ALLEN[®]

COORDINATION CHEMISTRY

- 1. The calculated magnetic moments (spin only value) for species $[FeCl_4]^{2-}$, $[Co(C_2O_4)_3]^{3-}$ and MnO_4^{2-} respectively are :
 - (1) 5.82, 0 and 0 BM
 - (2) 4.90, 0 and 1.73 BM
 - (3) 5.92, 4.90 and 0 BM
 - (4) 4.90, 0 and 2.83 BM
- 2. The hybridization and magnetic nature of [Mn(CN)₆]^{4–} and [Fe(CN)₆]^{3–}, respectively are:
 - (1) d^2sp^3 and diamagnetic
 - (2) sp^3d^2 and diamagnetic
 - (3) d^2sp^3 and paramagnetic
 - (4) sp^3d^2 and paramagnetic
- 3. In which of the following order the given complex ions are arranged correctly with respect to their decreasing spin only magnetic moment?
 - (i) $[FeF_6]^{3-}$ (ii) [Co(NH₃)₆]³⁺

(iii)
$$[NiCl_4]^{2-}$$
 (iv) $[Cu(NH_3)_4]^{2+}$

- (1) (i) > (iii) > (iv) > (ii)
- (2) (ii) > (iii) > (i) > (iv)
- (3) (iii) > (iv) > (ii) > (i)
- (4) (ii) > (i) > (iii) > (iv)
- 4. Given below are two statements :

Statement I :

The identification of Ni²⁺ is carried out by dimethyl glyoxime in the presence of NH₄OH.

Statement II :

The dimethyl glyoxime is a bidentate neutral ligand.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is false but Statement II is true.
- (2) Both Statement I and Statement II are false.
- (3) Statement I is true but Statement II is false.
- (4) Both Statement I and Statement II are true.
- 5. Number of bridging CO ligands in $[Mn_2(CO)_{10}]$ is
- The number of stereoisomers possible for 6. $[Co(ox)_2(Br)(NH_3)]^{2-} is \qquad .[ox = oxalate]$
- 7. The equivalents of ethylene diamine required to replace the neutral ligands from the coordination sphere of the trans-complex of CoCl₃.4NH₃ is _____. (Round off to the Nearest Integer).

Coordination Chemistry Arrange the following metal complex/compounds

(iv) Magnesium Choose the most appropriate answer from the options given below :

- (1) a-iii, b-ii, c-iv, d-i
- (2) a-iv, b-iii, c-ii, d-i (3) a-iv, b-iii, c-i, d-ii
- (4) a-iv, b-ii, c-iii, d-i

13. The correct structures of trans-[NiBr₂(PPh₃)₂] and meridonial-[Co(NH₃)₃(NO₂)₃], respectively, are

- 14. The total number of unpaired electrons present in the complex $K_3[Cr(oxalate)_3]$ is _____.
- 15. The secondary valency and the number of hydrogen bonded water molecule(s) in CuSO₄·5H₂O, respectively, are :
 - (1) 6 and 4 (2) 4 and 1
 - (3) 6 and 5 (4) 5 and 1
- 16. According to the valence bond theory the hybridization of central metal atom is dsp^2 for which one of the following compounds?
 - (1) NiCl₂.6H₂O
 - (2) K₂[Ni(CN)₄]
 - (3) [Ni(CO)₄]
 - (4) Na₂[NiCl₄]
- 17. The correct order of intensity of colors of the compounds is :
 - (1) $[Ni(CN)_4]^{2-} > [NiCl_4]^{2-} > [Ni(H_2O)_6]^{2+}$
 - (2) $[Ni(H_2O)_6]^{2+} > [NiCl_4]^{2-} > [Ni(CN)_4]^{2-}$
 - $(3) [NiCl_4]^{2-} > [Ni(H_2O)_6]^{2+} > [Ni(CN)_4]^{2-}$
 - $(4) [NiCl_4]^{2-} > [Ni(CN)_4]^{2-} > [Ni(H_2O)_6]^{2+}$

