

Let $\frac{\sin A}{\sin B} = \frac{\sin(A-C)}{\sin(C-B)}$, where A, B, C are
angles of a triangle AB	C. If the lengths of the
sides opposite these	angles are a, b, c
respectively, then :	
$(1) b^2 - a^2 = a^2 + c^2$	
(2) b^2 , c^2 , a^2 are in A.P.	
(3) c^2 , a^2 , b^2 are in A.P.	
(4) a^2 , b^2 , c^2 are in A.P.	
If n is the number of s	olutions of the equation
$2\cos x \left(4\sin\left(\frac{\pi}{4}+x\right)\right)$	$\sin\left(\frac{\pi}{4}-x\right)-1\right)=1,$
$x \in [0, \pi]$ and S is the su	m of all these solutions,
then the ordered pair (n,	S) is :
(1) $(3, 13\pi / 9)$	$(2)(2, 2\pi / 3)$
$(3)(2, 8\pi / 9)$	$(4)(3,5\pi/3)$
A possible value of tan	$\left(\frac{1}{4}\sin^{-1}\frac{\sqrt{63}}{8}\right)$ is:
(1) $\frac{1}{\sqrt{7}}$	(2) $2\sqrt{2} - 1$
(3) $\sqrt{7} - 1$	(4) $\frac{1}{2\sqrt{2}}$
If $e^{(\cos^2 x + \cos^4 x + \cos^6 x + \dots)}$	$o)\log_e 2$ satisfies the
equation $t^2 - 9t + 8 = 0$,	then the value of
$\frac{2\sin x}{\sin x + \sqrt{3}\cos x} \bigg(0 < x$	$\left(< \frac{\pi}{2} \right)$ is
(1) $2\sqrt{3}$	(2) $\frac{3}{2}$
(3) $\sqrt{3}$	(4) $\frac{1}{2}$
If $15\sin^4\alpha + 10\cos^4\alpha = 6$	b, for some $\alpha \in \mathbf{R}$, then
the value of $27 \sec^6 \alpha + 8$	$cosec^6\alpha$ is equal to :

(2)500

(3) 400

(4) 250

ALLEN

node06\B0BA-BB\Kota\JEE MAIN\Topicwise JEE MAIN-2021

QUADRATIC EQUATION

- 1. If α and β are the distinct roots of the equation $x^{2} + (3)^{1/4}x + 3^{1/2} = 0$, then the value of $\alpha^{96}(\alpha^{12} - 1) + \beta^{96}(\beta^{12} - 1)$ is equal to : (1) 56×3^{25} (2) 56×3^{24} (3) 52×3^{24} (4) 28×3^{25}
- 2. The number of real roots of the equation $e^{6x} - e^{4x} - 2e^{3x} - 12e^{2x} + e^{x} + 1 = 0$ is : (1) 2 (2) 4 (3) 6 (4) 1
- 3. If α , β are roots of the equation $x^2 + 5(\sqrt{2})x + 10 = 0$, $\alpha > \beta$ and $P_n = \alpha^n - \beta^n$ for each positive integer n, then the value of

$$\left(\frac{P_{17}P_{20} + 5\sqrt{2}P_{17}P_{19}}{P_{18}P_{19} + 5\sqrt{2}P_{18}^2}\right)$$
 is equal to _____.

- 4. The number of real solutions of the equation, $x^{2} - |x| - 12 = 0$ is : (1) 2 (2) 3 (3) 1 (4) 4
- 5. If a + b + c = 1, ab + bc + ca = 2 and abc = 3, then the value of $a^4 + b^4 + c^4$ is equal to ______.
- 6. Let α , β be two roots of the equation $x^{2} + (20)^{1/4}x + (5)^{1/2} = 0$. Then $\alpha^{8} + \beta^{8}$ is equal to (1) 10 (2) 100 (3) 50 (4) 160
- 7. The number of real roots of the equation $e^{4x} - e^{3x} - 4e^{2x} - e^{x} + 1 = 0$ is equal to_____.
- 8. The sum of all integral values of k (k \neq 0) for which the equation $\frac{2}{x-1} - \frac{1}{x-2} = \frac{2}{k}$ in x has no real roots, is
- 9. Let $\lambda \neq 0$ be in **R**. If α and β are the roots of the equation $x^2 x + 2\lambda = 0$, and α and γ are the roots of equation $3x^2 10x + 27\lambda = 0$, then $\frac{\beta\gamma}{\lambda}$ is equal to _____.

10. If $x^2 + 9y^2 - 4x + 3 = 0$, $x, y \in \mathbb{R}$, then x and y

respectively lie in the intervals:

(1)
$$\left[-\frac{1}{3}, \frac{1}{3}\right]$$
 and $\left[-\frac{1}{3}, \frac{1}{3}\right]$
(2) $\left[-\frac{1}{3}, \frac{1}{3}\right]$ and $[1, 3]$
(3) $[1, 3]$ and $[1, 3]$
(4) $[1, 3]$ and $\left[-\frac{1}{3}, \frac{1}{3}\right]$

11. The number of distinct real roots of the equation $3x^4 + 4x^3 - 12x^2 + 4 = 0$ is .

12. The set of all values of k > -1, for which the equation $(3x^2 + 4x + 3)^2 - (k + 1)(3x^2 + 4x + 3)(3x^2 + 4x + 2) + k(3x^2 + 4x + 2)^2 = 0$ has real roots, is :

(1)
$$\left(1, \frac{5}{2}\right]$$
 (2) [2, 3)
(3) $\left[-\frac{1}{2}, 1\right]$ (4) $\left(\frac{1}{2}, \frac{3}{2}\right] - \{1\}$

13.
$$\operatorname{cosec} 18^\circ$$
 is a root of the equation :
(1) $x^2 + 2x - 4 = 0$ (2) $4x^2 + 2x - 1 = 0$
(3) $x^2 - 2x + 4 = 0$ (4) $x^2 - 2x - 4 = 0$

14. The numbers of pairs (a, b) of real numbers, such that whenever α is a root of the equation $x^2 + ax + b = 0$, $\alpha^2 - 2$ is also a root of this equation, is :

$$(1) 6 (2) 2 (3) 4 (4) 8$$

15. The number of the real roots of the equation

$$(x + 1)^2 + |x - 5| = \frac{27}{4}$$
 is _____

16. Let p and q be two positive numbers such that p + q = 2 and $p^4 + q^4 = 272$. Then p and q are roots of the equation :

(1)
$$x^2 - 2x + 2 = 0$$
 (2) $x^2 - 2x + 8 = 0$
(3) $x^2 - 2x + 136 = 0$ (4) $x^2 - 2x + 16 = 0$

			JEE (Main) Examination-2021
17.	The integer 'k', for which the inequality	2.	Let $\{a_n\}_{n=1}^{\infty}$ be a sequence such that $a_1 = 1$, $a_2 =$
	$x^2 - 2(3k - 1)x + 8k^2 - 7 > 0$ is valid for every		and $a_{n+2} = 2a_{n+1} + a_n$ for all $n \ge 1$. Then the value
	x in R, is :		of $47\sum_{n=1}^{\infty} \frac{a_n}{2^{3n}}$ is equal to
	(1) 3 (2) 2 (3) 0 (4) 4		$\sum_{n=1}^{\infty} 2^{3n}$ is equal to
18.	If α , $\beta \in \mathbb{R}$ are such that $1 - 2i$ (here $i^2 = -1$) is a	3.	Let S_n denote the sum of first n-terms of a
	root of $z^2 + \alpha z + \beta = 0$, then $(\alpha - \beta)$ is equal to :		arithmetic progression. If $S_{10} = 530$, $S_5 = 140$, the
	$(1) -3 \qquad (2) -7 \qquad (3) 7 \qquad (4) 3$		$S_{20} - S_6$ is equal to :
19.	Let α and β be the roots of $x^2 - 6x - 2 = 0$. If		(1) 1862 (2) 1842 (3) 1852 (4) 1872
	$a_n = \alpha^n - \beta^n$ for $n \ge 1$, then the value of $\frac{a_{10} - 2a_8}{3a_0}$ is:	4.	The sum of all the elements in the set $\{n \in \{1, 2,, 100\}$
	3a ₉	_	H.C.F. of n and 2040 is 1} is equal to
	(1) 2 (2) 1 (3) 4 (4) 3	5.	Let S_n be the sum of the first n terms of a arithmetic progression If $S_n = 2S_n$ then the value
20.	. Let α and β be two real numbers such that		arithmetic progression. If $S_{3n} = 3S_{2n}$, then the value S_{2n}
	$\alpha + \beta = 1$ and $\alpha\beta = -1$. Let $p_n = (\alpha)^n + (\beta)^n$,		of $\frac{S_{4n}}{S_{2n}}$ is :
	$p_{n-1} = 11$ and $p_{n+1} = 29$ for some integer		(1) 6 (2) 4 (3) 2 (4) 8
	$n \ge 1$. Then, the value of p_n^2 is	6.	If the value
21.	The number of solutions of the equation		$\log_{(0.25)}\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\dots,\text{upto}\right)$
	$\log_4(x-1) = \log_2(x-3)$ is		$\left(1+\frac{2}{3}+\frac{6}{3^2}+\frac{10}{3^3}+\dots,\text{upto }\infty\right)^{\log_{(0.25)}\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\dots,\text{upto }\infty\right)^{\log_{(0.25)}\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^3}+\dots,\text{upto }\infty\right)^{\log_{(0.25)}\left(\frac{1}{3}+\frac{1}{3^3}+\frac{1}{3$
22.	Let $f: [-1, 1] \rightarrow R$ be defined as		is l , then l^2 is equal to
	$f(x) = ax^2 + bx + c \text{ for all } x \in [-1, 1], \text{ where } a,$	7.	If $\log_3 2$, $\log_3(2^x - 5)$, $\log_3\left(2^x - \frac{7}{2}\right)$ are in a
	b, $c \in R$ such that $f(-1) = 2$, $f'(-1) = 1$ and for		1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +
	1		arithmetic progression, then the value of x
	$x \in (-1, 1)$ the maximum value of f''(x) is $\frac{1}{2}$.	0	equal to
	If $f(x) \le \alpha$, $x \in [-1, 1]$, then the least value of α	8.	Let $A = \{n \in \mathbb{N} \mid n^2 \le n + 10,000\}, B = \{3k+1 \mid k \in \mathbb{N}\}$
	is equal to		and C = $\{2k \mid k \in \mathbb{N}\}$, then the sum of all the elements of the set $A \in (\mathbb{R} \setminus \mathbb{C})$ is equal to
		9.	elements of the set $A \cap (B - C)$ is equal to The sum of the series
23.	The value of $3 + \frac{1}{4 + \frac{1}{2}}$ is equal to	9.	2 100
	The value of $3 + \frac{1}{4 + \frac{1}{3 + \frac{1}{4 + \frac{1}{3 + \dots \infty}}}}$ is equal to		$\frac{1}{x+1} + \frac{2}{x^2+1} + \frac{2^2}{x^4+1} + \dots + \frac{2^{100}}{x^{2^{100}}+1} \text{ when } x =$
	$4 + \frac{1}{3 +\infty}$		$\frac{1}{3}$
	(1) $1.5 + \sqrt{3}$ (2) $2 + \sqrt{3}$		
			(1) $1 + \frac{2^{101}}{4^{101} - 1}$ (2) $1 + \frac{2^{100}}{4^{101} - 1}$
	(3) $3 + 2\sqrt{3}$ (4) $4 + \sqrt{3}$		
	SEQUENCE & PROGRESSION		(3) $1 - \frac{2^{100}}{4^{100} - 1}$ (4) $1 - \frac{2^{101}}{4^{101} - 1}$
۱.	If sum of the first 21 terms of the series	10.	If the sum of an infinite GP a, ar, ar ² , ar ³ , is
	$\log_{9^{1/2}} x + \log_{9^{1/3}} x + \log_{9^{1/4}} x + \dots, \text{ where } x > 0$		and the sum of the squares of its each term
			150, then the sum of ar^2 , ar^4 , ar^6 , is :
	is 504, then x is equal to (1) 242 (2) 2		(1) $\frac{5}{2}$ (2) $\frac{1}{2}$ (3) $\frac{25}{2}$ (4) $\frac{9}{2}$
	(1) 243 (2) 9 (3) 7 (4) 81	1	2 2 2 2 2

JEE (Main) Examination-2021

11. Let a_1 , a_2 ,..., a_{10} be an AP with common difference -3 and b_1 , b_2 ,..., b_{10} be a GP with common ratio 2. Let $c_k = a_k + b_k$, k = 1, 2, ..., 10.

If
$$c_2 = 12$$
 and $c_3 = 13$, then $\sum_{k=1}^{10} c_k$ is equal to _____.

- 12. If for x, y \in **R**, x > 0, y = log₁₀x + log₁₀x^{1/3} + log₁₀x^{1/9} + upto ∞ terms and $\frac{2+4+6+....+2y}{3+6+9+....+3y} = \frac{4}{\log_{10} x}$, then the
 - ordered pair (x, y) is equal to :
 - (1) $(10^6, 6)$ (2) $(10^4, 6)$ (3) $(10^2, 3)$ (4) $(10^6, 9)$
- 13. The sum of 10 terms of the series

$$\frac{3}{1^2 \times 2^2} + \frac{5}{2^2 \times 3^2} + \frac{7}{3^2 \times 4^2} + \dots \text{ is :}$$
(1) 1
(2) $\frac{120}{121}$
(3) $\frac{99}{100}$
(4) $\frac{143}{144}$

- 14. Three numbers are in an increasing geometric progression with common ratio r. If the middle number is doubled, then the new numbers are in an arithmetic progression with common difference d. If the fourth term of GP is 3 r^2 , then r^2 d is equal to :
 - (1) $7 7\sqrt{3}$ (2) $7 + \sqrt{3}$ (3) $7 - \sqrt{3}$ (4) $7 + 3\sqrt{3}$
- **15.** The mean of 10 numbers $7 \times 8, 10 \times 10, 13 \times 12, 16 \times 14, ...$ is
- 16. Let a_1, a_2, a_3, \dots be an A.P. If $\frac{a_1 + a_2 + \dots + a_{10}}{a_1 + a_2 + \dots + a_p} = \frac{100}{p^2}, p \neq 10$, then $\frac{a_{11}}{a_{10}}$ is equal to :

(1)
$$\frac{19}{21}$$
 (2) $\frac{100}{121}$ (3) $\frac{21}{19}$ (4) $\frac{121}{100}$

The number of 4-digit numbers which are neither multiple of 7 nor multiple of 3 is _____.

18. If $S = \frac{7}{5} + \frac{9}{5^2} + \frac{13}{5^3} + \frac{19}{5^4} + \dots$, then 160 S is equal to .

19. Let
$$S_n = 1 \cdot (n-1) + 2 \cdot (n-2) + 3 \cdot (n-3) + ... + (n - 1) \cdot 1$$
, $n \ge 4$. The sum

$$\sum_{n=4}^{\infty} \left(\frac{2S_n}{n!} - \frac{1}{(n-2)!} \right) \text{ is equal to :}$$
(1) $\frac{e-1}{3}$ (2) $\frac{e-2}{6}$ (3) $\frac{e}{3}$ (4) $\frac{e}{6}$

- 20. Let a_1 , a_2 ,..., a_{21} be an AP such that $\sum_{n=1}^{20} \frac{1}{a_n a_{n+1}} = \frac{4}{9}$. If the sum of this AP is 189, then $a_6 a_{16}$ is equal to : (1) 57 (2) 72 (3) 48 (4) 36 21. Let a, b, c be in arithmetic progression. Let the centroid of the triangle with vertices (a, c), (2, b)
 - and (a, b) be $\left(\frac{10}{3}, \frac{7}{3}\right)$. If α , β are the roots of the equation $ax^2 + bx + 1 = 0$, then the value of $\alpha^2 + \beta^2 \alpha\beta$ is :

(1)
$$\frac{71}{256}$$
 (2) $\frac{69}{256}$
(3) $-\frac{69}{256}$ (4) $-\frac{71}{256}$

256 256
22. The sum of first four terms of a geometric progression (G.P.) is
$$\frac{65}{12}$$
 and the sum of their respective reciprocals is $\frac{65}{12}$. If the product of

first three terms of the G.P. is 1, and the third term is α , then 2α is

23. If $0 < \theta, \phi < \frac{\pi}{2}, x = \sum_{n=0}^{\infty} \cos^{2n} \theta, y = \sum_{n=0}^{\infty} \sin^{2n} \phi$ and $z = \sum_{n=0}^{\infty} \cos^{2n} \theta \cdot \sin^{2n} \phi$ then : (1) xy - z = (x + y) z (2) xy + yz + zx = z(3) xyz = 4 (4) xy + z = (x + y)z node06\B0BA-BB\Kota\LEE MAIN\Topicwise JEE MAIN-202

ALLEN

- 24. Let A_1 , A_2 , A_3 , be squares such that for each $n \ge 1$, the length of the side of A_n equals the length of diagonal of A_{n+1} . If the length of A_1 is 12 cm, then the smallest value of n for which area of A_n is less than one, is _____.
- 25. The sum of the series $\sum_{n=1}^{\infty} \frac{n^2 + 6n + 10}{(2n+1)!}$ is equal to :
 - (1) $\frac{41}{8}e + \frac{19}{8}e^{-1} 10$ (2) $\frac{41}{8}e - \frac{19}{8}e^{-1} - 10$ (3) $\frac{41}{8}e + \frac{19}{8}e^{-1} + 10$ (4) $-\frac{41}{8}e + \frac{19}{8}e^{-1} - 10$
- 26. If the arithmetic mean and geometric mean of the pth and qth terms of the sequence -16, 8, -4, 2, ... satisfy the equation $4x^2 9x + 5 = 0$, then p + q is equal to _____.
- 27. In a increasing geometric series, the sum of the second and the sixth term is $\frac{25}{2}$ and the product of the third and fifth term is 25. Then, the sum of 4th, 6th and 8th terms is equal to (1) 30(2) 26(3)35(4) 32infinite 28. The sum of the series $1 + \frac{2}{3} + \frac{7}{3^2} + \frac{12}{3^3} + \frac{17}{3^4} + \frac{22}{3^5} + \dots$ is equal to (1) $\frac{13}{4}$ (2) $\frac{9}{4}$ (3) $\frac{15}{4}$ (4) $\frac{11}{4}$ Let $\frac{1}{16}$, a and b be in G.P. and $\frac{1}{2}$, $\frac{1}{5}$, 6 be in 29. A.P., where a, b > 0. Then 72(a + b) is equal to 30. Let $S_n(x) = \log_{a^{1/2}} x + \log_{a^{1/3}} x + \log_{a^{1/6}} x$ $+\log_{2^{1/11}} x + \log_{2^{1/18}} x + \log_{2^{1/27}} x + \dots$ up to n-terms, where a > 1. If $S_{24}(x) = 1093$ and $S_{12}(2x) = 265$, then value of a is equal to _____.

31. Consider an arithmetic series and a geometric series having four initial terms from the set {11, 8, 21, 16, 26, 32, 4}. If the last terms of these series are the maximum possible four digit numbers, then the number of common terms in these two series is equal to _____.

