiv N \xrightarrow{CH_{3}MgBr(1eq)} \xrightarrow{O}$$

27. Official Ans. by NTA (3)

Sol.

28. Official Ans. by NTA (3)

Sol. 448 ml of A \Rightarrow 1.53 gm A

22400 ml of A $\Rightarrow \frac{1.53}{445} \times 22400$ gm A = 7650

 H_3 CHC-CH-Cl $\xrightarrow{O_3}$ CH₃-CH=O It has 3 carbon atoms Zn/H_2O Aldehyde

& mm is 36 + 5 + 35.5 = 76.5

29. Official Ans. by NTA (4)

Sol.
$$CH_3-C \equiv CH + NaNH_2 \rightarrow CH_3-C \equiv C^{-}Na^+ + NH_3$$

30. Official Ans. by NTA (1)

Sol.

NaOCl is used in haloform reaction as reagent.

31. Official Ans. by NTA (3)

Sol.

node06\B0BA+BB\Kota\JEE MAIN\Jee Main-2021_Subject Topic PDF With Solution\Chemistry\Eng\Carbonyl Compound

- 33. Official Ans. by NTA (2)
- Sol. Statement I : Correct

(White crystalline soluble ppt)

Statement II :

(Amine not formed)