- 18. The spin-only magnetic moment value for the complex $[Co(CN)_6]^{4-}$ is _____ BM. [At. no. of Co = 27]
- Spin only magnetic moment of an octahedral complex of Fe²⁺ in the presence of a strong field ligand in BM is :
 - (1) 4.89 (2) 2.82 (3) 0 (4) 3.46
- 20. Which one of the following species doesn't have a magnetic moment of 1.73 BM, (spin only value)?
 - (1) O_2^+ (2) CuI (3) [Cu(NH₃)₄]Cl₂ (4) O_2^-
- 21. An aqueous solution of NiCl₂ was heated with excess sodium cyanide in presence of strong oxidizing agent to form [Ni(CN)₆]²⁻. The total change in number of unpaired electrons on metal centre is _____.
- 22. The total number of unpaired electrons present in $[Co(NH_3)_6]Cl_2$ and $[Co(NH_3)_6]Cl_3$ is
- **23.** Which one of the following species responds to an external magnetic field?

(1)
$$[Fe(H_2O)_6]^{3+}$$
 (2) $[Ni(CN)_4]^{2-}$
(3) $[Co(CN)_6]^{3-}$ (4) $[Ni(CO)_4]$

24. Three moles of AgCl get precipitated when one mole of an octahedral co-ordination compound with empirical formula CrCl₃.3NH₃.3H₂O reacts with excess of silver nitrate. The number of chloride ions satisfying the secondary valency of the metal ion is ______.

25. Which one of the following metal complexes is most stable?

node06\B0BA-BB\Kota\JEE MAIN\Jee Main-2021_Subjec

- (1) $[Co(en) (NH_3)_4]Cl_2$
- (2) $[Co(en)_3]Cl_2$
- (3) $[Co(en)_2(NH_3)_2]Cl_2$
- (4) $[Co(NH_3)_6]Cl_2$

ALLEN® *Coordination Chemistry* The type of hybridisation and magnetic property Which one of the following complexes is violet 26. 31. of the complex $[MnCl_6]^{3-}$, respectively, are : in colour? (1) $[Fe(CN)_6]^{4-}$ (1) $sp^{3}d^{2}$ and diamagnetic (2) $[Fe(SCN)_6]^{4-}$ (2) d^2sp^3 and diamagnetic (3) $Fe_4[Fe(CN_6)]_3 \cdot H_2O$ (3) d^2sp^3 and paramagnetic (4) $[Fe(CN)_5NOS]^{4-}$ (4) $sp^{3}d^{2}$ and paramagnetic 32. Indicate the complex/complex ion which did not 27. The number of geometrical isomers found in the show any geometrical isomerism : metal complexes [PtCl₂(NH₃)₂], (1) $[CoCl_2(en)_2]$ $(2)[Co(CN)_5(NC)]^{3-}$ $[Ni(CO)_4], [Ru(H_2O)_3Cl_3]$ and (4) $[Co(NH_3)_4Cl_2]^+$ $(3) [Co(NH_3)_3(NO_2)_3]$ $[CoCl_2(NH_3)_4]^+$ respectively, are : 33. Arrange the following Cobalt complexes in the (1) 1, 1, 1, 1 order of increasing Crystal Field Stabilization (2) 2, 1, 2, 2Energy (CFSE) value. (3) 2, 0, 2, 2Complexes : (4) 2, 1, 2, 1 $[CoF_{6}]^{3-}, [Co(H_{2}O)_{6}]^{2+}, [Co(NH_{3})_{6}]^{3+}$ 28. The number of geometrical isomers possible in and $[Co(en)_2]^{3+}$ triamminetrinitrocobalt (III) is X and in Choose the **correct** option : trioxalatochromate (III) is Y. Then the value of $(1) \mathbf{A} < \mathbf{B} < \mathbf{C} < \mathbf{D}$ (2) B < A < C < DX + Y is . (3) B < C < D < A(4) C < D < B < AGiven below are two statements : 29. 1 mol of an octahedral metal complex with 34. Statement I : $[Mn(CN)_6]^{3-}$, $[Fe(CN)_6]^{3-}$ and formula $MCl_3 \cdot 2L$ on reaction with excess of $[Co(C_2O_4)_3]^{3-}$ are d²sp³ hybridised. AgNO₃ gives 1 mol of AgCl. The denticity of Statement II : $[MnCl_6]^{3-}$ and $[FeF_6]^{3-}$ are Ligand L is . (Integer answer) paramagnetic and have 4 and 5 unpaired 35. The number of optical isomers possible for electrons, respectively. $[Cr(C_2O_4)_3]^{3-}$ is . In the light of the above statements, choose the The denticity of an organic ligand, biuret is : 36. correct answer from the options given below : (3) 3(1)2(2)4(4) 6node06\808A-88\Kota\UEE MAIN\Jee Main-2021_Subject Topic PDF With Solution\Chemistry\Eng\Coordination Chemistry (1) Statement I is correct but statement II is false 37. Spin only magnetic moment in BM of (2) Both statement I and statement II are false $[Fe(CO)_4(C_2O_4)]^+$ is : (3) Statement I is incorrect but statement II is (1) 5.92(2)0(3) 1 (4) 1.73 true The Crystal Field Stabilization Energy (CFSE) 38. (4) Both statement I and statement II are are and magnetic moment (spin-only) of an true octahedral aqua complex of a metal ion (M^{z+}) 3 moles of metal complex with formula are $-0.8 \Delta_0$ and 3.87 BM, respectively. Identify 30. (M^{Z^+}) : Co(en)₂Cl₃ gives 3 moles of silver chloride on