IEE (Main) Examination-2021

5

- 32. If 1, $\log_{10}(4^{x} 2)$ and $\log_{10}\left(4^{x} + \frac{18}{5}\right)$ are in arithmetic progression for a real number x, then the value of the determinant $\begin{vmatrix} 2\left(x-\frac{1}{2}\right) & x-1 & x^{2} \\ 1 & 0 & x \\ x & 1 & 0 \end{vmatrix}$ is equal to :
- 33. If α, β are natural numbers such that 100^α 199β = (100)(100) + (99)(101) + (98)(102) +....+ (1)(199), then the slope of the line passing through (α,β) and origin is :

34. $\frac{1}{3^2 - 1} + \frac{1}{5^2 - 1} + \frac{1}{7^2 - 1} + \dots + \frac{1}{(201)^2 - 1}$ is equal to

(1)
$$\frac{101}{404}$$
 (2) $\frac{25}{101}$ (3) $\frac{101}{408}$ (4) $\frac{99}{400}$

35. Let S_1 be the sum of first 2n terms of an arithmetic progression. Let S_2 be the sum of first 4n terms of the same arithmetic progression. If $(S_2 - S_1)$ is 1000, then the sum of the first 6n terms of the arithmetic progression is equal to:

(1) 1000 (2) 7000 (3) 5000 (4) 3000

$$\left[\frac{x+1}{x^{2/3}-x^{1/3}+1}-\frac{x-1}{x-x^{1/2}}\right]^{10}, x \neq 1, \text{ is equal}$$
to _____.

node06\B0BA-BB\Kota\JEE MAIN\Topicwise JEE MAIN-2021

Е

TRIGONOMETRIC EQUATION

- 1. The number of solutions of $\sin^7 x + \cos^7 x = 1$, $x \in [0, 4\pi]$ is equal to (1) 11 (2) 7 (3) 5 (4) 9
- 2. The sum of all values of x in $[0, 2\pi]$, for which $\sin x + \sin 2x + \sin 3x + \sin 4x = 0$, is equal to : (1) 8π (2) 11 π (3) 12 π (4) 9 π
- 3. If $\sin \theta + \cos \theta = \frac{1}{2}$, then $16(\sin(2\theta) + \cos(4\theta) + \sin(6\theta))$ is equal to:

- 4. The sum of solutions of the equation $\frac{\cos x}{1+\sin x} = |\tan 2x|, \ x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) - \left\{\frac{\pi}{4}, -\frac{\pi}{4}\right\} \text{ is }:$ (1) $-\frac{11\pi}{30}$ (2) $\frac{\pi}{10}$ (3) $-\frac{7\pi}{30}$ (4) $-\frac{\pi}{15}$
- 5. Let S be the sum of all solutions (in radians) of the equation $\sin^4\theta + \cos^4\theta \sin\theta\cos\theta = 0$ in $[0, 4\pi]$. Then $\frac{8S}{2}$ is equal to _____.
- 6. The number of solutions of the equation $32^{\tan^2 x} + 32^{\sec^2 x} = 81, \ 0 \le x \le \frac{\pi}{4}$ is : (1) 3 (2) 1 (3) 0 (4) 2 The solution of the solution of
- 7. All possible values of $\theta \in [0, 2\pi]$ for which $\sin 2\theta + \tan 2\theta > 0$ lie in :

$$(1) \left(0, \frac{\pi}{2}\right) \cup \left(\pi, \frac{3\pi}{2}\right)$$

$$(2) \left(0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{4}\right) \cup \left(\pi, \frac{7\pi}{6}\right)$$

$$(3) \left(0, \frac{\pi}{4}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{4}\right) \cup \left(\frac{3\pi}{2}, \frac{11\pi}{6}\right)$$

$$(4) \left(0, \frac{\pi}{4}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{4}\right) \cup \left(\pi, \frac{5\pi}{4}\right) \cup \left(\frac{3\pi}{2}, \frac{7\pi}{4}\right)$$

8. If 0 < x, $y < \pi$ and $\cos x + \cos y - \cos(x + y) = \frac{3}{2}$, then simply accurate accurates in

then sinx + cosy is equal to :

(1)
$$\frac{1}{2}$$
 (2) $\frac{1+\sqrt{3}}{2}$ (3) $\frac{\sqrt{3}}{2}$ (4) $\frac{1-\sqrt{3}}{2}$

9. The number of integral values of 'k' for which the equation $3\sin x + 4 \cos x = k + 1$ has a solution, $k \in R$ is

- 10. If $\sqrt{3}(\cos^2 x) = (\sqrt{3} 1)\cos x + 1$, the number of solutions of the given equation when $x \in \left[0, \frac{\pi}{2}\right]$ is 11. If for $x \in \left(0, \frac{\pi}{2}\right)$, $\log_{10}\sin x + \log_{10}\cos x = -1$ and $\log_{10}(\sin x + \cos x) = \frac{1}{2}(\log_{10}n - 1)$, n > 0, then the value of n is equal to :
 - (1) 20 (2) 12 (3) 9 (4) 16
- **12.** The number of roots of the equation,

$$(81)^{\sin^2 x} + (81)^{\cos^2 x} = 30$$

in the interval $[0, \pi]$ is equal to :

13. The number of solutions of the equation $|\cot x| = \cot x + \frac{1}{\sin x}$ in the interval [0, 2 π] is

SOLUTION OF TRIANGLE

1. If in a triangle ABC, AB = 5 units, $\angle B = \cos^{-1}\left(\frac{3}{5}\right)$ and radius of circumcircle of $\triangle ABC$ is 5 units, then the area (in sq. units) of $\triangle ABC$ is :

(1)
$$10 + 6\sqrt{2}$$

(3) $6 + 8\sqrt{3}$
(2) $8 + 2\sqrt{2}$
(4) $4 + 2\sqrt{3}$

2. Let in a right angled triangle, the smallest angle be θ . If a triangle formed by taking the reciprocal of its sides is also a right angled triangle, then sin θ is equal to :

(1)
$$\frac{\sqrt{5}+1}{4}$$
 (2) $\frac{\sqrt{5}-1}{2}$
(3) $\frac{\sqrt{2}-1}{2}$ (4) $\frac{\sqrt{5}-1}{4}$

3.

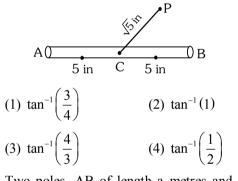
(3)
$$\frac{\sqrt{2}-1}{2}$$
 (4) $\frac{\sqrt{5}-1}{4}$
In \triangle ABC, the lengths of sides AC and AB are 12 cm and 5 cm, respectively. If the area of \triangle ABC is 30 cm² and R and r are respectively the radii of circumcircle and incircle of \triangle ABC, then the value of 2R + r (in cm) is equal to _____.

ALLEN

HEIGHT & DISTANCE

5.

6.


7.

8.

 A spherical gas balloon of radius 16 meter subtends an angle 60° at the eye of the observer A while the angle of elevation of its center from the eye of A is 75°. Then the height (in meter) of the top most point of the balloon from the level of the observer's eye is :

(1)
$$8(2+2\sqrt{3}+\sqrt{2})$$
 (2) $8(\sqrt{6}+\sqrt{2}+2)$
(3) $8(\sqrt{2}+2+\sqrt{3})$ (4) $8(\sqrt{6}-\sqrt{2}+2)$

2. A 10 inches long pencil AB with mid point C and a small eraser P are placed on the horizontal top of a table such that $PC = \sqrt{5}$ inches and $\angle PCB = \tan^{-1}(2)$. The acute angle through which the pencil must be rotated about C so that the perpendicular distance between eraser and pencil becomes exactly 1 inch is :

Two poles, AB of length a metres and CD of length a + b (b ≠ a) metres are erected at the same horizontal level with bases at B and D. If

BD = x and
$$\tan |\underline{ACB}| = \frac{1}{2}$$
, then:
(1) $x^2 + 2(a + 2b)x - b(a + b) = 0$
(2) $x^2 + 2(a + 2b)x + a(a + b) = 0$
(3) $x^2 - 2ax + b(a + b) = 0$
(4) $x^2 - 2ax + a(a + b) = 0$

4. A dia depression of the WAIN/Topicovise JE MAIN/Topicovise JE MAIN/

(4) x = 2ax + a(a + b) = 0A vertical pole fixed to the horizontal ground is divided in the ratio 3 : 7 by a mark on it with lower part shorter than the upper part. If the two parts subtend equal angles at a point on the ground 18 m away from the base of the pole, then the height of the pole (in meters) is :

(1) $12\sqrt{15}$ (2) $12\sqrt{10}$ (3) $8\sqrt{10}$ (4) $6\sqrt{10}$

JEE (Main) Examination-2021

- A man is observing, from the top of a tower, a boat speeding towards the tower from a certain point A, with uniform speed. At that point, angle of depression of the boat with the man's eye is 30° (Ignore man's height). After sailing for 20 seconds, towards the base of the tower (which is at the level of water), the boat has reached a point B, where the angle of depression is 45°. Then the time taken (in seconds) by the boat from B to reach the base of the tower is:
 - (1) 10 (2) $10\sqrt{3}$

(3)
$$10(\sqrt{3}+1)$$
 (4) $10(\sqrt{3}-1)$

The angle of elevation of a jet plane from a point A on the ground is 60° . After a flight of 20 seconds at the speed of 432 km/hour, the angle of elevation changes to 30° . If the jet plane is flying at a constant height, then its height is :

(1) 1800 $\sqrt{3}$ m	(2) $3600\sqrt{3}$ m
(3) 2400 $\sqrt{3}$ m	(4) 1200 $\sqrt{3}$ m

Two vertical poles are 150 m apart and the height of one is three times that of the other. If from the middle point of the line joining their feet, an observer finds the angles of elevation of their tops to be complementary, then the height of the shorter pole (in meters) is :

(1)
$$20\sqrt{3}$$
 (2) $25\sqrt{3}$
(3) 30 (4) 25

A pole stands vertically inside a triangular parkABC. Let the angle of elevation of the top of

the pole from each corner of the park be $\frac{\pi}{3}$. If the radius of the circumcircle to $\triangle ABC$ is 2, then the height of the pole is equal to :

(1)
$$\frac{2\sqrt{3}}{3}$$
 (2) $2\sqrt{3}$ (3) $\sqrt{3}$ (4) $\frac{1}{\sqrt{3}}$

T node(

DETERMINANT

1.	Let a, b, c, d be in arithmetic progression with common		
	$\begin{vmatrix} x+a-c & x+b & x+a \end{vmatrix}$		
	difference λ . If $ x-1 + x-1 + x-1 = 2$,		
	difference λ . If $\begin{vmatrix} x - 1 & x + c & x + b \\ x - b + d & x + d & x + c \end{vmatrix} = 2$,		
	then value of λ^2 is equal to		
2.	The value of $k \in \mathbf{R}$, for which the following		
	system of linear equations		
	3x - y + 4z = 3,		
	x + 2y - 3z = -2,		
	6x + 5y + 8z = -3,		
	has infinitely many solutions, is :		
	(1) 3 (2) -5 (3) 5 (4) -3		
3.	The values of λ and μ such that the system of		
	equations $x + y + z = 6$, $3x + 5y + 5z = 26$,		
	$x + 2y + \lambda z = \mu$ has no solution, are :		
	(1) $\lambda = 3, \mu = 5$ (2) $\lambda = 3, \mu \neq 10$		
	(3) $\lambda \neq 2, \mu = 10$ (4) $\lambda = 2, \mu \neq 10$		
4.	The values of a and b, for which the system of		
	equations		
	2x + 3y + 6z = 8		
	x + 2y + az = 5		
	3x + 5y + 9z = b		
	has no solution, are :		
	(1) $a = 3, b \neq 13$ (2) $a \neq 3, b \neq 13$		
	(3) $a \neq 3, b = 3$ (4) $a = 3, b = 13$		
5.	The number of distinct real roots of		
	$ \sin x \cos x \cos x $		
	$\cos x \sin x \cos x = 0$ in the interval		
	$\begin{vmatrix} \sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x \end{vmatrix} = 0 \text{ in the interval}$		
	$-\frac{\pi}{4} \le x \le \frac{\pi}{4}$ is:		
	(1) 4 (2) 1 (3) 2 (4) 3		
6.	Let		
	$f(x) = 2 + \sin^2 x$ $\cos^2 x$ $\cos^2 x$ $\cos^2 x$ $x \in [0, \pi]$		
	$f(x) = \begin{vmatrix} \sin^2 x & -2 + \cos^2 x & \cos 2x \\ 2 + \sin^2 x & \cos^2 x & \cos 2x \\ \sin^2 x & \cos^2 x & 1 + \cos 2x \end{vmatrix}, x \in [0, \pi]$		
	Then the maximum value of $f(x)$ is equal		
	to		

7.	Let $\theta \in \left(0, \frac{\pi}{2}\right)$. If the system of lines	ar equations
	$(1 + \cos^2\theta)x + \sin^2\theta y + 4\sin^2\theta z =$	= 0
	$\cos^2\theta x + (1 + \sin^2\theta) y + 4 \sin^2\theta z$	
	$\cos^2\theta x + \sin^2\theta y + (1 + 4\sin^2\theta) z$	
	has a non-trivial solution, then the va	
	(1) $\frac{4\pi}{9}$ (2) $\frac{7\pi}{18}$ (3) $\frac{\pi}{18}$	(4) $\frac{5\pi}{18}$
8.	If the system of linear equations	
	2x + y - z = 3	
	$x - y - z = \alpha$	
	$3x + 3y + \beta z = 3$	
	has infinitely many solution, then α	$+\beta - \alpha\beta$ is
	equal to	P - P -
9.	Let $A = \begin{pmatrix} [x+1] & [x+2] & [x+3] \\ [x] & [x+3] & [x+3] \\ [x] & [x+2] & [x+4] \end{pmatrix}$	where [t]
	$\begin{bmatrix} x \end{bmatrix} \begin{bmatrix} x+2 \end{bmatrix} \begin{bmatrix} x+4 \end{bmatrix}$	
	denotes the greatest integer less than	n or equal to
	t. If $det(A) = 192$, then the set of va	
	the interval:	
	(1) [68, 69) (2) [62, 63)
	(3) [65, 66) (4) [60, 61)
10.	Let $[\lambda]$ be the greatest integer less the	han or equal
	to $\lambda.$ The set of all values of λ fo	r which the
	system of linear equations x + y	y + z = 4,
	$3x + 2y + 5z = 3$, $9x + 4y + (28 + [\lambda])$	$])z = [\lambda]$ has
	a solution is:	
	(1) R (2) $(-\infty, -9)$	$(-9,\infty) \cup (-9,\infty)$
	$(3) [-9, -8) \qquad (4) (-\infty, -9)$	9)∪[−8,∞)
11.	If the following system of linear equ	ations
	2x + y + z = 5	
	x - y + z = 3	
	$\mathbf{x} + \mathbf{y} + \mathbf{a}\mathbf{z} = \mathbf{b}$	
	has no solution, then :	
	(1) $a = -\frac{1}{3}, b \neq \frac{7}{3}$ (2) $a \neq \frac{1}{3}$	$, b = \frac{7}{3}$
	(3) $a \neq -\frac{1}{3}$, $b = \frac{7}{3}$ (4) $a = \frac{1}{3}$	$b = \frac{7}{3}$ $b \neq \frac{7}{3}$

node06\B0BA-BB\Kota\LEE MAIN\Topicwise JEE MAIN-2021

ALLEN

12. If $a_r = \cos \frac{2r\pi}{9} + i \sin \frac{2r\pi}{9}$, r = 1, 2, 3, ...,16. If the system of equations kx + v + 2z = 1 $i = \sqrt{-1}$, then the determinant $\begin{vmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_0 & a_6 \end{vmatrix}$ is 3x - y - 2z = 2-2x - 2y - 4z = 3has infinitely many solutions, then k is equal equal to : to (1) $a_2 a_6 - a_4 a_8$ (2) a_{9} 17. The following system of linear equations (3) $a_1a_9 - a_3a_7$ (4) a_{5} 2x + 3y + 2z = 93x + 2y + 2z = 913. If $\alpha + \beta + \gamma = 2\pi$, then the system of equations x - y + 4z = 8 $x + (\cos \gamma)y + (\cos \beta)z = 0$ (1) has a solution (α, β, γ) $(\cos \gamma)x + y + (\cos \alpha)z = 0$ satisfying $(\cos \beta)x + (\cos \alpha)y + z = 0$ $\alpha + \beta^2 + \gamma^3 = 12$ has : (2) has infinitely many solutions (1) no solution (3) does not have any solution (2) infinitely many solution (4) has a unique solution (3) exactly two solutions 18. Consider the following system of equations : (4) a unique solution x + 2y - 3z = a14. Consider the system of linear equations 2x + 6y - 11z = b-x + y + 2z = 0x - 2y + 7z = c, 3x - ay + 5z = 1where a, b and c are real constants. Then the 2x - 2y - az = 7system of equations : Let S_1 be the set of all $a \in \mathbf{R}$ for which the (1) has a unique solution when 5a = 2b + csystem is inconsistent and S_2 be the set of all (2) has infinite number of solutions $a \in \mathbf{R}$ for which the system has infinitely many when 5a = 2b + csolutions. If $n(S_1)$ and $n(S_2)$ denote the number (3) has no solution for all a, b and c of elements in S_1 and S_2 respectively, then (4) has a unique solution for all a, b and c (1) $n(S_1) = 2$, $n(S_2) = 2$ For the system of linear equations : 19. (2) $n(S_1) = 1$, $n(S_2) = 0$ x - 2y = 1, x - y + kz = -2, ky + 4z = 6, $k \in \mathbb{R}$, (3) $n(S_1) = 2$, $n(S_2) = 0$ consider the following statements : (4) $n(S_1) = 0$, $n(S_2) = 2$ (A) The system has unique solution if $k \neq 2$, 15. The system of linear equations $k \neq -2$. 3x - 2y - kz = 10(B) The system has unique solution if k = -2. 2x - 4y - 2z = 6(C) The system has unique solution if k = 2. x + 2y - z = 5m(D) The system has no-solution if k = 2. is inconsistent if : (E) The system has infinite number of solutions (1) $k = 3, m = \frac{4}{5}$ (2) $k \neq 3, m \in \mathbb{R}$ if $k \neq -2$. Which of the following statements are correct? (3) $k \neq 3, m \neq \frac{4}{5}$ (4) $k = 3, m \neq \frac{4}{5}$ (1) (C) and (D) only (2) (B) and (E) only (4) (A) and (D) only (3) (A) and (E) only

20. The value of
$$\begin{vmatrix} (a+1)(a+2) & a+2 & 1 \\ (a+2)(a+3) & a+3 & 1 \\ (a+3)(a+4) & a+4 & 1 \end{vmatrix}$$
 is
(1) $(a+2)(a+3)(a+4)$
(2) -2
(3) $(a+1)(a+2)(a+3)$
(4) 0
21. The maximum value of
 $f(x) = \begin{vmatrix} \sin^2 x & 1+\cos^2 x & \cos 2x \\ 1+\sin^2 x & \cos^2 x & \sin 2x \end{vmatrix}$, $x \in \mathbb{R}$ is:
(1) $\sqrt{7}$ (2) $\frac{3}{4}$ (3) $\sqrt{5}$ (4) 5
22. The system of equations $kx + y + z = 1$

- 1. x + ky + z = k and $x + y + zk = k^2$ has no solution if k is equal to :
 - (1)0(2)1(3) - 1(4) - 2
- 23. The solutions of the equation $1 + \sin^2 x$ $\sin^2 x$ $\sin^2 x$ $\cos^2 x$ 1+ $\cos^2 x$ $\cos^2 x$ $= 0, (0 < x < \pi),$ $4\sin 2x$ $1+4\sin 2x$ $4\sin 2x$

are

- (1) $\frac{\pi}{12}, \frac{\pi}{6}$ (2) $\frac{\pi}{6}, \frac{5\pi}{6}$ (3) $\frac{5\pi}{12}, \frac{7\pi}{12}$ (4) $\frac{7\pi}{12}, \frac{11\pi}{12}$
- Let α, β, γ be the real roots of the equation, 24. $x^{3} + ax^{2} + bx + c = 0$, $(a,b,c \in R \text{ and } a,b \neq 0)$. If the system of equations (in, u,v,w) given by $\alpha u + \beta v + \gamma w = 0, \ \beta u + \gamma v + \alpha w = 0;$ $\gamma u + \alpha v + \beta w = 0$ has non-trivial solution, then the value of $\frac{a^2}{b}$ is (1)5(2) 3
 - (3)1(4) 0

25. Let the system of linear equations $4x + \lambda y + 2z = 0$ 2x - y + z = 0 $\mu x + 2y + 3z = 0, \lambda, \mu \in \mathbb{R}.$ has a non-trivial solution. Then which of the following is true? (1) $\mu = 6, \lambda \in \mathbb{R}$ (2) $\lambda = 2, \mu \in \mathbb{R}$ (3) $\lambda = 3, \mu \in \mathbb{R}$ (4) $\mu = -6, \lambda \in \mathbb{R}$ STRAIGHT LINE Consider a triangle having vertices A(-2, 3), B(1, 9) and C(3, 8). If a line L passing through the circum-centre of triangle ABC, bisects line BC, and intersects y-axis at point $\left(0,\frac{\alpha}{2}\right)$, then the value of real number α is Let the equation of the pair of lines, y = px and y = qx, can be written as (y - px) (y - qx) = 0. Then the equation of the pair of the angle bisectors of the lines $x^2 - 4xy - 5y^2 = 0$ is : (1) $x^2 - 3xy + y^2 = 0$ (2) $x^2 + 4xy - y^2 = 0$ (3) $x^2 + 3xy - y^2 = 0$ (4) $x^2 - 3xy - y^2 = 0$ A ray of light through (2,1) is reflected at a point P on the y-axis and then passes through the point (5, 3). If this reflected ray is the directrix of an ellipse with eccentricity $\frac{1}{2}$ and the distance of the nearer focus from this directrix is $\frac{8}{\sqrt{53}}$, then the equation of the other directrix can be : (1) 11x + 7y + 8 = 0 or 11x + 7y - 15 = 0(2) 11x - 7y - 8 = 0 or 11x + 7y + 15 = 0(3) 2x - 7y + 29 = 0 or 2x - 7y - 7 = 0(4) 2x - 7y - 39 = 0 or 2x - 7y - 7 = 0

1.

2.

3.

Ε

JEE (Main) Examination-2021 11

- 4. The point P (a,b) undergoes the following three transformations successively :
 - (a) reflection about the line y = x.
 - (b) translation through 2 units along the positive direction of x-axis.
 - (c) rotation through angle $\frac{\pi}{4}$ about the origin in

the anti-clockwise direction.

If the co-ordinates of the final position of the

point P are
$$\left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$$
, then the value of 2a + b

is equal to :

(1) 13 (2) 9 (3) 5 (4) 7

5. Two sides of a parallelogram are along the lines 4x + 5y = 0 and 7x + 2y = 0. If the equation of one of the diagonals of the parallelogram is 11x + 7y = 9, then other diagonal passes through the point :

(1) (1,2) (2) (2,2) (3) (2,1) (4) (1,3)

6. Let ABC be a triangle with A(-3, 1) and $\angle ACB = \theta$,

 $0 < \theta < \frac{\pi}{2}$. If the equation of the median through B is 2x + y - 3 = 0 and the equation of angle bisector of

C is 7x - 4y - 1 = 0, then tan θ is equal to :

(1)
$$\frac{1}{2}$$
 (2) $\frac{3}{4}$ (3) $\frac{4}{3}$ (4) 2

- 7. Let A be a fixed point (0, 6) and B be a moving point (2t, 0). Let M be the mid-point of AB and the perpendicular bisector of AB meets the y-axis at C. The locus of the mid-point P of MC is :
 - (1) $3x^2 2y 6 = 0$ (2) $3x^2 + 2y - 6 = 0$ (3) $2x^2 + 3y - 9 = 0$ (4) $2x^2 - 3y + 9 = 0$
- 8. Let A(a, 0), B(b, 2b +1) and C(0, b), $b \neq 0$, $|b| \neq 1$, be points such that the area of triangle ABC is 1 sq. unit, then the sum of all possible values of a is :

(1)
$$\frac{-2b}{b+1}$$
 (2) $\frac{2b}{b+1}$ (3) $\frac{2b^2}{b+1}$ (4) $\frac{-2b^2}{b+1}$

If p and q are the lengths of the perpendiculars from the origin on the lines,

9.

x cosec $\alpha - y$ sec $\alpha = k \cot 2\alpha$ and x sin $\alpha + y \cos \alpha = k \sin 2\alpha$ respectively, then k^2 is equal to : (1) $4p^2 + q^2$ (2) $2p^2 + q^2$ (3) $p^2 + 2q^2$ (4) $p^2 + 4q^2$

10. Let A be the set of all points (α, β) such that the area of triangle formed by the points (5, 6), (3, 2) and (α, β) is 12 square units. Then the least possible length of a line segment joining the origin to a point in A, is :

(1)
$$\frac{4}{\sqrt{5}}$$
 (2) $\frac{16}{\sqrt{5}}$ (3) $\frac{8}{\sqrt{5}}$ (4) $\frac{12}{\sqrt{5}}$

- 11. Let the points of intersections of the lines x y + 1 = 0, x - 2y + 3 = 0 and 2x - 5y + 11 = 0 are the mid points of the sides of a triangle ABC. Then the area of the triangle ABC is _____.
- 12. For which of the following curves, the line $x + \sqrt{3}y = 2\sqrt{3}$ is the tangent at the point $\left(\frac{3\sqrt{3}}{2}, \frac{1}{2}\right)$? (1) $x^2 + y^2 = 7$ (2) $y^2 = \frac{1}{6\sqrt{3}}x$

(3)
$$2x^2 - 18y^2 = 9$$
 (4) $x^2 + 9y^2 = 9$

- 13. Let a point P be such that its distance from the point (5, 0) is thrice the distance of P from the point (-5, 0). If the locus of the point P is a circle of radius r, then $4r^2$ is equal to
- **14.** A man is walking on a straight line. The arithmetic mean of the reciprocals of the intercepts of this line on the coordinate axes is

 $\frac{1}{4}$. Three stones A, B and C are placed at the

points (1,1), (2, 2) and (4, 4) respectively. Then which of these stones is / are on the path of the man?