(4) Co^{2+} (1) V^{3+} (3) Mn^{4+} (2) Cr^{3+}

3

39. The sum of oxidation states of two silver ions in $[Ag(NH_3)_2] [Ag(CN)_2]$ complex is .

Ε

treatment with excess of silver nitrate. The secondary valency of Co in the complex is

. (Round off to the nearest integer)

 ∴ hybridisation is d²sp³ and due to presence of unpaired e⁻ complex paramagnetic in nature

3. Official Ans. by NTA (1)

Sol. Complex

(i)
$$[FeF_6]^{3-}$$
 $Fe^{3+} \Rightarrow [Ar]3d^5, F^- \text{ is WFL}$
 $Fe^{3+} 1111111$
 $3d$
 $n = 5, \ \mu = \sqrt{35} \text{ B.M.}$

(ii) $[Co(NH_3)_6]^{3+} \Rightarrow Co^{3+}[Ar]3d^6$, NH₃ is SFL $Co^{3+} \boxed{111111}$ $n = 0, \mu = 0$ (iii) $[NiCl_4]^{2-} Ni^{2+} \Rightarrow [Ar]3d^8, C\Gamma \rightarrow WFL$ $Ni^{2+} \boxed{11111111}$ $n = 2, \mu = \sqrt{8} B.M.$ (iv) $[Cu(NH_3)_4]^{2+} Cu^{2+} \Rightarrow [Ar] 3d^9, NH_3 \rightarrow SFL$ $Cu^{2+} \boxed{11111111}$ ad $n = 1, \mu = \sqrt{3} B.M.$ Thus correct order of spin only magnetic

Thus correct order of spin only magnetic moment is (i) > (iii) > (iv) > (ii)

4. Official Ans. by NTA (3)

Sol. Neutral dimethyl glyoxime does not act as ligand.