(1) A only	(2) C only
(3) All the three	(4) B only

15. The image of the point (3, 5) in the line x - y + 1 = 0, lies on : (1) $(x - 2)^2 + (y - 2)^2 = 12$ (2) $(x - 4)^2 + (y + 2)^2 = 16$ (3) $(x - 4)^2 + (y - 4)^2 = 8$ (4) $(x - 2)^2 + (y - 4)^2 = 4$

- 16. The intersection of three lines x y = 0, x + 2y = 3 and 2x + y = 6 is a
 - (1) Right angled triangle
 - (2) Equilateral triangle
 - (3) Isosceles triangle
 - (4) None of the above
- 17. Let A(-1, 1), B(3, 4) and C(2, 0) be given three points. A line y = mx, m > 0, intersects lines AC and BC at point P and Q respectively. Let A₁ and A₂ be the areas of ΔABC and ΔPQC respectively, such that A₁ = 3A₂, then the value of m is equal to :

(1)
$$\frac{4}{15}$$
 (2) 1 (3) 2 (4) 3

18. Let $tan\alpha$, $tan\beta$ and $tan\gamma$;

 $\alpha, \beta, \gamma \neq \frac{(2n-1)\pi}{2}, n \in N$ be the slopes of three line segments OA, OB and OC, respectively, where O is origin. If circumcentre of $\triangle ABC$ coincides with origin and its orthocentre lies on y-axis, then the value of

$$\left(\frac{\cos 3\alpha + \cos 3\beta + \cos 3\gamma}{\cos \alpha \cos \beta \cos \gamma}\right)^2 \text{ is equal to } :$$

In a triangle PQR, the co-ordinates of the points P and Q are (-2, 4) and (4, -2) respectively. If the equation of the perpendicular bisector of PR is 2x - y + 2 = 0, then the centre of the circumcircle of the ΔPQR is :

(4)(1,4)

- (1) (-1, 0) (2) (-2, -2)
- (3)(0,2)

- 20. The maximum value of z in the following equation $z = 6xy + y^2$, where $3x + 4y \le 100$ and $4x + 3y \le 75$ for $x \ge 0$ and $y \ge 0$ is ______.
- 21. The number of integral values of m so that the abscissa of point of intersection of lines 3x + 4y = 9 and y = mx + 1 is also an integer, is : (1) 1 (2) 2 (3) 3 (4) 0
- 22. The equation of one of the straight lines which passes through the point (1,3) and makes an angles $\tan^{-1}(\sqrt{2})$ with the straight line $y+1=3\sqrt{2}$, x is (1) $4\sqrt{2}x+5y-(15+4\sqrt{2})=0$ (2) $5\sqrt{2}x+4y-(15+4\sqrt{2})=0$
 - (3) $4\sqrt{2}x + 5y 4\sqrt{2} = 0$ (4) $4\sqrt{2}x - 5y - (5 + 4\sqrt{2}) = 0$
- 23. Let the centroid of an equilateral triangle ABC be at the origin. Let one of the sides of the equilateral triangle be along the straight line x + y = 3. If R and r be the radius of circumcircle and incircle respectively of \triangle ABC, then (R + r) is equal to :

(1)
$$\frac{9}{\sqrt{2}}$$
 (2) $7\sqrt{2}$ (3) $2\sqrt{2}$ (4) $3\sqrt{2}$

CIRCLE

1. Let r_1 and r_2 be the radii of the largest and smallest circles, respectively, which pass through the point (- 4,1) and having their centres on the circumference of the circle $x^2 + y^2 + 2x + 4y - 4 = 0$. If $\frac{r_1}{r_2} = a + b\sqrt{2}$, then a + b is equal to : (1) 3 (2) 11 (3) 5 (4) 7

JEE (Main) Examination-2021 13

Consider a circle C which touches the y-axis at

(0, 6) and cuts off an intercept $6\sqrt{5}$ on the x-

Let the circle S : $36x^2 + 36y^2 - 108x + 120y + C = 0$ be such that it neither intersects nor touches the co-ordinate axes. If the point of intersection of the lines, x - 2y = 4 and 2x - y = 5 lies inside the circle S, then :

6.

ALLEN

2.

- (1) $\frac{25}{9} < C < \frac{13}{3}$ (2) 100 < C < 165 (3) 81 < C < 156 (4) 100 < C < 156
- 3. Two tangents are drawn from the point P(-1, 1) to the circle $x^2 + y^2 2x 6y + 6 = 0$. If these tangents touch the circle at points A and B, and if D is a point on the circle such that length of the segments AB and AD are equal, then the area of the triangle ABD is equal to:
 - (1) 2 (2) $(3\sqrt{2}+2)$
 - (3) 4 (4) $3(\sqrt{2}-1)$
- 4. Let P and Q be two distinct points on a circle which has center at C(2, 3) and which passes through origin O. If OC is perpendicular to both the line segments CP and CQ, then the set {P, Q} is equal to
 - (1) {(4,0),(0,6)} (2) {(2+2 $\sqrt{2}$, 3- $\sqrt{5}$), (2-2 $\sqrt{2}$, 3+ $\sqrt{5}$)} (3) {(2+2 $\sqrt{2}$, 3+ $\sqrt{5}$), (2-2 $\sqrt{2}$, 3- $\sqrt{5}$)} (4) {(-1,5), (5,1)}
- 5. Let

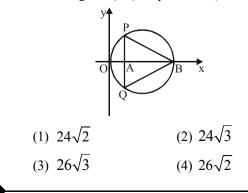
A = {(x,y) $\in \mathbf{R} \times \mathbf{R} | 2x^2 + 2y^2 - 2x - 2y = 1$ }, B = {(x,y) $\in \mathbf{R} \times \mathbf{R} | 4x^2 + 4y^2 - 16y + 7 = 0$ } and C = {(x,y) $\in \mathbf{R} \times \mathbf{R} | x^2 + y^2 - 4x - 2y + 5 \le r^2$ }. Then the minimum value of |r| such that

A \cup B \subseteq C is equal to (1) $\frac{3 + \sqrt{10}}{2}$ (2) $\frac{2 + \sqrt{10}}{2}$ (3) $\frac{3 + 2\sqrt{5}}{2}$ (4) $1 + \sqrt{5}$

	(0, 0) und	cuto on un i	intercept ov.	o on the A
	axis. Then	the radius of	the circle C is	s equal to :
	(1) $\sqrt{53}$	(2) 9	(3) 8	(4) $\sqrt{82}$
7.	The locus of	of a point, wh	nich moves su	uch that the
	sum of squ	ares of its di	istances from	the points
	(0, 0), (1, 0), (0, 1) (1, 1	1) is 18 units	, is a circle
	of diameter	d. Then d^2 is	s equal to	·
8.	A circle C t	ouches the lin	e x = 2y at the	e point (2,1)
	and intersec	ts the circle C	$x^{2} + y^{2} + 2$	y - 5 = 0 at
	two points	P and Q suc	h that PQ is	a diameter
	of C_1 . Then	the diameter	of C is :	
	(1) 7\sqrt{5}		(2) 15	
	(3) $\sqrt{285}$		(4) $4\sqrt{15}$	

- 9. Let the equation $x^2 + y^2 + px + (1 p)y + 5 = 0$ represent circles of varying radius $r \in (0, 5]$. Then the number of elements in the set $S = \{q : q = p^2 and q \text{ is an integer}\}$ is _____.
- 10. Let \mathbb{Z} be the set of all integers, $A = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : (x - 2)^2 + y^2 \le 4\},$ $B = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x^2 + y^2 \le 4\} \text{ and}$ $C = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : (x - 2)^2 + (y - 2)^2 \le 4\}$ If the total number of relation from $A \cap B$ to $A \cap C$ is 2^p , then the value of p is : (1) 16 (2) 25 (3) 49 (4) 9
- 11. Two circles each of radius 5 units touch each other at the point (1, 2). If the equation of their common tangent is 4x + 3y = 10, and $C_1(\alpha, \beta)$ and $C_2(\gamma, \delta)$, $C_1 \neq C_2$ are their centres, then $|(\alpha + \beta)(\gamma + \delta)|$ is equal to _____.
- 12. If the variable line $3x + 4y = \alpha$ lies between the two circles $(x - 1)^2 + (y - 1)^2 = 1$ and $(x - 9)^2 + (y - 1)^2 = 4$, without intercepting a chord on either circle, then the sum of all the integral values of α is _____.

14 **JEE** (Main) Examination-2021


- Let B be the centre of the circle $x^2 + y^2 2x + 4y + 1 = 0$. 13. Let the tangents at two points P and O on the circle intersect at the point A(3, 1). Then $8.\left(\frac{\text{area}\,\Delta APQ}{\text{area}\,\Delta BPQ}\right)$ is equal to _____.
- 14. If the area of the triangle formed by the positive x-axis, the normal and the tangent to the circle $(x - 2)^{2} + (y - 3)^{2} = 25$ at the point (5, 7) is A, then 24A is equal to
- 15. If one of the diameters of the circle $x^2 + y^2 - 2x - 6y + 6 = 0$ is a chord of another circle 'C', whose center is at (2, 1), then its radius is
- If the locus of the mid-point of the line 16. segment from the point (3, 2) to a point on the circle, $x^2 + y^2 = 1$ is a circle of radius r, then r is equal to :

(1) 1 (2)
$$\frac{1}{2}$$
 (3) $\frac{1}{3}$ (4) $\frac{1}{3}$

Let A(1, 4) and B(1, -5) be two points. Let P be 17. a point on the circle $(x - 1)^2 + (y - 1)^2 = 1$ such that $(PA)^2 + (PB)^2$ have maximum value, then the points P, A and B lie on :

(1) a straight line	(2) a hyperbola
(3) an ellipse	(4) a parabola

- 18. Let the normals at all the points on a given curve pass through a fixed point (a, b). If the curve passes through (3, -3) and $(4, -2\sqrt{2})$, and given that $a-2\sqrt{2}b=3$, then $(a^2 + b^2 +$ ab) is equal to
- In the circle given below, let OA = 1 unit, 19. OB = 13 unit and PQ $\perp OB$. Then, the area of the triangle PQB (in square units) is

20. Let the lengths of intercepts on x-axis and y-axis made by the circle $x^2 + y^2 + ax + 2ay + c = 0$, (a < 0) be $2\sqrt{2}$ and $2\sqrt{5}$, respectively. Then the shortest distance from origin to a tangent to this circle which is perpendicular to the line x + 2y = 0, is equal to :

> (3) $\sqrt{6}$ (2) $\sqrt{7}$ (1) $\sqrt{11}$ (4) $\sqrt{10}$

- 21. Let ABCD be a square of side of unit length. Let a circle C_1 centered at A with unit radius is drawn. Another circle C2 which touches C1 and the lines AD and AB are tangent to it, is also Let a drawn. tangent line from the point C to the circle C_2 meet the side AB at E. If the length of EB is $\alpha + \sqrt{3}\beta$, where α , β are integers, then $\alpha + \beta$ is equal to
- 22. Two tangents are drawn from a point P to the circle $x^{2} + y^{2} - 2x - 4y + 4 = 0$, such that the angle between these tangents is $\tan^{-1}\left(\frac{12}{5}\right)$,

where $\tan^{-1}\left(\frac{12}{5}\right) \in (0, \pi)$. If the centre of the circle is denoted by C and these tangents touch the circle at points A and B, then the ratio of the areas of $\triangle PAB$ and $\triangle CAB$ is :

(1) 11 : 4(2)9:4(3) 3 :1 (4) 2 : 123. Let the tangent to the circle $x^2 + y^2 = 25$ at the point R(3, 4) meet x-axis and y-axis at point P and Q, respectively. If r is the radius of the circle passing through the origin O and having centre at the incentre of the triangle OPQ, then r² is equal to

(1)
$$\frac{529}{64}$$
 (2) $\frac{125}{72}$ (3) $\frac{625}{72}$ (4) $\frac{585}{66}$

JEE MAIN-202

ode06\B0BA-BB\

Ε

24. The line 2x - y + 1 = 0 is a tangent to the circle $\frac{2}{3}$ at the point (2, 5) and the centre of the circle lies on x - 2y = 4. Then, the radius of the circle is: (1) $3\sqrt{5}$ (2) $5\sqrt{3}$ (3) $5\sqrt{4}$ (4) $4\sqrt{5}$

ALLEN Choose the incorrect statement about the two 29. 25. circles whose equations are given below : $x^2 + y^2 - 10x - 10y + 41 = 0$ and $x^2 + y^2 - 16x - 10y + 80 = 0$ (1) Distance between two centres is the average of radii of both the circles. (2) Both circles' centres lie inside region of one another. (3) Both circles pass through the centre of each other. (4) Circles have two intersection points. 26. The minimum distance between any two points 1. P_1 and P_2 while considering point P_1 on one circle and point P_2 on the other circle for the given circles' equations $x^2 + y^2 - 10x - 10y + 41 = 0$ $x^2 + y^2 - 24x - 10y + 160 = 0$ is _____. 27. Choose the correct statement about two circles 2. whose equations are given below : $x^2 + y^2 - 10x - 10y + 41 = 0$ $x^2 + y^2 - 22x - 10y + 137 = 0$ 3. (1) circles have same centre (2) circles have no meeting point (3) circles have only one meeting point (4) circles have two meeting points 28. For the four circles M, N, O and P, following four equations are given : Circle M : $x^2 + y^2 = 1$ Circle N : $x^{2} + y^{2} - 2x = 0$ 4. Circle O: $x^2 + y^2 - 2x - 2y + 1 = 0$ Circle P : $x^{2} + y^{2} - 2y = 0$ If the centre of circle M is joined with centre of 5. the circle N, further centre of circle N is joined

with centre of the circle O, centre of circle O is

joined with the centre of circle P and lastly,

centre of circle P is joined with centre of circle

(2) Square

(4) Parallelogram

M, then these lines form the sides of a :

(1) Rhombus

(3) Rectangle

19. Let $S_1 : x^2 + y^2 = 9$ and $S_2 : (x - 2)^2 + y^2 = 1$. Then the locus of center of a variable circle S which touches S_1 internally and S_2 externally always passes through the points :

(1)
$$(0, \pm \sqrt{3})$$
 (2) $(\frac{1}{2}, \pm \frac{\sqrt{5}}{2})$
(3) $(2, \pm \frac{3}{2})$ (4) $(1, \pm 2)$

PARABOLA

1. Let the tangent to the parabola $S : y^2 = 2x$ at the point P(2, 2) meet the x-axis at Q and normal at it meet the parabola S at the point R. Then the area (in sq. units) of the triangle PQR is equal to:

(1)
$$\frac{25}{2}$$
 (2) $\frac{35}{2}$ (3) $\frac{15}{2}$ (4) 25

- Let y = mx + c, m > 0 be the focal chord of $y^2 = -64x$, which is tangent to $(x + 10)^2 + y^2 = 4$. Then, the value of $4\sqrt{2}$ (m + c) is equal to
- Let P be a variable point on the parabola $y = 4x^2 + 1$. Then, the locus of the mid-point of the point P and the foot of the perpendicular drawn from the point P to the line y = x is : (1) $(3x - y)^2 + (x - 3y) + 2 = 0$ (2) $2(3x - y)^2 + (x - 3y) + 2 = 0$ (3) $(3x - y)^2 + 2(x - 3y) + 2 = 0$ (4) $2(x - 3y)^2 + (3x - y) + 2 = 0$ If the point on the curve $y^2 = 6x$, nearest to the point

$$\left(3,\frac{3}{2}\right)$$
 is (α, β) , then $2(\alpha + \beta)$ is equal to _____.

5. Let a parabola P be such that its vertex and focus lie on the positive x-axis at a distance 2 and 4 units from the origin, respectively. If tangents are drawn from O(0, 0) to the parabola P which meet P at S and R, then the area (in sq. units) of Δ SOR is equal to :

(1) $16\sqrt{2}$ (2) 16 (3) 32 (4) $8\sqrt{2}$

6. If a line along a chord of the circle $4x^2 + 4y^2 + 120x + 675 = 0$, passes through the point (-30, 0) and is tangent to the parabola $y^2 = 30x$, then the length of this chord is :

(1) 5 (2) 7 (3)
$$5\sqrt{3}$$
 (4) $3\sqrt{5}$

- 7. The locus of the mid points of the chords of the hyperbola $x^2 y^2 = 4$, which touch the parabola $y^2 = 8x$, is :
 - (1) $y^{3}(x-2) = x^{2}$ (2) $x^{3}(x-2) = y^{2}$ (3) $y^{2}(x-2) = x^{3}$ (4) $x^{2}(x-2) = y^{3}$
- 8. A tangent and a normal are drawn at the point P(2, -4) on the parabola $y^2 = 8x$, which meet the directrix of the parabola at the points A and B respectively. If Q(a, b) is a point such that AQBP is a square, then 2a + b is equal to : (1) -16 (2) -18 (3) -12 (4) -20
- 9. If two tangents drawn from a point P to the parabola $y^2 = 16(x 3)$ are at right angles, then the locus of point P is :

(1)
$$x + 3 = 0$$

(3) $x + 2 = 0$
(2) $x + 1 = 0$
(4) $x + 4 = 0$

10. The length of the latus rectum of a parabola, whose vertex and focus are on the positive x-axis at a distance R and S (>R) respectively from the origin, is :

(1) 4(S + R)	(2) 2(S - R)
(3) 4(S - R)	(4) 2(S + R)

- 11. A tangent line L is drawn at the point (2, -4) on the parabola $y^2 = 8x$. If the line L is also tangent to the circle $x^2 + y^2 = a$, then 'a' is equal to_____.
- 12. Consider the parabola with vertex $\left(\frac{1}{2}, \frac{3}{4}\right)$ and

the directrix $y = \frac{1}{2}$. Let P be the point where the

parabola meets the line $x = -\frac{1}{2}$. If the normal to

the parabola at P intersects the parabola again at the point Q, then $(PQ)^2$ is equal to :

(1)
$$\frac{75}{8}$$
 (2) $\frac{125}{16}$ (3) $\frac{25}{2}$ (4) $\frac{15}{2}$

13. If P is a point on the parabola $y = x^2 + 4$ which is closest to the straight line y = 4x - 1, then the co-ordinates of P are :

(1) (3, 13) (2) (1, 5) (3) (-2, 8) (4) (2, 8)

14. The locus of the mid-point of the line segment joining the focus of the parabola $y^2 = 4ax$ to a moving point of the parabola, is another parabola whose directrix is :

(1)
$$x = -\frac{a}{2}$$
 (2) $x = \frac{a}{2}$
(3) $x = 0$ (4) $x = a$

- 15. A tangent is drawn to the parabola $y^2 = 6x$ which is perpendicular to the line 2x + y = 1. Which of the following points does NOT lie on it? (1) (-6, 0) (2) (4, 5) (3) (5, 4) (4) (0, 3)
- 16. The shortest distance between the line x y = 1and the curve $x^2 = 2y$ is :

(1)
$$\frac{1}{2}$$
 (2) $\frac{1}{2\sqrt{2}}$ (3) $\frac{1}{\sqrt{2}}$ (4) 0

- 17. A line is a common tangent to the circle $(x 3)^2 + y^2 = 9$ and the parabola $y^2 = 4x$. If the two points of contact (a, b) and (c, d) are distinct and lie in the first quadrant, then 2(a + c) is equal to
- 18. Let C be the locus of the mirror image of a point on the parabola y² = 4x with respect to the line y = x. Then the equation of tangent to C at P(2,1) is :

(1)
$$x - y = 1$$

(2) $2x + y = 5$
(3) $x + 3y = 5$
(4) $x + 2y = 4$

19. If the three normals drawn to the parabola, y² = 2x pass through the point (a, 0) a ≠ 0, then 'a' must be greater than :

(1)
$$\frac{1}{2}$$
 (2) $-\frac{1}{2}$ (3) -1 (4) 1

ELLIPSE

1.	Let $E_1: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $a > b$. Let E_2 be another	
	ellipse such that it touches the end points of major axis of E_1 and the foci of E_2 are the end points of minor axis of E_1 . If E_1 and E_2 have	,
	same eccentricities, then its value is :	
	(1) $\frac{-1+\sqrt{5}}{2}$ (2) $\frac{-1+\sqrt{8}}{2}$	
	(3) $\frac{-1+\sqrt{3}}{2}$ (4) $\frac{-1+\sqrt{6}}{2}$	
2.	Let an ellipse $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $a^2 > b^2$, passes	:
	through $\left(\sqrt{\frac{3}{2}},1\right)$ and has eccentricity $\frac{1}{\sqrt{3}}$. If a	
	circle, centered at focus $F(\alpha, 0)$, $\alpha > 0$, of E and	
	radius $\frac{2}{\sqrt{3}}$, intersects E at two points P and Q,	
	then PQ^2 is equal to :	
	(1) $\frac{8}{3}$ (2) $\frac{4}{3}$ (3) $\frac{16}{3}$ (4) 3	
3.	If a tangent to the ellipse $x^2 + 4y^2 = 4$ meets the	
	tangents at the extremities of its major axis at B	9

- 3. If a tangent to the ellipse $x^2 + 4y^2 = 4$ meets the tangents at the extremities of its major axis at B and C, then the circle with BC as diameter passes through the point :
 - (1) $(\sqrt{3},0)$ (2) $(\sqrt{2},0)$ (3) (1, 1) (4) (-1, 1)
- 4. Let E be an ellipse whose axes are parallel to the co-ordinates axes, having its center at (3, -4), one focus at (4, -4) and one vertex at (5, -4). If mx y = 4, m > 0 is a tangent to the ellipse E, then the value of $5m^2$ is equal to _____.
- 5. On the ellipse $\frac{x^2}{8} + \frac{y^2}{4} = 1$ let P be a point in the second quadrant such that the tangent at P to the ellipse is perpendicular to the line x + 2y = 0. Let S and S' be the foci of the ellipse and e be its eccentricity. If A is the area of the triangle SPS' then, the value of $(5 - e^2)$. A is :
 - (1) 6 (2) 12 (3) 14 (4) 24

6. If the minimum area of the triangle formed by a tangent to the ellipse $\frac{x^2}{b^2} + \frac{y^2}{4a^2} = 1$ and the co-ordinate axis is kab, then k is equal to _____. 7. The line 12x $\cos\theta + 5y \sin\theta = 60$ is tangent to which of the following curves? (1) $x^2 + y^2 = 169$ (2) $144x^2 + 25y^2 = 3600$ (3) $25x^2 + 12y^2 = 3600$ (4) $x^2 + y^2 = 60$

- 8. The locus of mid-points of the line segments joining (-3, -5) and the points on the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ is: (1) $9x^2 + 4y^2 + 18x + 8y + 145 = 0$ (2) $36x^2 + 16y^2 + 90x + 56y + 145 = 0$ (3) $36x^2 + 16y^2 + 108x + 80y + 145 = 0$ (4) $36x^2 + 16y^2 + 72x + 32y + 145 = 0$
- 9. Let θ be the acute angle between the tangents to the ellipse $\frac{x^2}{9} + \frac{y^2}{1} = 1$ and the circle $x^2 + y^2 = 3$ at their point of intersection in the first quadrant. Then tan θ is equal to :

(1)
$$\frac{5}{2\sqrt{3}}$$
 (2) $\frac{2}{\sqrt{3}}$ (3) $\frac{4}{\sqrt{3}}$ (4) 2

10. If the curve x² + 2y² = 2 intersects the line x + y = 1 at two points P and Q, then the angle subtended by the line segment PQ at the origin is :

(1)
$$\frac{\pi}{2} + \tan^{-1}\left(\frac{1}{3}\right)$$
 (2) $\frac{\pi}{2} - \tan^{-1}\left(\frac{1}{3}\right)$
(3) $\frac{\pi}{2} - \tan^{-1}\left(\frac{1}{4}\right)$ (4) $\frac{\pi}{2} + \tan^{-1}\left(\frac{1}{4}\right)$

11. Let L be a common tangent line to the curves $4x^2 + 9y^2 = 36$ and $(2x)^2 + (2y)^2 = 31$. Then the square of the slope of the line L is _____.

Е

- 12. If the point of intersections of the ellipse $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ and the circle $x^2 + y^2 = 4b$, b > 4lie on the curve $y^2 = 3x^2$, then b is equal to: (1) 12 (2) 5 (3) 6 (4) 10
- 13. Let L be a tangent line to the parabola $y^2 = 4x 20$ at (6, 2). If L is also a tangent to the ellipse $\frac{x^2}{2} + \frac{y^2}{b} = 1$, then the value of b is equal to :

14. Let a tangent be drawn to the ellipse $\frac{x^2}{27} + y^2 = 1$ at $(3\sqrt{3}\cos\theta, \sin\theta)$ where $\theta \in \left(0, \frac{\pi}{2}\right)$. Then the value of θ such that the sum of intercepts on axes made by this tangent is minimum is equal to :

(1)
$$\frac{\pi}{8}$$
 (2) $\frac{\pi}{4}$ (3) $\frac{\pi}{6}$ (4) $\frac{\pi}{3}$

HYPERBOLA

- 1. Let a line L : 2x + y = k, k > 0 be a tangent to the hyperbola $x^2 - y^2 = 3$. If L is also a tangent to the parabola $y^2 = \alpha x$, then α is equal to : (1) 12 (2) -12 (3) 24 (4) -24
- 2. The locus of the centroid of the triangle formed by any point P on the hyperbola $16x^2 - 9y^2 + 32x + 36y - 164 = 0$, and its foci is : (1) $16x^2 - 9y^2 + 32x + 36y - 36 = 0$ (2) $9x^2 - 16y^2 + 36x + 32y - 144 = 0$ (3) $16x^2 - 9y^2 + 32x + 36y - 144 = 0$ (4) $9x^2 - 16y^2 + 36x + 32y - 36 = 0$
- 3. The point $P(-2\sqrt{6}, \sqrt{3})$ lies on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ having eccentricity $\frac{\sqrt{5}}{2}$. If the tangent and normal at P to the hyperbola intersect its conjugate axis at the point Q and R respectively, then QR is equal to :

(1)
$$4\sqrt{3}$$
 (2) 6 (3) $6\sqrt{3}$ (4) $3\sqrt{6}$

- 4. Let A (sec θ , 2tan θ) and B (sec ϕ , 2tan ϕ), where $\theta + \phi = \pi/2$, be two points on the hyperbola $2x^2 - y^2 = 2$. If (α , β) is the point of the intersection of the normals to the hyperbola at A and B, then $(2\beta)^2$ is equal to _____.
- 5. If the curves, $\frac{x^2}{a} + \frac{y^2}{b} = 1$ and $\frac{x^2}{c} + \frac{y^2}{d} = 1$ intersect each other at an angle of 90°, then

which of the following relations is TRUE?

(1)
$$a + b = c + d$$
 (2) $a - b = c - d$
(3) $a - c = b + d$ (4) $ab = \frac{c + d}{a + b}$

6. Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = 2x - 1 and

- $g: R \{1\} \rightarrow R$ be defined as $g(x) = \frac{x \frac{1}{2}}{x \frac{1}{2}}$.
- Then the composition function f(g(x)) is :
- (1) onto but not one-one
- (2) both one-one and onto
- (3) one-one but not onto
- (4) neither one-one nor onto
- 7. The locus of the point of intersection of the lines (√3)kx + ky 4√3 = 0 and √3x y 4(√3)k = 0 is a conic, whose eccentricity is _____.
 8. A hyperbola passes through the foci of the
 - ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ and its transverse and conjugate axes coincide with major and minor axes of the ellipse, respectively. If the product of their eccentricities in one, then the equation of the hyperbola is :

(1)
$$\frac{x^2}{9} - \frac{y^2}{25} = 1$$
 (2) $\frac{x^2}{9} - \frac{y^2}{16} = 1$
(3) $x^2 - y^2 = 9$ (4) $\frac{x^2}{9} - \frac{y^2}{4} = 1$

^	
9.	The locus of the midpoints of the chord of the
	circle, $x^2 + y^2 = 25$ which is tangent to the
	hyperbola, $\frac{x^2}{9} - \frac{y^2}{16} = 1$ is :
	$(1) (x^2 + y^2)^2 - 16x^2 + 9y^2 = 0$
	(2) $(x^2 + y^2)^2 - 9x^2 + 144y^2 = 0$
	$(3) (x^2 + y^2)^2 - 9x^2 - 16y^2 = 0$
	$(4) (x^2 + y^2)^2 - 9x^2 + 16y^2 = 0$
10.	A square ABCD has all its vertices on the curve
	$x^2y^2 = 1$. The midpoints of its sides also lie on the

AIIFN

- same curve. Then, the square of area of ABCD is 11. Consider a hyperbola $H : x^2 - 2y^2 = 4$. Let the tangent at a point $P(4,\sqrt{6})$ meet the x-axis at Q and latus rectum at $R(x_1, y_1), x_1 > 0$. If F is a focus of H which is nearer to the point P, then the area of $\triangle QFR$ is equal to
 - (1) $4\sqrt{6}$ (2) $\sqrt{6}-1$
 - (3) $\frac{7}{\sqrt{6}} 2$ (4) $4\sqrt{6} 1$

PERMUTATION & COMBINATION

- There are 15 players in a cricket team, out of which 6 are bowlers, 7 are batsmen and 2 are wicketkeepers. The number of ways, a team of 11 players be selected from them so as to include at least 4 bowlers, 5 batsmen and 1 wicketkeeper, is _____.
- 2. If the digits are not allowed to repeat in any number formed by using the digits 0, 2, 4, 6, 8, then the number of all numbers greater than 10,000 is equal to _____.
- 3. There are 5 students in class 10, 6 students in class 11 and 8 students in class 12. If the number of ways, in which 10 students can be selected from them so as to include at least 2 students from each class and at most 5 students from the total 11 students of class 10 and 11 is 100 k, then k is equal to _____.

4. If ${}^{n}P_{r} = {}^{n}P_{r+1}$ and ${}^{n}C_{r} = {}^{n}C_{r-1}$, then the value of r is equal to:

(1) 1 (2) 4 (3) 2 (4) 3

- 5. Let n be a non-negative integer. Then the number of divisors of the form "4n + 1" of the number $(10)^{10}$. $(11)^{11}$. $(13)^{13}$ is equal to _____.
- 6. The number of three-digit even numbers, formed by the digits 0, 1, 3, 4, 6, 7 if the repetition of digits is not allowed, is _____.
- 7. The sum of all 3-digit numbers less than or equal to 500, that are formed without using the digit "1" and they all are multiple of 11, is _____.
- A number is called a palindrome if it reads the same backward as well as forward. For example 285582 is a six digit palindrome. The number of six digit palindromes, which are divisible by 55, is
- 9. Let S = {1, 2, 3, 4, 5, 6, 9}. Then the number of elements in the set T = {A ⊆ S : A ≠ φ and the sum of all the elements of A is not a multiple of 3} is _____.
- 10. The number of six letter words (with or without meaning), formed using all the letters of the word 'VOWELS', so that all the consonants never come together, is _____.
- 11. Let P_1, P_2, \dots, P_{15} be 15 points on a circle. The number of distinct triangles formed by points P_i, P_j, P_k such that $i + j + k \neq 15$, is :
 - (1) 12 (2) 419 (3) 443 (4) 455
- 12. All the arrangements, with or without meaning, of the word FARMER are written excluding any word that has two R appearing together. The arrangements are listed serially in the alphabetic order as in the English dictionary. Then the serial number of the word FARMER in this list is _____.

node06\B0BA-BB\Kota\JEE MAIN\Topicwise JEE MAIN-2021

Е

- 13. The students S_1 , S_2 ,...., S_{10} are to be divided into 3 groups A, B and C such that each group has at least one student and the group C has at most 3 students. Then the total number of possibilities of forming such groups is _____.
- 14. A scientific committee is to be formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed, is :
 - (1) 1625 (2) 575 (3) 560 (4) 1050
- 15. The total number of positive integral solutions (x, y, z) such that xyz = 24 is :
 - (1) 36 (2) 24 (3) 45 (4) 30The total number of numbers, lying between

16.

- 100 and 1000 that can be formed with the digits 1, 2, 3, 4, 5, if the repetition of digits is not allowed and numbers are divisible by either 3 or 5, is _____.
- 17. Let x denote the total number of one-one functions from a set A with 3 elements to a set B with 5 elements and y denote the total number of one-one functions from the set A to the set A × B. Then :
 - (1) y = 273x (2) 2y = 91x

(3) y = 91x (4) 2y = 273x

- **18.** The total number of two digit numbers 'n', such that $3^n + 7^n$ is a multiple of 10, is _____.
- 19. The number of seven digit integers with sum of the digits equal to 10 and formed by using the digits 1,2 and 3 only is

(1) 42 (2) 82 (3) 77 (4) 35

- 20. A natural number has prime factorization given by $n = 2^x 3^y 5^z$, where y and z are such that y + z = 5 and $y^{-1} + z^{-1} = \frac{5}{6}$, y > z. Then the number of odd divisors of n, including 1, is :
 - (1) 11 (2) 6 (3) 6x (4) 12

21. Consider a rectangle ABCD having 5, 7, 6, 9 points in the interior of the line segments AB, CD, BC, DA respectively. Let α be the number of triangles having these points from different sides as vertices and β be the number of quadrilaterals having these points from different sides as vertices. Then (β – α) is equal to :
(1) 795 (2) 1173 (3) 1890 (4) 717

22. If the sides AB, BC and CA of a triangle ABC have3, 5 and 6 interior points respectively, then the total number of triangles that can be constructed using these points as vertices, is equal to :

(1) 364 (2) 240 (3) 333 (4) 360

- 23. Team 'A' consists of 7 boys and n girls and Team 'B' has 4 boys and 6 girls. If a total of 52 single matches can be arranged between these two teams when a boy plays against a boy and a girl plays against a girl, then n is equal to :
 - (1) 5 (2) 2 (3) 4 (4) 6
- 24. The sum of all the 4-digit distinct numbers that can be formed with the digits 1, 2, 2 and 3 is:
 (1) 26664
 (2) 122664
 (3) 122234
 (4) 22264
- **25.** The number of times the digit 3 will be written when listing the integers from 1 to 1000 is
- **26.** The total number of 4-digit numbers whose greatest common divisor with 18 is 3, is _____.

BINOMIAL THEOREM

The coefficient of x^{256} in the expansion of 1. $(1-x)^{101} (x^2 + x + 1)^{100}$ is : $(1)^{100}C_{16}$ $(2)^{100}C_{15}$ $(3) - {}^{100}C_{16}$ $(4) - {}^{100}C_{15}$ 2. The number of rational terms in the binomial 3 expansion of $(4^{\frac{1}{4}} + 5^{\frac{1}{6}})^{120}$ is . 3. For the natural numbers m, n, if $(1-y)^{m}(1+y)^{n} = 1 + a_{1}y + a_{2}y^{2} + \ldots + a_{m+n} y^{m+n}$ iode06\B0BA-BB\Kota\EE and $a_1 = a_2 = 10$, then the value of (m + n) is equal to : (1) 88(2) 64(3) 100(4) 80

node06\B0BA-BB\Kota\JEE MAIN\Topicwise JEE MAIN-2021

21

is

____·

and x^{-7}

of

18. If ${}^{1}P_{1} + 2 \cdot {}^{2}P_{2} + 3 \cdot {}^{3}P_{3} + ... + 15 \cdot {}^{15}P_{15} = {}^{q}P_{r} - s,$ $0 \le s \le 1$, then ${}^{q+s}C_{r-s}$ is equal to _____. 19. Let $\binom{n}{k}$ denotes ${}^{n}C_{k}$ and $\begin{bmatrix} n\\ k \end{bmatrix} = \begin{cases} \binom{n}{k}, & \text{if } 0 \le k \le n\\ 0, & \text{otherwise} \end{cases}$ If $A_{k} = \sum_{i=0}^{9} \binom{9}{i} \begin{bmatrix} 12\\ 12 - k + i \end{bmatrix} + \sum_{i=0}^{8} \binom{8}{i} \begin{bmatrix} 13\\ 13 - k + i \end{bmatrix}$

 $\sum_{i=0}^{k} (i) \lfloor 12 - k + i \rfloor \quad \sum_{i=0}^{k} (i) \lfloor 13 - k \rfloor$ and $A_4 - A_3 = 190$ p, then p is equal to :

20. If
$$0 < x < 1$$
, then $\frac{3}{2}x^2 + \frac{5}{3}x^3 + \frac{7}{4}x^4 + \dots$, is equal to :
(1+x)

(1)
$$x \left(\frac{1+x}{1-x}\right) + \log_{e}(1-x)$$

(2) $x \left(\frac{1-x}{1+x}\right) + \log_{e}(1-x)$
(3) $\frac{1-x}{1+x} + \log_{e}(1-x)$
(4) $\frac{1+x}{1-x} + \log_{e}(1-x)$

21.
$$\sum_{k=0}^{20} {\binom{20}{C_k}}^2 \text{ is equal to :}$$

(1) ${}^{40}C_{21}$ (2) ${}^{40}C_{19}$ (3) ${}^{40}C_{20}$ (4) ${}^{41}C_{20}$
22. $3 \times 7^{22} + 2 \times 10^{22} - 44$ when divided by 18 leaves the remainder _____.

- 23. If $\left(\frac{3^6}{4^4}\right)k$ is the term, independent of x, in the binomial expansion of $\left(\frac{x}{4} \frac{12}{x^2}\right)^{12}$, then k is equal to .
- 24. If the coefficient of a^7b^8 in the expansion of $(a + 2b + 4ab)^{10}$ is K.2¹⁶, then K is equal to _____.
- 25. If the sum of the coefficients in the expansion of $(x + y)^n$ is 4096, then the greatest coefficient in the expansion is _____.
- 26. If $n \ge 2$ is a positive integer, then the sum of the series ${}^{n+1}C_2 + 2({}^{2}C_2 + {}^{3}C_2 + {}^{4}C_2 + ... + {}^{n}C_2)$ is:

(1)
$$\frac{n(n-1)(2n+1)}{6}$$
 (2) $\frac{n(n+1)(2n+1)}{6}$
(3) $\frac{n(2n+1)(3n+1)}{6}$ (4) $\frac{n(n+1)^2(n+2)}{12}$

27. For integers n and r, let $\binom{n}{r} = \begin{cases} {}^{n}C_{r}, & \text{if } n \ge r \ge 0\\ 0, & \text{otherwise} \end{cases}$ The maximum value of k for which the sum

$$\sum_{i=0}^{k} {10 \choose i} {15 \choose k-i} + \sum_{i=0}^{k+1} {12 \choose i} {13 \choose k+1-i}$$
 exists, is

equal to _____.

28. The value of
$$-{}^{15}C_1 + 2.{}^{15}C_2 - 3.{}^{15}C_3 + \dots$$

 $-15.{}^{15}C_{15} + {}^{14}C_1 + {}^{14}C_3 + {}^{14}C_5 + \dots + {}^{14}C_{11}$ is :
(1) $2{}^{16} - 1$ (2) $2{}^{13} - 14$
(3) $2{}^{14}$ (4) $2{}^{13} - 13$

29. If the remainder when x is divided by 4 is 3, then the remainder when $(2020 + x)^{2022}$ is divided by 8 is _____.

30. Let
$$m,n \in N$$
 and $gcd(2,n) = 1$. If

$$30\binom{30}{0} + 29\binom{30}{1} + \dots + 2\binom{30}{28} + 1\binom{30}{29} = n.2^{m},$$

then n + m is equal to

(Here
$$\binom{n}{k} = {}^{n}C_{k}$$
)

31. The maximum value of the term independent of

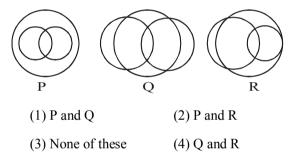
't' in the expansion of
$$\left(tx^{\frac{1}{5}} + \frac{(1-x)^{\frac{1}{10}}}{t}\right)^{10}$$

where $x \in (0,1)$ is :

(

1)
$$\frac{10!}{\sqrt{3}(5!)^2}$$
 (2) $\frac{2.10!}{3\sqrt{3}(5!)^2}$

(3)
$$\frac{2.10!}{3(5!)^2}$$
 (4) $\frac{10!}{3(5!)^2}$


$$A = \sum_{k=0}^{n} (-1)^{k} n_{C_{k}} \left[\left(\frac{1}{2} \right)^{k} + \left(\frac{3}{4} \right)^{k} + \left(\frac{7}{8} \right)^{k} + \left(\frac{15}{16} \right)^{k} + \left(\frac{31}{32} \right)^{k} \right]$$

If 63A = $1 - \frac{1}{2^{30}}$, then n is equal to _____.