When Ni^{2+} reacts with dimethyl glyoxime in presence of NH_4OH , it produce dimethyl glyoximate then it form rozy red ppt.

$$Ni^{2+}_{(aq)} + 2dmg^{-} \rightarrow [Ni(dmg)_{2}]_{Rosyred ppt.}$$

5. Official Ans. by NTA (0)

Sol. $Mn_2(CO)_{10}$ structure is

$$\begin{bmatrix} CO & CO \\ CO & | & | & CO \\ CO & Mn - Mn & CO \\ CO & | & | & CO \\ CO & CO & CO \end{bmatrix}$$

Zero bridging CO ligands are present

- 6. Official Ans by NTA (3)
- **Sol.** Total number of stereoisomers in $[Co(ox),Br(NH_2)]^{2\Theta}$ i.e. $\approx [M(AA),ab]^{2-}$

- → cis is optically active isomers and trans is optically inactive isomer
- \rightarrow Hence total isomers is = 3

node06\B0BA-BB\Kota\UEE MAIN\Jee Main-2021_Subject Topic PDF With Solution\

- 7. Official Ans. by NTA (2)
- **Sol.** trans $CoCl_3.4NH_3$

As we know that ethylene diamine is a bidentate ligand and ammonia is a mono dentate ligand. It means overall two ethylene diamine is required to replace the all neutral ligands (four ammonia) from the coordination sphere of this complex.

8. Official Ans. by NTA (4)

Sol. (a) ${}_{58}\text{Ce} \rightarrow [\text{Xe}]4\text{f}^2 5\text{d}^0 6\text{s}^2$

In complex $Ce^{4+} \rightarrow [Xe] 4f^0 5d^0 6s^0$ there is no unpaired electron so $\mu_m = 0$

(b) $_{64}Gd^{3+} \rightarrow [Xe]4f^7 5d^0 6s^0$

contain seven unpaired electrons so,

$$\mu_{\rm m} = \sqrt{7(7+2)} = \sqrt{63}$$
 B.M.

(c) $_{63}\text{Eu}^{3+} \rightarrow [_{54}\text{Xe}]4\text{f}^{6} 5\text{d}^{0} 6\text{s}^{0}$

contain six unpaired electron

so,
$$\mu_{\rm m} = \sqrt{6(6+2)} = \sqrt{48}$$
 B.M.

Hence, order of spin only magnetic movement

b > c > a

Coordination Chemistry 5

9. Official Ans. by NTA (4)
Sol.
$$\lambda_{absorbed} = 498 \text{ nm (given)}$$

The octahedral spilitting energy

$$\Delta_0 \text{ or } E = \frac{hc}{\lambda} = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{498 \times 10^{-9}}$$

= 0.0399 × 10⁻¹⁷ J
= 3.99 × 10⁻¹⁹ J
= 4.00 × 10⁻¹⁹ J (round off)
10. Official Ans. by NTA (1)
Sol. Complex Type of Isomerism
(a) [Co(NH₃)₆] [Cr(CN)₆] Co-ordination
isomerism
(b) [Co(NH₃)₃ (NO₂)₃] Linkage isomerism
(c) [Cr(H₂O)₆]Cl₃ Solvate isomerism
(d) *cis*-[CrCl₂(ox)₂]³⁻ Optical isomerism

11. Official Ans. by NTA (6)

Sol.
$$Fe^{3+} + 3K^{+} + 3C_2O_4^{2-} \rightarrow K_3[Fe(C_2O_4)_3]$$

(A)

Secondary valency of Fe in 'A' is 6.

12. Official Ans. by NTA (2)

Sol. Chlorophyll is a coordination compound of magnesium.Vitamin B-12, cyanocobalamine is a coordination

compound of cobalt. Cisplatin is used as an anti-cancer drug and is a

coordination compound of platinum.

Grubbs catalyst is a compound of Ruthenium.

13. Official Ans. by NTA (4)

Sol. trans-[Ni $Br_2(PPh_3)_2$] is

r PPh₃

meridional - $[Co(NH_3)_3(NO_2)_3]$ is

$$\begin{array}{c|c} H_3N & NO_2 \\ \hline \\ O_2N & O_2N \\ NH_2 \end{array}$$

- 14. Official Ans. by NTA (3)
- **Sol.** $K_{3}[Cr(oxalate)_{3}]$

Chromium is in +3 oxidation state.

Number of unpaired electrons in Cr^{+3} will be 3.

Е

6 Coordination Chemistry

ALLEN®

18. Official Ans. by NTA (2)

```
Sol. [Co(CN)_6]^{4-}
x + 6 \times (-1) = -4
\boxed{x = +2}
```

 Co^{2+} : [Ar] $3d^7$

and CN^{-} is a strong field ligand which can pair electron of central atom.

It has one unpaired electron (n) in 4d-subshell. So spin only magnetic moment (μ)

$$=\sqrt{n(n+2)}$$
 B.M

where n = number of unpaired electrons.

 $\mu = \sqrt{3}$ B.M

 $\mu = 1.73 \, BM$

19. Official Ans. by NTA (3)

Sol. In presence of SFL $\Delta_0 > P$ means pairing occurs therefore

For
$$Fe^{+2} \rightarrow 3d^6$$

node06\B0BA-BB\Kata\IEE MAIN\Jee Main-2021_Subject Topic PDF With Solution\Chemistry\Eng\Coordination Chemistr

node06\B0BA-BB\Kota\EE MAIN\Jee Main-2021_Subject Topic PDF With Solution\Chemistry\Eng\Coordination Chemistr

Ε

Official Ans. by NTA (2) 20. Sol. Species must not contain single unpaired (1) $O_2^+ \rightarrow$ $\sigma_{1_{s}}^{2} < \sigma_{1_{s}}^{*2} < \sigma_{2_{s}}^{2} < \sigma_{2_{s}}^{*2} < \sigma_{2_{pz}}^{2} < \pi_{2_{px}}^{2} = \pi_{2_{py}}^{2} < \pi_{2_{px}}^{*1} = \pi_{2_{py}}^{*}$ unpaired $e^- = 1$ \therefore $\mu = 1.73$ BM (1) $\operatorname{Cu}^{+}\operatorname{I}^{-}\operatorname{Cu}^{+} \rightarrow [\operatorname{Ar}]\operatorname{3d}^{10}$: unpaired $e^{-} = 0$ $I^- \rightarrow [Xe]$: unpaired $e^- = 0$ therefore $\mu = 0$ 3. [Cu(NH₃)₄]Cl₂ $Cu \rightarrow [A] 3d^3$: unpaired = 1 : $\mu = 1.73$ BM 4. $O_2^- \rightarrow d$ $\sigma_{1s}^2 < \sigma_{1s}^{*2} < \sigma_{2s}^2 < \sigma_{2s}^{*2} < \sigma_{2nx}^2 < \pi_{2nx}^2 = \pi_{2nx}^2 < \pi_{2nx}^{*1} = \pi_{2nx}^{*}$ $(11e^{-})$ \therefore unpaired $\therefore \mu = 1.73$ BM Official Ans. by NTA (2) 21. **Sol.** $[Ni(CN)_6]^{2-}$ $Ni^{+4} \rightarrow d^6$ strong field ligand ↑↓ ∕∖ ↑↓ Pairing will be there zero unpaired electron $NiCl_2 \rightarrow Ni^{2+} \rightarrow d^8$ $\uparrow\downarrow|\uparrow\downarrow|\uparrow\downarrow|\uparrow\downarrow|\uparrow$ \rightarrow two unpaired e⁻ Change = 222. Official Ans. by NTA (1) Sol. $[Co(NH_3)_6]Cl_2$ Co^{2+} : [Ar] $3d^{7}4s^{0}4p^{0}$ For this complex Δ_0 < P.E., so pairing of electron does not take place. $sp^{3}d^{2}$ hybridisation Total 3 unpaired electrons are present. $[Co(NH_3)_6]Cl_3$ Co^{3+} : [Ar] $3d^6 4s^0 4p^0$ d²sp³ hybridisation NH₃ acts as SFL because $\Delta_0 > P.E$. So here all electrons becomes paired.