node06\B0BA-BB\Kota\EE MAIN\Topicwise JEE MAIN-2021

33.	If n is the number of irrational terms in the	40.	If (2021) ³⁷⁶² is divided by 17, then the
	expansion of $(3^{1/4} + 5^{1/8})^{60}$, then $(n - 1)$ is		remainder is
	divisible by :	41.	Let $(1 + x + 2x^2)^{20} = a_0 + a_1x + a_2x^2 + + a_{40}x^{40}$
	(1) 26 (2) 30 (3) 8 (4) 7		then $a_1 + a_3 + a_5 + + a_{37}$ is equal to
34.	Let [x] denote greatest integer less than or equal		(1) $2^{20}(2^{20}-21)$ (2) $2^{19}(2^{20}-21)$
	3 n 3 n		$(3) 2^{19}(2^{20}+21) \qquad (4) 2^{20}(2^{20}+21)$
	to x. If for $n \in \mathbb{N}$, $(1 - x + x^3)^n = \sum_{j=0}^{3n} a_j x^j$, then	42.	If $\sum_{n=1}^{10} r! (r^3 + 6r^2 + 2r + 5) = \alpha(11!)$, then the
	$\left[\frac{3n}{2}\right]$ $\left[\frac{3n-1}{2}\right]$		value of α is equal to
	$\sum_{j=0}^{\left[\frac{3n}{2}\right]} a_{2j} + 4 \sum_{j=0}^{\left[\frac{3n-1}{2}\right]} a_{2j} + 1$ is equal to :	43.	Let $P(x)$ be a real polynomial of degree 3
	(1) 2 (2) 2^{n-1} (3) 1 (4) n	101	which vanishes at $x = -3$. Let P(x) have loca
			minima at $x = 1$, local maxima at $x = -1$ and
35.	The value of $\sum_{r=0}^{6} ({}^{6}C_{r} \cdot {}^{6}C_{6-r})$ is equal to :		$\int_{1}^{1} P(x) dx = 18$, then the sum of all the
	(1) 1124 (2) 1324 (3) 1024 (4) 924		-1
36.	Let the coefficients of third, fourth and fifth		coefficients of the polynomial $P(x)$ is equa
	terms in the expansion of $\left(x + \frac{a}{x^2}\right)^n$, $x \neq 0$, be	44.	to Let ${}^{n}C_{r}$ denote the binomial coefficient of x ^r in
	terms in the expansion of $\left(\frac{x+x^2}{x^2}\right)$, $x \neq 0$, be		the expansion of $(1 + x)^n$.
	in the ratio 12:8:3. Then the term independent		
	of x in the expansion, is equal to		If $\sum_{k=0}^{10} (2^2 + 3k)^n C_k = \alpha \cdot 3^{10} + \beta \cdot 2^{10}, \ \alpha, \ \beta \in \mathbb{R}$
37.	Two dices are rolled. If both dices have six		then $\alpha + \beta$ is equal to
	faces numbered 1,2,3,5,7 and 11, then the		
	probability that the sum of the numbers on the		SET
	top faces is less than or equal to 8 is :	1.	Out of all the patients in a hospital 89% ar
	(1) $\frac{4}{9}$ (2) $\frac{17}{36}$ (3) $\frac{5}{12}$ (4) $\frac{1}{2}$		found to be suffering from heart ailment and
20			98% are suffering from lungs infection. If K% of them are suffering from both ailments, then
38.	If the fourth term in the expansion of		K can not belong to the set :
	$(x + x^{\log_2 x})^7$ is 4480, then the value of x where		$(1) \{80, 83, 86, 89\} \qquad (2) \{84, 86, 88, 90\}$
	$x \in N$ is equal to :		(3) {79, 81, 83, 85} (4) {84, 87, 90, 93}
	(1) 2 (2) 4 (3) 3 (4) 1	2.	If A = $\{x \in \mathbf{R}: x - 2 > 1\}$
39.	The value of $4 + \frac{1}{5 + \frac{1}{4 + \frac{1}{5 + \frac{1}{5 + \frac{1}{4 + \dots \infty}}}}}$ is :		$B = \{x \in \mathbf{R} : \sqrt{x^2 - 3} > 1\}, C = \{x \in \mathbf{R} : x - 4 \ge 2\}$
	$5 + \frac{1}{1}$		and \mathbf{Z} is the set of all integers, then the number of
	$4 + \frac{1}{5}$		subsets of the set $(A \cap B \cap C)^C \cap \mathbf{Z}$ is
	$5 + \frac{1}{4 + \dots \infty}$	3.	Let $A = \{n \in N : n \text{ is a 3-digit number}\}\$
	(1) $2 + \frac{2}{30}$ (2) $2 + \frac{4}{30}$		$B = \{9k+2 : k \in N\}$
	(1) $2 + \frac{2}{5}\sqrt{30}$ (2) $2 + \frac{4}{\sqrt{5}}\sqrt{30}$		and C = $\{9k + l : k \in N\}$ for some $l (0 < l < 9)$
	(1) $2 + \frac{2}{5}\sqrt{30}$ (2) $2 + \frac{4}{\sqrt{5}}\sqrt{30}$ (3) $4 + \frac{4}{\sqrt{5}}\sqrt{30}$ (4) $5 + \frac{2}{5}\sqrt{30}$		If the sum of all the elements of the se
	$(3) 4 + \frac{1}{\sqrt{5}} \sqrt{30}$ (4) $3 + \frac{1}{5} \sqrt{30}$		A \cap (B \cup C) is 274 \times 400, then <i>l</i> is equa
			to

- 4. Let $R = \{(P,Q) \mid P \text{ and } Q \text{ are at the same}\}$ distance from the origin} be a relation, then the equivalence class of (1,-1) is the set : (1) $S = \{(x,y) \mid x^2 + y^2 = 4\}$ (2) $S = \{(x,y) | x^2 + y^2 = 1\}$

 - (3) S = {(x,y) | $x^2 + y^2 = \sqrt{2}$ }
 - (4) S = {(x,y) | $x^2 + y^2 = 2$ }
- 5. In a school, there are three types of games to be played. Some of the students play two types of games, but none play all the three games. Which Venn diagrams can justify the above statement?

6. The number of elements in the set

$$\{x \in \mathbb{R} : (|x| - 3) | x + 4 | = 6\}$$
 is equal to

(1) 3(2) 2(3)4(4) 1

RELATION

1. Let N be the set of natural numbers and a relation R on N be defined by

$$\mathbf{R} = \{ (\mathbf{x}, \mathbf{y}) \in \mathbf{N} \times \mathbf{N} : \mathbf{x}^3 - 3\mathbf{x}^2\mathbf{y} - \mathbf{x}\mathbf{y}^2 + 3\mathbf{y}^3 = 0 \}.$$

Then the relation R is :

- (1) symmetric but neither reflexive nor transitive
- (2) reflexive but neither symmetric nor transitive
- (3) reflexive and symmetric, but not transitive
- (4) an equivalence relation

- 2. Which of the following is not correct for relation R on the set of real numbers ?
 - (1) (x, y) $\in \mathbb{R} \iff 0 < |x| |y| \le 1$ is neither transitive nor symmetric.
 - (2) $(x, y) \in R \iff 0 < |x-y| \le 1$ is symmetric and transitive.
 - (3) $(x, y) \in R \iff |x| |y| \le 1$ is reflexive but not symmetric.
 - (4) $(x, y) \in R \iff |x-y| \le 1$ is reflexive and symmetric.
- 3. Let A = $\{2, 3, 4, 5, ..., 30\}$ and ' \simeq ' be an equivalence relation on A \times A, defined by $(a, b) \approx (c, d)$, if and only if ad = bc. Then the number of ordered pairs which satisfy this equivalence relation with ordered pair (4, 3) is equal to :

$$(1) 5 (2) 6 (3) 8 (4) 7$$

- 4. Define a relation R over a class of $n \times n$ real matrices A and B as "ARB iff there exists a non-singular matrix P such that $PAP^{-1} = B''$. Then which of the following is true?
 - (1) R is symmetric, transitive but not reflexive,
 - (2) R is reflexive, symmetric but not transitive
 - (3) R is an equivalence relation
 - (4) R is reflexive, transitive but not symmetric

FUNCTION

Let [x] denote the greatest integer < x, where $x \in \mathbf{R}$. 1. If the domain of the real valued function $f(x) = \sqrt{\frac{[[x]] - 2}{[[x]] - 3}} \text{ is } (-\infty, a) \cup [b, c) \cup [4, \infty), a < b < c,$ then the value of a + b + c is : (1) 8(2)1(3) - 2(4) - 3

100de06\B0BA-BB\Kota\EE MAIN\Top

ALLEN Let f : $\mathbf{R} - \left\{\frac{\alpha}{6}\right\} \rightarrow \mathbf{R}$ be defined by 2. $f(x) = \frac{5x+3}{6x-\alpha}$. Then the value of α for which $(\text{fof})(\mathbf{x}) = \mathbf{x}, \text{ for all } \mathbf{x} \in \mathbf{R} - \left\{\frac{\alpha}{6}\right\}, \text{ is } :$ (1) No such α exists (2)5(3) 8(4) 63. Let [x] denote the greatest integer less than or equal to x. Then, the values of $x \in \mathbf{R}$ satisfying the equation $[e^x]^2 + [e^x + 1] - 3 = 0$ lie in the interval : (1) $\left| 0, \frac{1}{e} \right|$ (2) $[log_e 2, log_e 3)$ (3)[1, e] $(4) [0, \log_e 2)$ 4. Let $A = \{0, 1, 2, 3, 4, 5, 6, 7\}$. Then the number of bijective functions $f : A \rightarrow A$ such that f(1) + f(2) = 3 - f(3) is equal to 5. Let $g : \mathbf{N} \to \mathbf{N}$ be defined as g(3n+1) = 3n+2, g(3n+2) = 3n+3, g(3n+3) = 3n+1, for all $n \ge 0$. Then which of the following statements is true ? (1) There exists an onto function $f: N \to N$ such that fog = f(2) There exists a one-one function f: $N \rightarrow N$ such that fog = f(3) gogog = g (4) There exists a function $f: N \rightarrow N$ such that gof = fIf [x] be the greatest integer less than or equal to x, 6. then $\sum_{n=1}^{100} \left| \frac{(-1)^n n}{2} \right|$ is equal to : (1) 0(2)4(4) 2(3) - 2ode06\B0BA-BB\Kota\JEE MAIN\Topicwise JEE MAIN-2021 7. Consider function $f: A \rightarrow B$ and $g: B \to C$ (A, B, C \subseteq **R**) such that $(gof)^{-1}$ exists, then: (1) f and g both are one-one (2) f and g both are onto (3) f is one-one and g is onto (4) f is onto and g is one-one

Е

JEE (Main) Examination-2021 Let $S = \{1, 2, 3, 4, 5, 6, 7\}$. Then the number of possible functions $f : S \rightarrow S$ such that $f(m \cdot n) = f(m) \cdot f(n)$ for every m, $n \in S$ and $\mathbf{m} \cdot \mathbf{n} \in \mathbf{S}$ is equal to .

25

9. Let $f : \mathbf{R} \to \mathbf{R}$ be defined as

$$f(x + y) + f(x - y) = 2 f(x) f(y), f\left(\frac{1}{2}\right) = -1.$$

Then,

8.

the value of
$$\sum_{k=1}^{20} \frac{1}{\sin(k)\sin(k+f(k))}$$
 is equal to :
(1) $\csc^2(21) \cos(20) \cos(2)$
(2) $\sec^2(1) \sec(21) \cos(20)$
(3) $\csc^2(1) \csc(21) \sin(20)$
(4) $\sec^2(21) \sin(20) \sin(2)$

The domain of the function $\operatorname{cosec}^{-1}\left(\frac{1+x}{x}\right)$ is : 10.

$$(1)\left(-1,-\frac{1}{2}\right]\cup(0,\infty) \qquad (2)\left[-\frac{1}{2},0\right]\cup[1,\infty)$$
$$(3)\left(-\frac{1}{2},\infty\right)-\{0\} \qquad (4)\left[-\frac{1}{2},\infty\right)-\{0\}$$

11. Let
$$f: \mathbf{N} \to \mathbf{N}$$
 be a function such that
 $f(m + n) = f(m) + f(n)$ for every m, $n \in \mathbf{N}$.
If $f(6) = 18$, then $f(2) \cdot f(3)$ is equal to :
(1) 6 (2) 54 (3) 18 (4) 36

12. The range of the function,

$$f(x) = \log_{\sqrt{5}} \left(3 + \cos\left(\frac{3\pi}{4} + x\right) + \cos\left(\frac{\pi}{4} + x\right) + \cos\left(\frac{\pi}{4} - x\right) - \cos\left(\frac{3\pi}{4} - x\right) \right)$$

is:
(1) $\left(0, \sqrt{5}\right)$ (2) $\left[-2, 2\right]$
(3) $\left[\frac{1}{\sqrt{5}}, \sqrt{5}\right]$ (4) $\left[0, 2\right]$

13. Let
$$f(x)$$
 be a polynomial of degree 3 such that
 $f(k) = -\frac{2}{k}$ for $k = 2, 3, 4, 5$. Then the value of
 $52 - 10 f(10)$ is equal to :

- 14. Let f, g : N \rightarrow N such that $f(n + 1) = f(n) + f(1) \forall n \in N \text{ and } g \text{ be any}$ arbitrary function. Which of the following statements is NOT true ? (1) If fog is one-one, then g is one-one (2) If f is onto, then $f(n) = n \forall n \in N$ (3) f is one-one (4) If g is onto, then fog is one-one A function f(x) is given by $f(x) = \frac{5^x}{5^x + 5}$, 15. then the sum of the series $f\left(\frac{1}{20}\right) + f\left(\frac{2}{20}\right) + f\left(\frac{3}{20}\right) + \dots + f\left(\frac{39}{20}\right)$ is equal to : (1) $\frac{19}{2}$ (2) $\frac{49}{2}$ (3) $\frac{29}{2}$ (4) $\frac{39}{2}$ Let A = $\{1, 2, 3, ..., 10\}$ and $f : A \to A$ be 16. defined as $f(k) = \begin{cases} k+1 & \text{if } k \text{ is odd} \\ k & \text{if } k \text{ is even} \end{cases}$ Then the number of possible functions g: A \rightarrow A such that go f = f is $(1) 10^5$ $(2) {}^{10}C_5$ (3) 5⁵ (4) 5!17. Let $f(x) = \sin^{-1}x$ and $g(x) = \frac{x^2 - x - 2}{2x^2 - x - 6}$. If $g(2) = \lim_{x \to 2} g(x)$, then the domain of the function fog is : (1) $\left(-\infty, -2\right] \cup \left|-\frac{3}{2}, \infty\right|$ (2) $(-\infty, -2] \cup [-1, \infty)$ (3) $\left(-\infty, -2\right] \cup \left|-\frac{4}{3}, \infty\right)$ (4) $(-\infty, -1] \cup [2, \infty)$
- ALLEN 18. Let f be any function defined on R and let it satisfy the condition : $|f(x) - f(y)| \le |(x - y)^2|, \forall (x, y) \in \mathbb{R}$ If f(0) = 1, then : (1) f(x) can take any value in R (2) $f(\mathbf{x}) < 0, \forall \mathbf{x} \in \mathbf{R}$ (3) $f(\mathbf{x}) = 0, \forall \mathbf{x} \in \mathbf{R}$ (4) $f(\mathbf{x}) > 0, \forall \mathbf{x} \in \mathbf{R}$ 19. If $a + \alpha = 1$, $b + \beta = 2$ and $af(x) + \alpha f\left(\frac{1}{x}\right) = bx + \frac{\beta}{x}, x \neq 0$, then the value of expression $\frac{f(x) + f\left(\frac{1}{x}\right)}{x + \frac{1}{x}}$ is _____. 20. The number of solutions of the equation $x + 2 \tan x = \frac{\pi}{2}$ in the interval [0, 2π] is : (1)3(2)4(3) 2(4) 521. The inverse of $y = 5^{\log x}$ is : (1) $x = 5^{\log y}$ (2) $x = y^{\log 5}$ (4) $x = 5^{\frac{1}{\log y}}$ (3) $x = v^{\frac{1}{\log 5}}$ If the functions are defined as $f(x) = \sqrt{x}$ and 22. $g(x) = \sqrt{1-x}$, then what is the common domain of the following functions : f + g, f - g, f/g, g/f, g - f where $(f \pm g)(x) =$ $f(\mathbf{x}) \pm \mathbf{g}(\mathbf{x}), (f/\mathbf{g})(\mathbf{x}) = \frac{f(\mathbf{x})}{\mathbf{g}(\mathbf{x})}$ (1) 0 < x < 1(2) 0 < x < 1 $(3) \ 0 < x < 1 \tag{4} \ 0 < x < 1$ Let $f : \mathbb{R} - \{3\} \rightarrow \mathbb{R} - \{1\}$ be defined by 23. $f(\mathbf{x}) = \frac{\mathbf{x} - 2}{\mathbf{x} - 3}$. Let $\mathbf{g} : \mathbf{R} \to \mathbf{R}$ be given as g(x) = 2x - 3. Then, the sum of all the values of x for which $f^{-1}(x) + g^{-1}(x) = \frac{13}{2}$ is equal to (1)7(2) 2(3)5(4) 3

node06\B0BA-BB\Kota\JEE MAI

INVERSE TRIGONOMETRY FUNCTION 1. The number of real roots of the equation $\tan^{-1}\sqrt{x(x+1)} + \sin^{-1}\sqrt{x^2 + x + 1} = \frac{\pi}{4}$ is : (1) 1 (2) 2 (3) 4 (4) 0 The value of $\tan\left(2\tan^{-1}\left(\frac{3}{5}\right) + \sin^{-1}\left(\frac{5}{13}\right)\right)$ is 2. equal to : (1) $\frac{-181}{69}$ (2) $\frac{220}{21}$ (3) $\frac{-291}{76}$ (4) $\frac{151}{63}$ 3. If the domain of the function $f(\mathbf{x}) = \frac{\cos^{-1}\sqrt{\mathbf{x}^2 - \mathbf{x} + 1}}{\sqrt{\sin^{-1}\left(\frac{2\mathbf{x} - 1}{2}\right)}}$ is the interval $(\alpha, \beta]$, then $\alpha + \beta$ is equal to : (1) $\frac{3}{2}$ (2) 2 (3) $\frac{1}{2}$ (4) 1 If $\sum_{1}^{50} \tan^{-1} \frac{1}{2r^2} = p$, then the value of tan p is : 4. (1) $\frac{101}{102}$ (2) $\frac{50}{51}$ (3) 100 (4) $\frac{51}{50}$ If $(\sin^{-1} x)^2 - (\cos^{-1} x)^2 = a; 0 < x < 1, a \neq 0$, 5. then the value of $2x^2 - 1$ is : (1) $\cos\left(\frac{4a}{\pi}\right)$ (2) $\sin\left(\frac{2a}{\pi}\right)$ (3) $\cos\left(\frac{2a}{\pi}\right)$ (4) $\sin\left(\frac{4a}{\pi}\right)$ 6. Let M and m respectively be the maximum and

minimum values of the function $f(x) = \tan^{-1}(\sin x + \cos x)$ in $\left[0, \frac{\pi}{2}\right]$, Then the value of $\tan(M - m)$ is

equal to:

ALLEN

- (1) $2+\sqrt{3}$ (2) $2-\sqrt{3}$
- (3) $3 + 2\sqrt{2}$ (4) $3 2\sqrt{2}$

The domain of the function

7.

9.

$$f(x) = \sin^{-1} \left(\frac{3x^2 + x - 1}{(x - 1)^2} \right) + \cos^{-1} \left(\frac{x - 1}{x + 1} \right) \text{ is :}$$

$$(1) \begin{bmatrix} 0, \frac{1}{4} \end{bmatrix} \qquad (2) \begin{bmatrix} -2, 0 \end{bmatrix} \cup \begin{bmatrix} \frac{1}{4}, \frac{1}{2} \end{bmatrix}$$

$$(3) \begin{bmatrix} \frac{1}{4}, \frac{1}{2} \end{bmatrix} \cup \{0\} \qquad (4) \begin{bmatrix} 0, \frac{1}{2} \end{bmatrix}$$

$$\cos^{-1} (\cos (-5)) + \sin^{-1} (\sin (6)) - \tan^{-1} (\tan (12))$$

JEE (Main) Examination-2021

27

8. $\cos^{-1}(\cos(-5)) + \sin^{-1}(\sin(6)) - \tan^{-1}(\tan(12))$ is equal to :

(The inverse trigonometric functions take the principal values)

(1) $3\pi - 11$ (2) $4\pi - 9$ (3) $4\pi - 11$ (4) $3\pi + 1$ $\operatorname{cosec}\left[2\cot^{-1}(5) + \cos^{-1}\left(\frac{4}{5}\right)\right]$ is equal to :

(1)
$$\frac{56}{33}$$
 (2) $\frac{65}{56}$ (3) $\frac{65}{33}$ (4) $\frac{75}{56}$

10. If
$$0 < a, b < 1$$
, and $\tan^{-1}a + \tan^{-1}b = \frac{\pi}{4}$, then the

value of

$$(a+b) - \left(\frac{a^2 + b^2}{2}\right) + \left(\frac{a^3 + b^3}{3}\right) - \left(\frac{a^4 + b^4}{4}\right) + \dots \text{ is:}$$

(1) log_e2 (2) e² - 1

(3) e (4)
$$\log_{e}\left(\frac{e}{2}\right)$$

11. If
$$\frac{\sin^{-1} x}{a} = \frac{\cos^{-1} x}{b} = \frac{\tan^{-1} y}{c}; 0 < x < 1$$
, then
the value of $\cos\left(\frac{\pi c}{a+b}\right)$ is
(1) $\frac{1-y^2}{y\sqrt{y}}$ (2) $1-y^2$
(3) $\frac{1-y^2}{1+y^2}$ (4) $\frac{1-y^2}{2y}$

mode06\B0BA-BB\Kota\JEE MAIN\Topicwise JEE MAIN-2021

12. Given that the inverse trigonometric functions take principal values only. Then, the number of real values of х which satisfy $\sin^{-1}\left(\frac{3x}{5}\right) + \sin^{-1}\left(\frac{4x}{5}\right) = \sin^{-1}x$ is equal to: (1) 2(2)1(3) 3 (4) 013. Let $S_k = \sum_{r=1}^{k} \tan^{-1} \left(\frac{6^r}{2^{2r+1} + 3^{2r+1}} \right)$. Then $\lim_{k \to \infty} S_k$ is equal to : (1) $\tan^{-1}\left(\frac{3}{2}\right)$ (2) $\frac{\pi}{2}$ (3) $\cot^{-1}\left(\frac{3}{2}\right)$ (4) $\tan^{-1}(3)$ 14. The number of solutions of the equation $\sin^{-1} \left| x^2 + \frac{1}{2} \right| + \cos^{-1} \left| x^2 - \frac{2}{2} \right| = x^2$, for $x \in [-1, 1]$, and [x] denotes the greatest integer less than or equal to x, is :

15. If $\cot^{-1}(\alpha) = \cot^{-1} 2 + \cot^{-1} 8 + \cot^{-1} 18 + \cot^{-1} 32 + \dots$ upto 100 terms, then α is : (1) 1.01 (2) 1.00 (3) 1.02 (4) 1.03

 $\tan^{-1} (x + 1) + \cot^{-1} \left(\frac{1}{x - 1}\right) = \tan^{-1} \left(\frac{8}{31}\right) \text{ is :}$ (1) $-\frac{32}{4}$ (2) $-\frac{31}{4}$ (3) $-\frac{30}{4}$ (4) $-\frac{33}{4}$

17. The real valued function $f(x) = \frac{\cos ec^{-1}x}{\sqrt{x - [x]}}$,

where [x] denotes the greatest integer less than or equal to x, is defined for all x belonging to :