23. Official Ans. by NTA (1) 1. $[Fe(H_2O)_6]^{3+}$ Sol. Fe^{3+} : [Ar]3d⁵ Hybridisation : $sp^{3}d^{2}$ Magnetic nature : Paramagnetic (so this complex response to external magnetic field) **2.** $[Ni(CN)_4]^{2-}$ Ni^{2+} : [Ar]3d⁸ Hybridisation : dsp^2 Magnetic nature : diamagnetic **3.** $[Co(CN)_6]^{3-}$ Co^{3+} : [Ar]3d⁶ Hybridisation : d^2sp^3 Magnetic nature : diamagnetic 4. [Ni(CO)₄] Ni : [Ar] $3d^8 4s^2$ Hybridisation : sp^3 Magnetic nature : diamagnetic

24. Official Ans. by NTA (0)

Sol. Mole of AgCl precipitated is equal the mole of Cl⁻ present in ionization sphere.

 $\begin{bmatrix} Cr(H_2O)_3(NH_3)_3 \end{bmatrix} Cl_3 \rightarrow \begin{bmatrix} Cr(H_2O)_3(NH_3)_3 \end{bmatrix}^{3+} + 3Cl^{-} \\ 1 \text{ mole} \qquad 1 \text{ mole} \qquad 3 \text{ mole} \\ AgNO_3 \\ (Excess) \\ AgCl \\ (3mole) \end{bmatrix}$

Since none of Cl^- is present in the co-ordination sphere. Therefore answer is zero.

25. Official Ans. by NTA (2)

Sol. Complex [Co(en)₃]Cl₂ is most stable complex among the given complex compounds because more number of chelate rings are present in this complex as compare to others.

(1) $[Co(en) (NH_3)_4]Cl_2$	1 chelate ring
(2) $[Co(en)_3]Cl_2$	3 chelate ring
(3) $[Co(en)_2(NH_3)_2]Cl_2$	2 chelate ring
(4) $[Co(NH_3)_6]Cl_2$	0 chelate ring

26.

27.

Sol.

ALLEN®

node06\B0BA-BB\Kota\JEE MAIN\Jee Main-2021_Subject Topic PDF With Solution\Chemistry\Eng\Coordination

Ε

Official Ans. by NTA (2)

Triamminetrinitrocobalt(III) \rightarrow $[Co(NO_2)_3(NH_3)_3]$ trioxalatochromate(III) ion \rightarrow $[Cr(C_2O_4)_3]^{3-}[Co(NO_2)_3(NH_3)_3]$ $\begin{array}{c} H_{3}N \\ H_{3}N \\ H_{3}N \\ H_{3}N \\ NH_{3} \\ NO_{2} \\ NO_{2} \\ NO_{2} \\ H_{3}N \\ H_{3}N \\ NO_{2} \\ NO_{2$ Two geometrical isomers (X) $[Cr(C_2O_4)_3]^{3-1}$ Zero geometrical isomer (Y) X + Y = 2 + 0 = 2.0Official Ans. by NTA (4) Sol. $\left[Mn(CN)_{6} \right]^{3-1}$ $\left[\operatorname{Fe}(\operatorname{CN})_{6}\right]^{3-}$ $\left[\operatorname{Co}(\operatorname{C}_2\operatorname{O}_4)_3\right]^{3-1}$ $Mn^{3+}CN^{-}$ Fe^{3+}, CN^{-} $Co3+, C_2O_4^{2-}$ d^4 configuration, SFL d^5 configuration, SFL d^6 configuration, Chelating ligand \Rightarrow All will have larger splitting hence d²sp³ hybridisation $\left[MnCl_{6} \right]^{3-}$ and $\left[\operatorname{Fe} \mathbf{F}_{6}\right]^{3-}$ d^4 configuration, $Cl^ d^5$ configuration, F^- WFL <u>1</u> <u>1</u> 1____ 4 unpaired 5 unpaired electrons electrons Official Ans. by NTA (6) **Sol.** $3[Co(en)_2 Cl_2]C\ell + \underset{(excess)}{AgNO_3} \rightarrow \underset{(white ppt.)}{3AgCl}$ Secondary valency of Co = 6(C. N.)