- (1) all reals except integers
- (2) all non-integers except the interval [-1, 1]
- (3) all integers except 0, -1, 1
- (4) all reals except the Interval [-1,1]

If the value of $\lim_{x\to 0} \left(2 - \cos x \sqrt{\cos 2x}\right)^{\left(\frac{x+2}{x^2}\right)}$ is 1. equal to e^a, then a is equal to If $\lim_{x\to 0} \frac{\alpha x e^x - \beta \log_e(1+x) + \gamma x^2 e^{-x}}{x \sin^2 x} = 10, \alpha, \beta, \gamma \in \mathbf{R},$ 2. then the value of $\alpha + \beta + \gamma$ is The value of $\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^{n} \frac{(2i-1)+8n}{(2i-1)+4n}$ is equal to : 3. (1) $5 + \log_{e}\left(\frac{3}{2}\right)$ (2) $2 - \log_{e}\left(\frac{2}{3}\right)$ (3) $3 + 2\log_{e}\left(\frac{2}{2}\right)$ (4) $1 + 2\log_{e}\left(\frac{3}{2}\right)$ The value of $\lim_{x \to 0} \left(\frac{x}{\sqrt[8]{1-\sin x} - \sqrt[8]{1+\sin x}} \right)$ is 4. equal to : (2)4(3) - 4(1)0(4) - 1 $\lim_{x \to 2} \left(\sum_{n=1}^{9} \frac{x}{n(n+1)x^2 + 2(2n+1)x + 4} \right)$ is equal to : 5. (1) $\frac{9}{44}$ (2) $\frac{5}{24}$ (3) $\frac{1}{5}$ (4) $\frac{7}{36}$ 6. If α , β are the distinct roots of $x^2 + bx + c = 0$, $\lim_{x \to \beta} \frac{e^{2(x^2 + bx + c)} - 1 - 2(x^2 + bx + c)}{(x - \beta)^2} \quad \text{is}$ then equal to: (1) $b^2 + 4c$ (2) $2(b^2 + 4c)$ (3) $2(b^2 - 4c)$ (4) $b^2 - 4c$ 7. If 0 < x < 1 and $y = \frac{1}{2}x^2 + \frac{2}{2}x^3 + \frac{3}{4}x^4 + ...,$ then the value of e^{1+y} at $x = \frac{1}{2}$ is: (1) $\frac{1}{2}e^2$ (2) 2e (3) $\frac{1}{2}\sqrt{e}$ (4) $2e^2$ If $\lim_{x \to \infty} (\sqrt{x^2 - x + 1} - ax) = b$, then the ordered 8. pair (a, b) is: $(1)\left(1,\frac{1}{2}\right)$ (2) $\left(1, -\frac{1}{2}\right)$ $(4)\left(-1,-\frac{1}{2}\right)$ $(3)\left(-1,\frac{1}{2}\right)$

LIMIT

node06\B0BA-BB\Kota\EE MAIN\Topicwise JEE MAIN-2021

Ε

JEE (Main) Examination-2021

 $f(x) = \begin{cases} \frac{\cos^{-1}(1 - \{x\}^2)\sin^{-1}(1 - \{x\})}{\{x\} - \{x\}^3}, x \neq 0\\ \alpha, & x = 0 \end{cases}$

is continuous at x = 0, where $\{x\} = x - [x], [x]$

Let $\alpha \in R$ be such that the function

17.

29

is

is the greatest integer less than or equal to x.
Then :
(1)
$$\alpha = \frac{\pi}{\sqrt{2}}$$
 (2) $\alpha = 0$
(3) no such α exists (4) $\alpha = \frac{\pi}{4}$
18. Let $f : (0, 2) \rightarrow \mathbb{R}$ be defined as
 $f(x) = \log_2 \left(1 + \tan\left(\frac{\pi x}{4}\right)\right)$.
Then, $\lim_{n \to \infty} \frac{2}{n} \left(f\left(\frac{1}{n}\right) + f\left(\frac{2}{n}\right) + \dots + f(1)\right)$ is equal
to _______.
which
9. If $\lim_{x \to 0} \frac{ae^x - b\cos x + ce^{-x}}{x \sin x} = 2$, then $a + b + c$ is
equal to ______.
20. The value of $\lim_{n \to \infty} \frac{[r] + [2r] + \dots + [nr]}{n^2}$, where r is
non-zero real number and [r] denotes the greatest
integer less than or equal to r, is equal to :
(1) $\frac{r}{2}$ (2) r (3) 2r (4) 0
21. The value of the limit $\lim_{\theta \to 0} \frac{\tan(\pi \cos^2 \theta)}{\sin(2\pi \sin^2 \theta)}$ is
equal to :
(1) $-\frac{1}{2}$ (2) $-\frac{1}{4}$ (3) 0 (4) $\frac{1}{4}$
22. The value of
 $\lim_{x \to 0^+} \frac{\cos^{-1}(x - [x]^2) \cdot \sin^{-1}(x - [x]^2)}{x - x^3}$, where [x]
denotes the greatest integer $\le x$ is :
(1) π (2) 0 (3) $\frac{\pi}{4}$ (4) $\frac{\pi}{2}$

node06\B0BA-BB\Kota\JEE MAIN\Topicwise JEE MAIN-2021

23. If $\lim_{x \to 0} \frac{\sin^{-1} x - \tan^{-1} x}{3x^3}$ is equal to L, then the value of (6L + 1) is (1) $\frac{1}{6}$ (2) $\frac{1}{2}$ (3) 6 (4) 2

CONTINUITY

1. Let a function $f: \mathbf{R} \to \mathbf{R}$ be defined as

$$f(x) = \begin{cases} \sin x - e^{x} & \text{if } x \le 0\\ a + [-x] & \text{if } 0 < x < 1\\ 2x - b & \text{if } x \ge 1 \end{cases}$$

Where [x] is the greatest integer less than or equal to x. If *f* is continuous on **R**, then (a + b) is equal to:

$$(1) 4 (2) 3 (3) 2 (4) 5$$

2. Let $f: \mathbf{R} \to \mathbf{R}$ be defined as

$$f(x) = \begin{cases} \frac{\lambda |x^2 - 5x + 6|}{\mu(5x - x^2 - 6)}, & x < 2\\ e^{\frac{\tan(x-2)}{x - [x]}}, & x > 2\\ \mu, & x = 2 \end{cases}$$

where [x] is the greatest integer less than or equal to

x. If f is continuous at x = 2, then $\lambda + \mu$ is equal to :

- (1) e(-e+1) (2) e(e-2)(3) 1 (4) 2e-1
- 3. Let $f:\left(-\frac{\pi}{4},\frac{\pi}{4}\right) \to \mathbf{R}$ be defined as

$$f(x) = \begin{cases} (1+|\sin x|)^{\frac{3a}{|\sin x|}} & , & -\frac{\pi}{4} < x < 0 \\ b & , & x = 0 \\ e^{\cot 4x/\cot 2x} & , & 0 < x < \frac{\pi}{4} \end{cases}$$

If f is continuous at x = 0, then the value of $6a + b^2$ is equal to :

(1)
$$1 - e$$
 (2) $e - 1$ (3) $1 + e$ (4) e

4. Let $a, b \in \mathbf{R}$, $b \neq 0$, Define a function

$$f(x) = \begin{cases} a \sin \frac{\pi}{2}(x-1), & \text{for } x \le 0\\ \frac{\tan 2x - \sin 2x}{bx^3}, & \text{for } x > 0. \end{cases}$$

If f is continuous at x = 0, then 10 - ab is equal to .

5. If the function
$$f(x) = \begin{cases} \frac{1}{x} \log_e \left(\frac{1+\frac{x}{a}}{1-\frac{x}{b}}\right) & , x < 0 \\ k & , x = 0 \\ \frac{\cos^2 x - \sin^2 x - 1}{\sqrt{x^2 + 1} - 1} & , x > 0 \end{cases}$$

is continuous at x = 0, then $\frac{1}{a} + \frac{1}{b} + \frac{4}{k}$ is equal to :

$$(3) - 4$$
 (4) 4

Let [t] denote the greatest integer \leq t. The number of points where the function

$$f(x) = [x] |x^2 - 1| + \sin\left(\frac{\pi}{[x] + 3}\right) - [x + 1], x \in (-2, 2)$$

is not continuous is _____.

(2)5

(1) - 5

6.

7. If
$$f : \mathbb{R} \to \mathbb{R}$$
 is a function defined by
 $f(\mathbf{x}) = [\mathbf{x} - 1]\cos\left(\frac{2\mathbf{x} - 1}{2}\right)\pi$, where [.] denotes

the greatest integer function, then f is :

- discontinuous at all integral values of x except at x = 1
- (2) continuous only at x = 1
- (3) continuous for every real x
- (4) discontinuous only at x = 1

8. Let $f : \mathbb{R} \to \mathbb{R}$ be defined as

$$f(\mathbf{x}) = \begin{cases} 2\sin\left(-\frac{\pi \mathbf{x}}{2}\right), & \text{if } \mathbf{x} < -1\\ |\mathbf{a}\mathbf{x}^2 + \mathbf{x} + \mathbf{b}|, & \text{if } -1 \le \mathbf{x} \le 1\\ \sin(\pi \mathbf{x}), & \text{if } \mathbf{x} > 1 \end{cases}$$

If f(x) is continuous on R, then a + b equals:

(1) -3 (2) -1 (3) 3 (4) 1

Е

9. Let
$$f: R \to R$$
 and $g: R \to R$ be defined as

$$f(x) = \begin{cases} x+a, & x < 0 \\ |x-1|, & x \ge 0 \end{cases}$$
and

$$g(x) = \begin{cases} x+1, & x < 0 \\ (x-1)^2 + b, & x \ge 0 \end{cases}$$
where a, b are non-negative real numbers. If
 $(gof)(x)$ is continuous for all $x \in R$, then $a + b$
is equal to ______.
10. If the function $f(x) = \frac{\cos(\sin x) - \cos x}{x^4}$ is
continuous at each point in its domain and
 $f(0) = \frac{1}{k}$, then k is ______.
11. Let $f: R \to R$ be a function defined as

$$f(x) = \begin{cases} \frac{\sin(a+1)x + \sin 2x}{2x} & \text{, if } x < 0\\ b & \text{, if } x = 0\\ \frac{\sqrt{x+bx^3} - \sqrt{x}}{bx^{5/2}} & \text{, if } x > 0 \end{cases}$$

If f is continuous at x = 0, then the value of a + b is equal to :

(1)
$$-\frac{5}{2}$$
 (2) -2 (3) -3 (4) $-\frac{3}{2}$

DIFFERENTIABILITY

1. Let a function $g : [0, 4] \to \mathbf{R}$ be defined as $g(x) = \begin{cases} \max_{0 \le t \le x} \{t^3 - 6t^2 + 9t - 3\}, & 0 \le x \le 3 \\ 4 - x, & 3 < x \le 4 \end{cases}$

> then the number of points in the interval (0, 4)where g(x) is NOT differentiable, is

Let $f : \mathbf{R} \to \mathbf{R}$ be defined as

$$f(\mathbf{x}) = \begin{cases} \frac{\mathbf{x}^{3}}{(1 - \cos 2\mathbf{x})^{2}} \log_{e} \left(\frac{1 + 2\mathbf{x}e^{-2\mathbf{x}}}{(1 - \mathbf{x}e^{-\mathbf{x}})^{2}} \right) &, \quad \mathbf{x} \neq \mathbf{0} \\ \alpha &, \quad \mathbf{x} = \mathbf{0} \end{cases}$$

If *f* is continuous at x = 0, then α is equal to : (1) 1 (2) 3 (3) 0 (4) 2 $f(\mathbf{x}) = \begin{cases} 3\left(1 - \frac{|\mathbf{x}|}{2}\right) & \text{if } |\mathbf{x}| \le 2\\ 0 & \text{if } |\mathbf{x}| > 2 \end{cases}$

Let $f : \mathbf{R} \to \mathbf{R}$ be a function defined as

3.

Let $g : \mathbf{R} \to \mathbf{R}$ be given by g(x) = f(x+2) - f(x-2). If n and m denote the number of points in **R** where g is not continuous and not differentiable, respectively, then n + m is equal to _____.

4. Let $f : \mathbf{R} \to \mathbf{R}$ be a function such that f(2) = 4and f'(2)=1. Then, the value of

$$\lim_{x \to 2} \frac{x^2 f(2) - 4f(x)}{x - 2}$$
 is equal to :
(1) 4 (2) 8 (3) 16 (4) 12

5. Let
$$f: [0, 3] \to \mathbf{R}$$
 be defined by
 $f(x) = \min \{x - [x], 1 + [x] - x\}$

where [x] is the greatest integer less than or equal to x. Let P denote the set containing all $x \in [0, 3]$ where f is discontinuous, and Q denote the set containing all $x \in (0, 3)$ where f is not differentiable. Then the sum of number of elements in P and Q is equal to _____. $\Pi \Pi \Pi f: [0, 3] \rightarrow \mathbb{R}$

6. Let $f: [0, \infty) \rightarrow [0, 3]$ be a function defined by

$$f(\mathbf{x}) = \begin{cases} \max\{\sin t : 0 \le t \le x\}, \ 0 \le x \le \pi \\ 2 + \cos x, \qquad x > \pi \end{cases}$$

Then which of the following is true?

- (1) f is continuous everywhere but not differentiable exactly at one point in $(0, \infty)$
- (2) *f* is differentiable everywhere in $(0, \infty)$
- (3) *f* is not continuous exactly at two points in $(0, \infty)$
- (4) f is continuous everywhere but not differentiable exactly at two points in $(0, \infty)$

node06\B0BA-BB\Kota\LEE MAIN\Topicwise JEE MAIN-2021

2.

32 IEE (Main) Examination-2021

- 7. Let [t] denote the greatest integer less than or equal to t. Let f(x) = x - [x], g(x) = 1 - x + [x], and $h(x) = \min\{f(x), g(x)\}, x \in [-2, 2]$. Then h is :
 - (1) continuous in [-2, 2] but not differentiable at more than four points in (-2, 2)
 - (2) not continuous at exactly three points in [-2, 2]
 - (3) continuous in [-2, 2] but not differentiable at exactly three points in (-2, 2)
 - (4) not continuous at exactly four points in [-2, 2]

8. The function
$$f(x) = |x^2 - 2x - 3| \cdot e^{|9x^2 - 12x + 4|}$$
 is

not differentiable at exactly :

(1) four points (2) three points

- (3) two points (4) one point
- 9. The number of points, at which the function $f(x) = |2x + 1| - 3|x + 2| + |x^2 + x - 2|, x \in R$ is not differentiable, is _____.
- 10. A function f is defined on [-3, 3] as

$$f(x) = \begin{cases} \min\{|x|, 2 - x^2\}, -2 \le x \le 2\\ [|x|], 2 < |x| \le 3 \end{cases}$$

where [x] denotes the greatest integer $\leq x$. The number of points, where f is not differentiable in (-3, 3) is _____.

Let the functions $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ be 11. defined as :

$$f(\mathbf{x}) = \begin{cases} x+2, \ x<0\\ x^2, \ x \ge 0 \end{cases} \text{ and } g(\mathbf{x}) = \begin{cases} x^3, \ x<1\\ 3x-2, \ x \ge 1 \end{cases}$$

Then, the number of points in \mathbb{R} where $(f \circ g)(x)$

- is NOT differentiable is equal to :
- (1)3(2)1(4) 2(3) 0

If $f(\mathbf{x}) = \begin{cases} \frac{1}{|\mathbf{x}|} & ; |\mathbf{x}| \ge 1\\ a\mathbf{x}^2 + b & ; |\mathbf{x}| < 1 \end{cases}$ is differentiable at 12.

> every point of the domain, then the values of a and b are respectively :

(1)
$$\frac{1}{2}, \frac{1}{2}$$

(2) $\frac{1}{2}, -\frac{3}{2}$
(3) $\frac{5}{2}, -\frac{3}{2}$
(4) $-\frac{1}{2}, \frac{3}{2}$

Let $f : \mathbb{R} \to \mathbb{R}$ satisfy the equation 13. $f(x + y) = f(x) \cdot f(y)$ for all x, $y \in R$ and $f(x) \neq 0$ for any $x \in R$. If the function f is differentiable at x = 0 and f'(0) = 3, then $\lim_{h \to 0} \frac{1}{h} (f(h) - 1)$ is equal to _____.

METHOD OF DIFFERENTIATION

Consider the function $f(x) = \frac{P(x)}{\sin(x-2)}, x \neq 2$ 1. = 7 $\mathbf{x} = 2$

> Where P(x) is a polynomial such that P''(x) is always a constant and P(3) = 9. If f(x) is continuous at x = 2, then P(5) is equal to _____.

2. Let
$$f(x) = \cos\left(2\tan^{-1}\sin\left(\cot^{-1}\sqrt{\frac{1-x}{x}}\right)\right)$$
,

0 < x < 1. Then : $(1) (1-x)^2 f'(x) - 2(f(x))^2 = 0$ $(2) (1 + x)^2 f'(x) + 2(f(x))^2 = 0$ $(3) (1-x)^2 f'(x) + 2(f(x))^2 = 0$ (4) $(1 + x)^2 f'(x) - 2(f(x))^2 = 0$

If y = y(x) is an implicit function of x such that \overline{a} 3. $\log_{e}(x + y) = 4xy$, then $\frac{d^{2}y}{dx^{2}}$ at x = 0 is equal to

4. If
$$y^{1/4} + y^{-1/4} = 2x$$
, and $(x^2 - 1)\frac{d^2y}{dx^2} + \alpha x \frac{dy}{dx} + \beta y = 0$,
then $|\alpha - \beta|$ is equal to _____.

ALLEN
5. If
$$y(x) = \cot^{-1}\left(\frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}\right), x \in \left(\frac{\pi}{2}, \pi\right),$$

then $\frac{dy}{dx}$ at $x = \frac{5\pi}{6}$ is :
(1) $-\frac{1}{2}$ (2) -1 (3) $\frac{1}{2}$ (4) 0
(1) $\frac{2}{3}$ (2) $\frac{3}{2}$ (3) 0 (4) $\frac{1}{15}$
7. Let $f(x)$ be a differentiable function at $x = a$
with $f'(a) = 2$ and $f(a) = 4$. Then
 $\lim_{x \to a} \frac{xf(a) - af(x)}{x - a}$ equals :
(1) $2a + 4$ (2) $4 - 2a$ (3) $2a - 4$ (4) $a + 4$
8. The maximum slope of the curve
 $y = \frac{1}{2}x^4 - 5x^3 + 18x^2 - 19x$ occurs at the point
(1) (2,2) (2) (0,0)
(3) (2,9) (4) $\left(3,\frac{21}{2}\right)$
9. Let f be a twice differentiable function defined
on R such that $f(0) = 1$, $f'(0) = 2$ and $f'(x) \neq 0$
for all $x \in R$. If $\begin{vmatrix} f(x) & f'(x) \\ f'(x) & f''(x) \end{vmatrix} = 0$, for all $x \in R$,
then the value of f(1) lies in the interval:
(1) (9, 12) (2) (6, 9) (3) (0, 3) (4) (3, 6)

10. Let f : S → S where S = (0, ∞) be a twice differentiable function such that f(x + 1) = xf(x). If g : S → R be defined as g(x) = log_ef(x), then the value of |g"(5) - g"(1)| is equal to :

(1)
$$\frac{205}{144}$$
 (2) $\frac{197}{144}$ (3) $\frac{187}{144}$ (4) 1

11. If
$$f(x) = \sin\left(\cos^{-1}\left(\frac{1-2^{2x}}{1+2^{2x}}\right)\right)$$
 and its first

derivative with respect to x is $-\frac{b}{a}\log_e 2$ when x = 1, where a and b are integers, then the minimum value of $|a^2 - b^2|$ is _____.

AOD (TANGENT & NORMAL)
1. An angle of intersection of the curves,

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ and } x^2 + y^2 = ab, a > b, \text{ is :}$$
(1) $\tan^{-1}\left(\frac{a+b}{\sqrt{ab}}\right)$ (2) $\tan^{-1}\left(\frac{a-b}{2\sqrt{ab}}\right)$
(3) $\tan^{-1}\left(\frac{a-b}{\sqrt{ab}}\right)$ (4) $\tan^{-1}\left(2\sqrt{ab}\right)$

If the curve y = ax² + bx + c, x ∈ R, passes through the point (1,2) and the tangent line to this curve at origin is y = x, then the possible values of a, b, c are :

(1)
$$a = \frac{1}{2}$$
, $b = \frac{1}{2}$, $c = 1$
(2) $a = 1$, $b = 0$, $c = 1$
(3) $a = 1$, $b = 1$, $c = 0$
(4) $a = -1$, $b = 1$, $c = 1$

3. If the tangent to the curve y = x³ at the point P(t, t³) meets the curve again at Q, then the ordinate of the point which divides PQ internally in the ratio 1 : 2 is :

 $(1) -2t^3 \qquad (2) \ 0 \qquad (3) -t^3 \qquad (4) \ 2t^3$

- 4. If the curves $x = y^4$ and xy = k cut at right angles, then $(4k)^6$ is equal to _____.
- 5. If the normal to the curve $y(x) = \int_{0}^{x} (2t^{2} - 15t + 10) dt \text{ at a point (a,b) is}$

parallel to the line x + 3y = -5, a > 1, then the value of |a + 6b| is equal to ______.