- 31. Official Ans. by NTA (4)
- Sol. (1) $[Fe(CN)_6]^{4-} \rightarrow$ Pale yellow solution (2) $[Fe(SCN)_6]^{4-} \rightarrow$ Blood red colour (3) $Fe_4[Fe(CN_6)]_3 \cdot H_2O \rightarrow$ Prussian blue
 - (4) $[Fe(CN)_5 NOS]^{4-} \rightarrow Violet colour$
- 32. Official Ans. by NTA (2)
 Sol. (1) [CoCl₂(en)₂] show
 - (1) [CoCl₂(en)₂] show Cis-trans isomerism
 - (2) $[Co(CN)_5(NC)]^{-3}$ can't Show G.I.
 - $(3) [Co(NH_3)_3(NO_2)_3]$
 - Show fac & mer isomerism
 - (4) $[Co(NH_3)_4Cl_2]^{\oplus}$ show cis & trans isomerism

33. Official Ans. by NTA (2)

- Sol. (i) CFSE \propto charge or oxidation no. of central metal ion.
 - (ii) CFSE \propto strength of ligand
 - $en > NH_3 > H_2O > F^-$
 - ∴ order of CFSE

 $[\text{Co(en)}_{3}]^{+3} > \text{Co(NH}_{3})_{6}]^{+3} > [\text{CoF}_{6}]^{-3} > [\text{Co(H}_{2}\text{O})_{6}]^{+2}$

34. Official Ans. by NTA (2)

Sol. MCl₃.2L octahedral

 $\underset{\text{Imole}}{\text{MCl}_3.2L} \xrightarrow{\text{Ex.AgNO}_3} 1 \text{ mole of AgCl}$

Its means that one Cl⁻ ion present in ionization sphere.

 \therefore formula = [MCl₂L₂]Cl

For octahedral complex coordination no. is 6

: L act as bidentate ligand

35. Official Ans. by NTA (2)

Sol. The number of optical isomers for $[Cr(C_2O_4)_3]^{3-1}$ is two.

Sol.
$$\overset{O}{\underset{\text{NH}_2-\text{C}-\text{NH}-\text{C}-\text{NH}_2}{0}} \overset{O}{\underset{\text{M}_2}{0}} \overset{O}{\underset{\text{M}_2}{0}}$$

Biuret :- Bidentate ligand The denticity of organic ligand is 2.

37. Official Ans. by NTA (4)

Sol.
$$[Fe(CO)_4(C_2O_4)]^+$$

$$\begin{array}{c} Fe^{+3} \\ ([Ar]3d^5) \end{array}$$

One unpaired electron Spin only magnetic moment = $\sqrt{3}$ B.M. = 1.73 BM

Sol.
$$V^{3+} \Rightarrow \square_{e_g} = 2 \times 0.4 \Delta_0$$

$$\boxed{1 1}_{t_{2g}} = -0.8 \Delta_0$$

$$= 2 \text{ unpaired } e^-$$

$$\mu = 2.89 \text{ Bm}$$

$$Co^{2+} \Rightarrow \boxed{1 1}_{e_g} [2 \times 0.6 \Delta_0 - 5 \times 0.4]$$

 $= -0.8 \Delta_0$

 $\boxed{11 11 1}_{t_{2g}} 3 \text{ unpaired } e^- \Rightarrow \mu = 3.87 \text{ BM}$

hence d^7 configuration is of Co^{2+} Ans.

39. Official Ans. by NTA (2)

Sol.
$$[Ag(NH_3)_2]^+ [Ag(CN)_2]_{+1}^{\ell}$$

Coordination Chemistry 9

 Δ_0]