AOD (MONOTONICITY)

1. Let $f: \mathbf{R} \to \mathbf{R}$ be defined as

$$f(x) = \begin{cases} -\frac{4}{3}x^3 + 2x^2 + 3x &, x > 0\\ 3xe^x &, x \le 0 \end{cases}$$
. Then f is

increasing function in the interval

(1)
$$\left(-\frac{1}{2},2\right)$$
 (2) (0,2)
(3) $\left(-1,\frac{3}{2}\right)$ (4) (-3, -1)

- 2. Let $f(x) = 3\sin^4 x + 10\sin^3 x + 6\sin^2 x 3$, $x \in \left[-\frac{\pi}{6}, \frac{\pi}{2}\right]$. Then, f is : (1) increasing in $\left(-\frac{\pi}{6}, \frac{\pi}{2}\right)$ (2) decreasing in $\left(0, \frac{\pi}{2}\right)$ (3) increasing in $\left(-\frac{\pi}{6}, 0\right)$ (4) decreasing in $\left(-\frac{\pi}{6}, 0\right)$
- 3. The number of real roots of the equation $e^{4x} + 2e^{3x} - e^{x} - 6 = 0$ is : (1) 2 (2) 4 (3) 1 (4) 0
- 4. If 'R' is the least value of 'a' such that the function $f(x) = x^2 + ax + 1$ is increasing on [1, 2] and 'S' is the greatest value of 'a' such that the function $f(x) = x^2 + ax + 1$ is decreasing on [1, 2], then the value of |R S| is _____.
- Let f be any continuous function on [0, 2] and twice differentiable on (0, 2). If f(0) = 0, f(1) = 1 and f(2) = 2, then
 - (1) f''(x) = 0 for all $x \in (0, 2)$
 - (2) f''(x) = 0 for some $x \in (0, 2)$
 - (3) f'(x) = 0 for some $x \in [0, 2]$
 - (4) f''(x) > 0 for all $x \in (0, 2)$

The function $f(\mathbf{x}) = \mathbf{x}^3 - 6\mathbf{x}^2 + \mathbf{a}\mathbf{x} + \mathbf{b}$ is such that f(2) = f(4) = 0. Consider two statements. (S1) there exists $\mathbf{x}_1, \mathbf{x}_2 \in (2, 4), \mathbf{x}_1 < \mathbf{x}_2$, such that $f'(\mathbf{x}_1) = -1$ and $f'(\mathbf{x}_2) = 0$. (S2) there exists $\mathbf{x}_3, \mathbf{x}_4 \in (2, 4), \mathbf{x}_3 < \mathbf{x}_4$, such that f is decreasing in $(2, \mathbf{x}_4)$, increasing in $(\mathbf{x}_4, 4)$ and $2f'(\mathbf{x}_3) = \sqrt{3} f(\mathbf{x}_4)$. Then (1) both (S1) and (S2) are true (2) (S1) is false and (S2) is true (3) both (S1) and (S2) are false (4) (S1) is true and (S2) is false Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined as,

$$f(x) = \begin{cases} -55 x, & \text{if } x < -5 \\ 2x^3 - 3x^2 - 120x, & \text{if } -5 \le x \le 4 \\ 2x^3 - 3x^2 - 36x - 336, & \text{if } x > 4, \end{cases}$$

Let $A = \{x \in \mathbf{R} : f \text{ is increasing}\}$. Then A is equal to :

(1) $(-\infty, -5) \cup (4, \infty)$ (2) $(-5, \infty)$ (3) $(-\infty, -5) \cup (-4, \infty)$ (4) $(-5, -4) \cup (4, \infty)$

8. The function

6.

7.

$$f(\mathbf{x}) = \frac{4\mathbf{x}^3 - 3\mathbf{x}^2}{6} - 2\sin \mathbf{x} + (2\mathbf{x} - 1)\cos \mathbf{x} :$$

(1) increases in $\left[\frac{1}{2}, \infty\right)$
(2) increases in $\left(-\infty, \frac{1}{2}\right]$
(3) decreases in $\left[\frac{1}{2}, \infty\right)$
(4) decreases in $\left(-\infty, \frac{1}{2}\right]$

node06\B0BA-BB\Kota\UEE MAIN\Topicwise JEE MAIN-2021

A A	
9.	If Rolle's theorem holds for the function
	$f(x) = x^3 - ax^2 + bx - 4, x \in [1, 2]$ with
	$f'\left(\frac{4}{3}\right) = 0$, then ordered pair (a, b) is equal to :
	(1) (5, 8) (2) (-5, 8)
	(3) (5, -8) (4) (-5, -8)
10.	Let a be an integer such that all the real roots of
	the polynomial $2x^{5}+5x^{4} + 10x^{3} + 10x^{2} + 10x + 10$
	lie in the interval (a, $a + 1$). Then, $ a $ is equal

11. Let f be a real valued function, defined on $R - \{-1, 1\}$ and given by

$$f(x) = 3\log_e \left| \frac{x-1}{x+1} \right| - \frac{2}{x-1}$$

to .

. . . .

Then in which of the following intervals, function f(x) is increasing?

(1)
$$(-\infty, -1) \cup \left(\left[\frac{1}{2}, \infty \right] - \{ l \} \right)$$

(2) $(-\infty, \infty) - \{-1, 1\}$
(3) $\left(-1, \frac{1}{2} \right]$
(4) $\left(-\infty, \frac{1}{2} \right] - \{-1\}$

12. Consider the function $f : R \rightarrow R$ defined by

$$f(x) = \begin{cases} \left(2 - \sin\left(\frac{1}{x}\right)\right) | x |, x \neq 0\\ 0, x = 0 \end{cases}$$
. Then f is :

- (1) monotonic on $(-\infty, 0) \cup (0, \infty)$
- (2) not monotonic on $(-\infty, 0)$ and $(0, \infty)$
- (3) monotonic on $(0, \infty)$ only
- (4) monotonic on $(-\infty, 0)$ only

AOD (MAXIMA & MINIMA)

1. Let
$$A = [a_{ij}]$$
 be a 3 \times 3 matrix, where

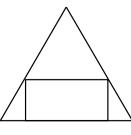
$$a_{ij} = \begin{cases} 1 & , & \text{if } i = j \\ -x & , & \text{if } |i - j| = 1 \\ 2x + 1 & , & \text{otherwise.} \end{cases}$$

2.

3.

4.

Let a function $f : \mathbf{R} \to \mathbf{R}$ be defined as f(x) = det(A). Then the sum of maximum and minimum values of f on **R** is equal to:


$$(1) - \frac{20}{27}$$
 (2) $\frac{88}{27}$ (3) $\frac{20}{27}$ (4) $-\frac{88}{27}$

Let 'a' be a real number such that the function $f(x) = ax^2 + 6x - 15$, $x \in \mathbf{R}$ is increasing in $\left(-\infty, \frac{3}{4}\right)$ and decreasing in $\left(\frac{3}{4}, \infty\right)$. Then the function $g(x) = ax^2 - 6x + 15$, $x \in \mathbf{R}$ has a: (1) local maximum at $x = -\frac{3}{4}$ (2) local minimum at $x = -\frac{3}{4}$ (3) local maximum at $x = \frac{3}{4}$ (4) local minimum at $x = \frac{3}{4}$ The sum of all the local minimum values of the

twice differentiable function
$$f : \mathbf{R} \to \mathbf{R}$$
 defined

by
$$f(x) = x^3 - 3x^2 - \frac{3f''(2)}{2}x + f''(1)$$
 is:
(1) -22 (2) 5 (3) -27 (4) 0

If a rectangle is inscribed in an equilateral triangle of side length $2\sqrt{2}$ as shown in the figure, then the square of the largest area of such a rectangle is_____.

5. A wire of length 36 m is cut into two pieces, one of the pieces is bent to form a square and the other is bent to form a circle. If the sum of the areas of the two figures is minimum, and the circumference of the circle is k (meter), then

$$\left(\frac{4}{\pi}+1\right)$$
k is equal to _____

6. The local maximum value of the function

$$f(x) = \left(\frac{2}{x}\right)^{x^{2}}, x > 0, \text{ is}$$
(1) $\left(2\sqrt{e}\right)^{\frac{1}{e}}$
(2) $\left(\frac{4}{\sqrt{e}}\right)^{\frac{e}{4}}$
(3) $\left(e\right)^{\frac{2}{e}}$
(4) 1

7. A wire of length 20 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a regular hexagon. Then the length of the side (in meters) of the hexagon, so that the combined area of the square and the hexagon is minimum, is:

(1)
$$\frac{5}{2+\sqrt{3}}$$
 (2) $\frac{10}{2+3\sqrt{3}}$
(3) $\frac{5}{3+\sqrt{3}}$ (4) $\frac{10}{3+2\sqrt{3}}$

8. A box open from top is made from a rectangular sheet of dimension a × b by cutting squares each of side x from each of the four corners and folding up the flaps. If the volume of the box is maximum, then x is equal to :

(1)
$$\frac{a+b-\sqrt{a^2+b^2-ab}}{12}$$

(2)
$$\frac{a+b-\sqrt{a^2+b^2+ab}}{6}$$

(3)
$$\frac{a+b-\sqrt{a^2+b^2-ab}}{6}$$

(4)
$$\frac{a+b+\sqrt{a^2+b^2-ab}}{6}$$

- 9. Let f(x) be a cubic polynomial with f(1) = -10, f(-1) = 6, and has a local minima at x = 1, and f'(x) has a local minima at x = -1. Then f(3) is equal to _____.
- 10. A man starts walking from the point P(-3,4), touches the x-axis at R, and then turns to reach at the point Q(0, 2). The man is walking at a constant speed. If the man reaches the point Q in the minimum time, then $50((PR)^2 + (RQ)^2)$ is equal to _____.
- 11. The minimum value of α for which the equation $\frac{4}{\sin x} + \frac{1}{1 - \sin x} = \alpha \text{ has at least one solution}$ in $\left(0, \frac{\pi}{2}\right)$ is _____.
- 12. Let f(x) be a polynomial of degree 6 in x, in which the coefficient of x^6 is unity and it has extrema at x = -1 and x = 1. If $\lim_{x \to 0} \frac{f(x)}{x^3} = 1$, then 5·f(2) is equal to _____.
- 13. The minimum value of $f(x) = a^{a^x} + a^{1-a^x}$, where a, $x \in R$ and a > 0, is equal to : (1) 2a (2) $2\sqrt{a}$
 - (3) $a + \frac{1}{a}$ (4) a + 1
- **14.** The triangle of maximum area that can be inscribed in a given circle of radius 'r' is :
 - (1) An isosceles triangle with base equal to 2r.
 - (2) An equilateral triangle of height $\frac{2r}{2}$.
 - (3) An equilateral triangle having each of its side of length $\sqrt{3}$ r.
 - (4) A right angle triangle having two of its sides of length 2r and r.
- **15.** The range of $a \in \mathbb{R}$ for which the function

$$f(\mathbf{x}) = (4\mathbf{a} - 3)(\mathbf{x} + \log_{e} 5) + 2(\mathbf{a} - 7)\cot\left(\frac{\mathbf{x}}{2}\right)\sin^{2}\left(\frac{\mathbf{x}}{2}\right),$$

$$\mathbf{x} \neq 2\mathbf{n}\pi, \mathbf{n} \in \mathbb{N} \text{, has critical points, is :}$$

$$(1) (-3, 1) \quad (2) \left[-\frac{4}{3}, 2\right] \quad (3) [1, \infty) \quad (4) (-\infty, -1]$$

node06\B0BA-BB\Kota\EE MAIN\Topicwise JEE MAIN-2021

INDEFINITE INTEGRATION

1. If
$$\int \frac{dx}{(x^2 + x + 1)^2} = a \tan^{-1} \left(\frac{2x + 1}{\sqrt{3}} \right) + b \left(\frac{2x + 1}{x^2 + x + 1} \right) + C$$

 $x > 0$ where C is the constant of integration, then

the value of $9(\sqrt{3}a + b)$ is equal to _____.

- 2. If $\int \frac{2e^x + 3e^{-x}}{4e^x + 7e^{-x}} dx = \frac{1}{14} (ux + v \log(4e^x + 7e^{-x})) + C,$ where C is a constant of integration, then u + v is equal to
- 3. The integral $\int \frac{1}{\sqrt[4]{(x-1)^3(x+2)^5}} dx$ is equal to :

(where C is a constant of integration)

(1)
$$\frac{3}{4} \left(\frac{x+2}{x-1}\right)^{\frac{1}{4}} + C$$
 (2) $\frac{3}{4} \left(\frac{x+2}{x-1}\right)^{\frac{5}{4}} + C$
(3) $\frac{4}{3} \left(\frac{x-1}{x+2}\right)^{\frac{1}{4}} + C$ (4) $\frac{4}{3} \left(\frac{x-1}{x+2}\right)^{\frac{5}{4}} + C$

4. If
$$\int \frac{\sin x}{\sin^3 x + \cos^3 x} dx =$$

 $\alpha \log_{e} |1 + \tan x| + \beta \log_{e} |1 - \tan x + \tan^{2} x| + \gamma \tan^{-1} \left(\frac{2 \tan x - 1}{\sqrt{3}}\right) + C,$ when C is constant of integration, then the value of $18(\alpha + \beta + \gamma^{2})$ is

5. If
$$\int \frac{\cos x - \sin x}{\sqrt{8 - \sin 2x}} dx = a \sin^{-1} \left(\frac{\sin x + \cos x}{b} \right) + c$$
,

where c is a constant of integration, then the ordered pair (a, b) is equal to :

- (1) (-1, 3) (2) (3, 1)
- (3) (1, 3) (4) (1, -3)
- **6.** The value of the integral

$$\int \frac{\sin\theta . \sin 2\theta (\sin^6\theta + \sin^4\theta + \sin^2\theta) \sqrt{2\sin^4\theta + 3\sin^2\theta + 6}}{1 - \cos 2\theta} d\theta$$

is :

(where c is a constant of integration)

(1)
$$\frac{1}{18} \Big[11 - 18\sin^2 \theta + 9\sin^4 \theta - 2\sin^6 \theta \Big]^{\frac{1}{2}} + c$$

(2) $\frac{1}{18} \Big[9 - 2\cos^6 \theta - 3\cos^4 \theta - 6\cos^2 \theta \Big]^{\frac{3}{2}} + c$
(3) $\frac{1}{18} \Big[9 - 2\sin^6 \theta - 3\sin^4 \theta - 6\sin^2 \theta \Big]^{\frac{3}{2}} + c$
(4) $\frac{1}{18} \Big[11 - 18\cos^2 \theta + 9\cos^4 \theta - 2\cos^6 \theta \Big]^{\frac{3}{2}} + c$

7. The integral $\int \frac{e^{3\log_e 2x} + 5e^{2\log_e 2x}}{e^{4\log_e x} + 5e^{3\log_e x} - 7e^{2\log_e x}} dx, x > 0,$ is equal to : (where c is a constant of integration) (1) $\log_e |x^2 + 5x - 7| + c$

JEE (Main) Examination-2021

37

(2) $4\log_{e}|x^{2}+5x-7|+c$

(3)
$$\frac{1}{4}\log_{e}|x^{2}+5x-7|+c$$

(4)
$$\log_e \sqrt{x^2 + 5x - 7} + c$$

8. For real numbers α , β , γ and δ , if

$$\int \frac{(x^2 - 1) + \tan^{-1}\left(\frac{x^2 + 1}{x}\right)}{(x^4 + 3x^2 + 1)\tan^{-1}\left(\frac{x^2 + 1}{x}\right)} dx$$

= $\alpha \log_e \left(\tan^{-1}\left(\frac{x^2 + 1}{x}\right) \right)$
+ $\beta \tan^{-1}\left(\frac{\gamma(x^2 - 1)}{x}\right) + \delta \tan^{-1}\left(\frac{x^2 + 1}{x}\right) + C$

where C is an arbitrary constant, then the value of $10(\alpha + \beta\gamma + \delta)$ is equal to _____.

The integral
$$\int \frac{(2x-1)\cos\sqrt{(2x-1)^2+5}}{\sqrt{4x^2-4x+6}} dx$$
 is

9.

10.

3

equal to (where c is a constant of integration)

(1)
$$\frac{1}{2}\sin\sqrt{(2x-1)^2 + 5} + c$$

(2) $\frac{1}{2}\cos\sqrt{(2x+1)^2 + 5} + c$
(3) $\frac{1}{2}\cos\sqrt{(2x-1)^2 + 5} + c$
(4) $\frac{1}{2}\sin\sqrt{(2x+1)^2 + 5} + c$
If $f(x) = \int \frac{5x^8 + 7x^6}{(x-1)^2 + 5} dx, (x \ge 0), f(0) = 0$

and
$$f(1) = \frac{1}{K}$$
, then the value of K is

mode06\B0BA-BB\Kota\JEE MAIN\Topicwise JEE MAIN-2021

DEFINITE INTEGRATION

1. Let a be a positive real number such that $\int_{0}^{a} e^{x-[x]} dx = 10e - 9$ where [x] is the greatest integer less than or equal to x. Then a is equal to : (1) $10 - \log_e(1 + e)$ (2) $10 + \log_{e} 2$ (3) $10 + \log_e 3$ (4) $10 + \log_e(1+e)$ 2. The value of the integral $\int_{-1}^{1} \log_{e}(\sqrt{1-x} + \sqrt{1+x}) dx$ is equal to : (1) $\frac{1}{2}\log_e 2 + \frac{\pi}{4} - \frac{3}{2}$ (2) $2\log_e 2 + \frac{\pi}{4} - 1$ (3) $\log_e 2 + \frac{\pi}{2} - 1$ (4) $2\log_e 2 + \frac{\pi}{2} - \frac{1}{2}$ Let $g(t) = \int_{-\pi/2}^{\pi/2} \cos\left(\frac{\pi}{4}t + f(x)\right) dx$, where 3.

> $f(\mathbf{x}) = \log_e \left(\mathbf{x} + \sqrt{\mathbf{x}^2 + 1} \right)$, $\mathbf{x} \in \mathbf{R}$. Then which one of the following is correct ?

(1)
$$g(1) = g(0)$$

(2) $\sqrt{2}g(1) = g(0)$
(3) $g(1) = \sqrt{2}g(0)$
(4) $g(1) + g(0) = 0$

4. If
$$\int_{0}^{100\pi} \frac{\sin^2 x}{e^{\left(\frac{x}{\pi} - \left[\frac{x}{\pi}\right]\right)}} dx = \frac{\alpha \pi^3}{1 + 4\pi^2}, \alpha \in \mathbf{R} \text{ where } [x] \text{ is}$$

the greatest integer less than or equal to x, then the value of α is :

(1) $200 (1 - e^{-1})$ (2) 100 (1 - e)(3) 50 (e - 1) (4) $150 (e^{-1} - 1)$

5. The value of the definite integral

$$\int_{\pi/24}^{5\pi/24} \frac{dx}{1 + \sqrt[3]{\tan 2x}} \text{ is :}$$
(1) $\frac{\pi}{3}$ (2) $\frac{\pi}{6}$ (3) $\frac{\pi}{12}$ (4) $\frac{\pi}{18}$

6. Let $f: [0, \infty) \rightarrow [0, \infty)$ be defined as

 $f(x) = \int_0^x [y] dy$

where [x] is the greatest integer less than or equal to x. Which of the following is true?

- f is continuous at every point in [0, ∞) and differentiable except at the integer points.
- (2) f is both continuous and differentiable except at the integer points in $[0, \infty)$.
- (3) f is continuous everywhere except at the integer points in [0, ∞).
- (4) f is differentiable at every point in $[0, \infty)$.

7. If
$$f(x) = \begin{cases} \int_{0}^{x} (5+|1-t|) dt, & x > 2\\ 5x+1, & x \le 2 \end{cases}$$
, then

- (1) f(x) is not continuous at x = 2
- (2) f(x) is everywhere differentiable
- (3) f(x) is continuous but not differentiable at x = 2
 (4) f(x) is not differentiable at x = 1

8. The value of the integral
$$\int_{-1}^{1} \log(x + \sqrt{x^2 + 1}) dx$$

is:

9.

$$(1) 2 (2) 0 (3) -1 (4) 1$$

$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{(1 + e^{x \cos x})(\sin^4 x + \cos^4 x)}$$
 is equal to :

(1)
$$-\frac{\pi}{2}$$
 (2) $\frac{\pi}{2\sqrt{2}}$ (3) $-\frac{\pi}{4}$ (4) $\frac{\pi}{\sqrt{2}}$

10. Let the domain of the function

$$f(x) = \log_4 \left(\log_5 \left(\log_3 \left(18x - x^2 - 77 \right) \right) \right) \text{ be (a, b).}$$
Then the value of the integral

$$\int_{1}^{2} \frac{\sin^3 x}{(\sin^3 x + \sin^3 (a + b - x))} dx$$
 is equal to _____.

Ε

ALLEN

🔺 A		
11.	Let $f : (a,b) \rightarrow \mathbf{R}$ be twice differentiable	17.
	function such that $f(x) = \int_a^x g(t) dt$ for a	1/.
	differentiable function $g(x)$. If $f(x) = 0$ has	
	exactly five distinct roots in (a, b), then	
	g(x)g'(x) = 0 has at least :	
	(1) twelve roots in (a, b) (2) five roots in (a, b)	
	(3) seven roots in (a, b) (4) three roots in (a, b)	18.
12.	If $\int_0^{\pi} (\sin^3 x) e^{-\sin^2 x} dx = \alpha - \frac{\beta}{e} \int_0^1 \sqrt{t} e^t dt$, then	
	$\alpha + \beta$ is equal to	10
13.	The value of $\int_{-\frac{1}{\sqrt{2}}}^{\frac{1}{\sqrt{2}}} \left(\left(\frac{x+1}{x-1} \right)^2 + \left(\frac{x-1}{x+1} \right)^2 - 2 \right)^{\frac{1}{2}} dx$	19.
	is :	
	(1) $\log_e 4$ (2) $\log_e 16$	
	(3) $2\log_e 16$ (4) $4\log_e (3+2\sqrt{2})$	
14.	The value of $\label{eq:limit} \lim_{n\to\infty} \frac{1}{n} \sum_{r=0}^{2n-1} \frac{n^2}{n^2+4r^2} \ \text{is}:$	20.
	(1) $\frac{1}{2} \tan^{-1}(2)$ (2) $\frac{1}{2} \tan^{-1}(4)$	
	(3) $\tan^{-1}(4)$ (4) $\frac{1}{4}\tan^{-1}(4)$	21.
15.	If the value of the integral	
	$\int_{0}^{5} \frac{x + [x]}{e^{x - [x]}} dx = \alpha e^{-1} + \beta, \text{where} \alpha, \beta \in \mathbf{R},$	22.
	$5\alpha + 6\beta = 0$, and [x] denotes the greatest integer	
	less than or equal to x; then the value of	
	$(\alpha + \beta)^2$ is equal to :	
	(1) 100 (2) 25 (3) 16 (4) 36	23.
16.	The value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{1+\sin^2 x}{1+\pi^{\sin x}}\right) dx$ is	
	(1) $\frac{\pi}{2}$ (2) $\frac{5\pi}{4}$ (3) $\frac{3\pi}{4}$ (4) $\frac{3\pi}{2}$	

17.	If $U_n = \left(1 + \frac{1}{n^2}\right) \left(1 + \frac{1}{n^2}\right)$	$\left(\frac{2^2}{n^2}\right)^2 \dots \left(1 + \frac{r}{r}\right)$	$\left(\frac{n^2}{n^2}\right)^n$, then
	$\lim_{n \to \infty} (U_n)^{\frac{-4}{n^2}}$ is equal to	:	
	(1) $\frac{e^2}{16}$ (2) $\frac{4}{e}$	(3) $\frac{16}{e^2}$	(4) $\frac{4}{e^2}$
18.	$\int_{6}^{16} \frac{\log_{e} x^{2}}{\log_{e} x^{2} + \log_{e} (x^{2} - x^{2})}$	$\frac{1}{44x+484}$	lx is equal
	to: $(1) 6 (2) 8$	(3) 5	(4) 10
19.	(1) 6 (2) 8 The value of	of the	integral
			8
	$\int_{0}^{1} \frac{\sqrt{x} dx}{(1+x)(1+3x)(3+x)}$	\overline{x} is:	
	$(1) \ \frac{\pi}{8} \left(1 - \frac{\sqrt{3}}{2} \right)$	(2) $\frac{\pi}{4}\left(1-\frac{\pi}{4}\right)$	$\left(\frac{\sqrt{3}}{6}\right)$
	$(3) \ \frac{\pi}{8} \left(1 - \frac{\sqrt{3}}{6} \right)$	$(4) \ \frac{\pi}{4} \left(1 - \frac{\pi}{4}\right) = \frac{\pi}{4} \left(1 - \frac{\pi}{4}\right) \left(1 $	$\left(\frac{\sqrt{3}}{2}\right)$
20.	Let [t] denote the grea	test integer \leq	t. Then the
	value of $8 \cdot \int_{-\frac{1}{2}}^{1} ([2x] + 2x])$	x) dx is	
21.	If $x \phi(x) = \int_{5}^{x} (3t^2 - 2\phi')$	(t) dt , x > -	-2, and $\phi(0)$
	= 4, then $\phi(2)$ is		
22.	If [x] is the greate	est integer	\leq x, then
	$\pi^2 \int_0^2 \left(\sin \frac{\pi x}{2} \right) (x - [x])^{[2]}$	^{x]} dx is equal	to :
	(1) $2(\pi - 1)$	(2) $4(\pi - 1)$)
	$(3) 4(\pi + 1)$	(4) $2(\pi + 1)$)
23.	The function f(x), that	t satisfies the	e condition

$$f(x) = x + \int_{0}^{\pi/2} \sin x \cdot \cos y f(y) dy, \text{ is :}$$
(1) $x + \frac{2}{3}(\pi - 2)\sin x$ (2) $x + (\pi + 2)\sin x$
(3) $x + \frac{\pi}{2}\sin x$ (4) $x + (\pi - 2)\sin x$

node06\B0BA-BB\Kots\JEE MAIN\Topicwise JEE MAIN-2021

The value of the integral, $\int [x^2 - 2x - 2] dx$, 24.

> where [x] denotes the greatest integer less than or equal to x, is :

(1)
$$-\sqrt{2} - \sqrt{3} + 1$$
 (2) $-\sqrt{2} - \sqrt{3} - 1$
(3) -5 (4) -4

25. Let f(x) be a differentiable function defined on [0, 2] such that f'(x) = f'(2 - x)for all $x \in (0, 2)$, f(0) = 1 and $f(2) = e^2$. Then the value of $\int_{0}^{2} f(x) dx$ is : (2) $1 + e^2$ $(1) 1 - e^2$ $(4) 2(1 + e^2)$ $(3) 2(1 - e^2)$ If $\int_{-a}^{a} (|x| + |x-2|) dx = 22, (a > 2)$ and [x]26.

denotes the greatest integer $\leq x$, then $\int_{a}^{a} (x + [x]) dx \text{ is equal to} \underline{\qquad}.$

27. The value of
$$\int_{-1}^{1} x^2 e^{\left[x^3\right]} dx$$
, where [t] denotes the

greatest integer \leq t, is :

(1)
$$\frac{e-1}{3e}$$
 (2) $\frac{e+1}{3}$ (3) $\frac{e+1}{3e}$ (4) $\frac{1}{3e}$
28. $\lim_{n \to \infty} \left[\frac{1}{n} + \frac{n}{(n+1)^2} + \frac{n}{(n+2)^2} + \dots + \frac{n}{(2n-1)^2} \right]$
is equal to :

(1)
$$\frac{1}{2}$$
 (2) 1 (3) $\frac{1}{3}$ (4) $\frac{1}{4}$

29. The value of
$$\int_{-2}^{2} |3x^2 - 3x - 6| dx$$
 is _____

30. For x > 0, if
$$f(x) = \int_{1}^{x} \frac{\log_{e} t}{(1+t)} dt$$
, then $f(e) + f\left(\frac{1}{e}\right)$

is equal to :

(1) 1 (2)
$$-1$$
 (3) $\frac{1}{2}$ (4) 0

31. Let $f(x) = \int_{0}^{x} e^{t} f(t) dt + e^{x}$ be a differentiable function for all $x \in R$. Then f(x) equals : (1) $2e^{(e^{x}-1)} - 1$ $(2) e^{e^x} = 1$

(1)
$$2e^{e^x} - 1$$
 (2) $e^{(e^x - 1)}$
(3) $2e^{e^x} - 1$ (4) $e^{(e^x - 1)}$

32. If $I_{m,n} = \int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$, for $m, n \ge 1$ and $\int_{0}^{1} \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} dx = \alpha I_{m,n}, \alpha \in \mathbb{R}, \text{ then } \alpha \text{ equals} ___.$

33. The value of the integral
$$\int_{0}^{\pi} |\sin 2x| dx$$
 is

34. The value of
$$\int_{-\pi/2}^{\pi/2} \frac{\cos^2 x}{1+3^x} dx$$
 is

(1)
$$\frac{\pi}{4}$$
 (2) 4π (3) $\frac{\pi}{2}$ (4) 2π

35. If
$$I_n = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot^n x \, dx$$
, then :

(1)
$$\frac{1}{I_2 + I_4}$$
, $\frac{1}{I_3 + I_5}$, $\frac{1}{I_4 + I_6}$ are in G.P.
(2) $I_2 + I_4$, $I_3 + I_5$, $I_4 + I_6$ are in A.P.
(3) $I_2 + I_4$, $(I_3 + I_5)^2$, $I_4 + I_6$ are in G.P.

(4)
$$\frac{1}{I_2 + I_4}, \frac{1}{I_3 + I_5}, \frac{1}{I_4 + I_6}$$
 are in A.P.

The value of $\sum_{n=1}^{100} \int_{n-1}^{n} e^{x-[x]} dx$, where [x] is the 36.

greatest integer $\leq x$, is

(1)
$$100(e-1)$$
 (2) $100(1-e)$
(3) $100e$ (4) $100(1+e)$

$$(3) 100e (4) 100 (1)$$

$$I = \int_{0}^{10} \frac{[x] e^{[x]}}{e^{x-1}} dx,$$

where [x] denotes the greatest integer less than or equal to x. Then the value of I is equal to:

(1) 9(e-1)(2) 45(e+1)(3) 45(e-1)(4) 9(e+1)

Topicwise JEE MAIN-2021 1006\B0BA-BB\Kota\EE MAIN\

Ε

Let $P(x) = x^2 + bx + c$ be a quadratic 43. 38. polynomial with real coefficients such that $\int P(x)dx = 1$ and P(x) leaves remainder 5 whe it is divided by (x - 2). Then the value of 9(b + c) is equal to: (1)9(2)15(3)7(4) 11Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function suc 39. that f(x) + f(x + 1) = 2, for all $x \in \mathbb{R}$. $I_1 = \int_{-\infty}^{\infty} f(x) dx$ and $I_2 = \int_{-\infty}^{3} f(x) dx$, then the value of $I_1 + 2I_2$ is equal to _____. 40. Let $f : R \to R$ be defined as $f(x) = e^{-x} \sin x$. $F: [0, 1] \rightarrow R$ is a differentiable function suc that $F(x) = \int_{0}^{x} f(t) dt$, then the value of $\int (F'(x) + f(x))e^{x} dx$ lies in the interval $(1) \left[\frac{327}{360}, \frac{329}{360} \right] \qquad (2) \left[\frac{330}{360}, \frac{331}{360} \right]$ $(3) \left[\frac{331}{360}, \frac{334}{360} \right] \qquad (4) \left[\frac{335}{360}, \frac{336}{360} \right]$ If the integral $\int_{0}^{10} \frac{[\sin 2\pi x]}{e^{x-[x]}} dx = \alpha e^{-1} + \beta e^{-\frac{1}{2}} + \gamma$ 41. where α , β , γ are integers and [x] denotes the greatest integer less than or equal to x, then the value of $\alpha + \beta + \gamma$ is equal to : (1)0(2) 20(3) 25 (4) 10 Let $I_n = \int_{-\infty}^{e} x^{19} (\log |x|)^n dx$, where $n \in N$ 42. If $(20)I_{10} = \alpha I_9 + \beta I_8$, for natural numbers α and β , then $\alpha - \beta$ equal to _____.

n		$g(\alpha) = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin^{\alpha} x}{\cos^{\alpha} x + \sin^{\alpha} x} dx$
of		(1) $g(\alpha)$ is a strictly increasing function
		(2) g(α) has an inflection point at $\alpha = -\frac{1}{2}$
h		(3) $g(\alpha)$ is a strictly decreasing function
[f	44.	(4) g(α) is an even functionLet f(x) and g(x) be two functions satisfying
		$f(x^2) + g(4 - x) = 4x^3$ and $g(4 - x) + g(x) = 0$,
le		then the value of $\int_{-4}^{4} f(\mathbf{x})^2 d\mathbf{x}$ is
[f	45.	Let $g(x) = \int_0^x f(t) dt$, where f is continuous
h		function in [0, 3] such that $\frac{1}{3} \le f(t) \le 1$ for all
		$t \in [0, 1]$ and $0 \le f(t) \le \frac{1}{2}$ for all $t \in (1, 3]$. The
		largest possible interval in which g(3) lies is :
		$(1)\left[-1,-\frac{1}{2}\right] \qquad (2)\left[-\frac{3}{2},-1\right]$
		(3) $\left[\frac{1}{3}, 2\right]$ (4) [1, 3]
		DIFFERENTIAL EQUATION
	1.	Let $y = y(x)$ be the solution of the differential equation
,		$x \tan\left(\frac{y}{x}\right) dy = \left(y \tan\left(\frac{y}{x}\right) - x\right) dx,$
le le		$-1 \le x \le 1, y\left(\frac{1}{2}\right) = \frac{\pi}{6}$. Then the area of the region
		bounded by the curves $x = 0$, $x = \frac{1}{\sqrt{2}}$ and $y = y(x)$ in
J.		the upper half plane is:
d		(1) $\frac{1}{8}(\pi - 1)$ (2) $\frac{1}{12}(\pi - 3)$
u		(3) $\frac{1}{4}(\pi - 2)$ (4) $\frac{1}{6}(\pi - 1)$

Which of the following statements is incorrect for the function $g(\alpha)$ for $\alpha \in R$ such that

node06\B0BA-BB\Kota\JEE MAIN\Topicwise JEE MAIN-2021

Е

ALLEN

42 JEE (Main) Examination-2021

2. Let y = y(x) be the solution of the differential

equation
$$e^x \sqrt{1-y^2} dx + \left(\frac{y}{x}\right) dy = 0, y(1) = -1.$$

Then the value of $(y(3))^2$ is equal to:

- (1) $1 4e^3$ (2) $1 4e^6$
- (3) $1 + 4e^3$ (4) $1 + 4e^6$
- **3.** If [x] denotes the greatest integer less than or equal to x, then the value of the integral
 - $\int_{-\pi/2}^{\pi/2} [[x] \sin x] dx \text{ is equal to :}$ (1) $-\pi$ (2) π (3) 0
- 4. If $f : \mathbf{R} \to \mathbf{R}$ is given by $f(\mathbf{x}) = \mathbf{x} + 1$, then the value of

$$\lim_{n \to \infty} \frac{1}{n} \left[f(0) + f\left(\frac{5}{n}\right) + f\left(\frac{10}{n}\right) + \dots + f\left(\frac{5(n-1)}{n}\right) \right],$$

is:

(4)1

(1)
$$\frac{3}{2}$$
 (2) $\frac{5}{2}$ (3) $\frac{1}{2}$ (4) $\frac{7}{2}$

- 5. Let a curve y = y(x) be given by the solution of the differential equation $\cos\left(\frac{1}{2}\cos^{-1}(e^{-x})\right)dx = \sqrt{e^{2x} 1} dy$ If it intersects y-axis at y = -1, and the intersection point of the curve with x-axis is $(\alpha, 0)$,
 - then e^{α} is equal to _____.
- 6. Let y = y(x) be the solution of the differential equation $\csc^2 x dy + 2 dx = (1 + y \cos 2x) \csc^2 x dx$, with $y\left(\frac{\pi}{4}\right) = 0$. Then, the value of $(y(0) + 1)^2$ is

equal to :

(1)
$$e^{1/2}$$
 (2) $e^{-1/2}$ (3) e^{-1} (4) $e^{-1/2}$

7. Let y = y(x) be the solution of the differential

equation
$$\left((x+2)e^{\left(\frac{y+1}{x+2}\right)} + (y+1) \right) dx = (x+2)$$

dy, y(1) = 1. If the domain of y = y(x) is an open interval (α , β), then $|\alpha + \beta|$ is equal to _____. Let y = y(x) be the solution of the differential equation $\frac{dy}{dx} = 1 + x e^{y-x}, -\sqrt{2} < x < \sqrt{2}, y(0) = 0$ then, the minimum value of $y(x), x \in (-\sqrt{2}, \sqrt{2})$ is equal to : (1) $(2 - \sqrt{3}) - \log_e 2$ (2) $(2 + \sqrt{3}) + \log_e 2$ (3) $(1 + \sqrt{3}) - \log_e (\sqrt{3} - 1)$

(4)
$$(1-\sqrt{3}) - \log_{e}(\sqrt{3}-1)$$

8.

9. Let y = y(x) be solution of the following differential equation

$$e^{y} \frac{dy}{dx} - 2e^{y} \sin x + \sin x \cos^{2} x = 0, \ y\left(\frac{\pi}{2}\right) = 0$$

If $y(0) = \log_{e}(\alpha + \beta e^{-2})$, then $4(\alpha + \beta)$ is equal to _____.

10. Let y = y(x) be the solution of the differential equation $xdy = (y + x^3 \cos x)dx$ with $y(\pi) = 0$, then $y\left(\frac{\pi}{2}\right)$ is equal to: $(1)\frac{\pi^2}{4} + \frac{\pi}{2}$ (2) $\frac{\pi^2}{2} + \frac{\pi}{4}$ (3) $\frac{\pi^2}{2} - \frac{\pi}{4}$ (4) $\frac{\pi^2}{4} - \frac{\pi}{2}$

11. Let a curve y = f(x) pass through the point (2, (log_c2)²) and have slope 2y/(x log_e x) for all positive real value of x. Then the value of f(e) is equal to _____.
12. Let y = y(x) be solution of the differential equation log_e (dy/dy) = 3x + 4y, with y(0) = 0.

If
$$y\left(-\frac{2}{3}\log_{e} 2\right) = \alpha \log_{e} 2$$
, then the value of α is

equal to:

(1)
$$-\frac{1}{4}$$
 (2) $\frac{1}{4}$ (3) 2 (4) $-\frac{1}{2}$

node06\B0BA-BB\Kota\JEE MAIN\Topicwise JEE MAIN-202

Ε

ALLEN

Let F : $[3, 5] \rightarrow \mathbf{R}$ be a twice differentiable 19. 13. function on (3, 5) such that $F(x) = e^{-x} \int_{-\infty}^{x} (3t^{2} + 2t + 4F'(t)) dt.$ If $F'(4) = \frac{\alpha e^{\beta} - 224}{(e^{\beta} - 4)^2}$, then $\alpha + \beta$ is equal to 14. If y = y(x), $y \in \left[0, \frac{\pi}{2}\right]$ is the solution of the differential equation $\sec y \frac{dy}{dx} - \sin(x + y) - \sin(x - y) = 0$, with y(0) = 0, then $5y'\left(\frac{\pi}{2}\right)$ is equal to _____. Let y = y(x) be the solution of the differential 15. equation $(x - x^3)dy = (y + yx^2 - 3x^4)dx$, x > 2. If y(3) = 3, then y(4) is equal to : (1) 4(2) 12(3) 8(4) 16Let y=y(x) be the solution of the differential 16. equation dy = $e^{\alpha x+y} dx$; $\alpha \in \mathbf{N}$. If $y(\log_e 2) = \log_e 2$ and $y(0) = \log_e\left(\frac{1}{2}\right)$, then the value of α is equal 17. Let y = y(x) be a solution curve of the differential equation $(y + 1) \tan^2 x \, dx + \tan x \, dy + y \, dx = 0$, $x \in \left(0, \frac{\pi}{2}\right)$. If $\lim_{x \to 0^+} xy(x) = 1$, then the value of $y\left(\frac{\pi}{4}\right)$ is: (1) $-\frac{\pi}{4}$ (2) $\frac{\pi}{4}-1$ (3) $\frac{\pi}{4}+1$ (4) $\frac{\pi}{4}$ 18. Let y(x) be the solution of the differential equation $2x^2 dy + (e^y - 2x) dx = 0$, x > 0. If y(e) = 1, then y(1) is equal to : (1) 0(2) 2

(3) $\log_{e} 2$ (4) $\log_{e} (2e)$

JEE (Main) Examination-2021 43

Let y = y(x) be the solution of the differential

equation $\frac{dy}{dx} = 2 (y + 2 \sin x - 5) x - 2 \cos x$ such that y(0) = 7. Then $y(\pi)$ is equal to : (1) $2e^{\pi^2} + 5$ (2) $e^{\pi^2} + 5$ (3) $3e^{\pi^2} + 5$ (4) $7e^{\pi^2} + 5$ Let us consider a curve, y = f(x) passing 20. through the point (-2, 2) and the slope of the tangent to the curve at any point (x, f(x)) is given by $f(x) + xf'(x) = x^2$. Then : (1) $x^{2} + 2xf(x) - 12 = 0$ (2) $x^{3} + xf(x) + 12 = 0$ (3) $x^3 - 3xf(x) - 4 = 0$ (4) $x^2 + 2xf(x) + 4 = 0$ A differential equation representing the family 21. of parabolas with axis parallel to y-axis and whose length of latus rectum is the distance of the point (2, -3) form the line 3x + 4y = 5, is given by : (1) $10\frac{d^2y}{dx^2} = 11$ (2) $11\frac{d^2x}{dx^2} = 10$ (3) $10\frac{d^2x}{dy^2} = 11$ (4) $11\frac{d^2y}{dy^2} = 10$ 22. If the solution curve of the differential equation $(2x - 10y^3)$ dy + ydx = 0, passes through the points (0, 1) and $(2, \beta)$, then β is a root of the equation : (1) $v^5 - 2v - 2 = 0$ (2) $2v^5 - 2v - 1 = 0$ (3) $2y^5 - y^2 - 2 = 0$ (4) $y^5 - y^2 - 1 = 0$ Let f be a non-negative function in [0, 1] and 23. differentiable in twice (0, 1). If $\int_{0}^{x} \sqrt{1 - (f'(t))^2} dt = \int_{0}^{x} f(t) dt, \ 0 \le x \le 1 \text{ and } f(0) = 0,$ then $\lim_{x\to 0} \frac{1}{x^2} \int_0^x f(t) dt$: (1) equals 0 (2) equals 1 (4) equals $\frac{1}{2}$ (3) does not exist

node06\B0BA-BB\Kota\JEE MAIN\Topicwise JEE MAIN-2021

Е

24. If
$$\frac{dy}{dx} = \frac{2^{x+y} - 2^x}{2^y}$$
, $y(0) = 1$, then $y(1)$ is equal
to :
(1) $\log_2(2 + e)$ (2) $\log_2(1 + e)$
(3) $\log_2(2e)$ (4) $\log_2(1 + e^2)$
25. If $\frac{dy}{dx} = \frac{2^x y + 2^y \cdot 2^x}{2^x + 2^{x+y} \log_e 2}$, $y(0) = 0$, then for
 $y = 1$, the value of x lies in the interval :
(1) (1, 2) (2) $\left(\frac{1}{2}, 1\right]$
(3) (2, 3) (4) $\left(0, \frac{1}{2}\right]$
26. If $y\frac{dy}{dx} = x \left[\frac{y^2}{x^2} + \frac{\phi\left(\frac{y^2}{x^2}\right)}{\phi'\left(\frac{y^2}{x^2}\right)}\right]$, $x > 0, \phi > 0$, and $y(1) = -1$,
then $\phi\left(\frac{y^2}{4}\right)$ is equal to :
(1) 4 ϕ (2) (2) 4 ϕ (1)
(3) 2 ϕ (1) (4) ϕ (1)

27. If y = y (x) is the solution curve of the differential equation $x^2 dy + \left(y - \frac{1}{x}\right) dx = 0$; x > 0 and y(1) = 1, then $y\left(\frac{1}{2}\right)$ is equal to : (1) $\frac{3}{2} - \frac{1}{\sqrt{e}}$ (2) $3 + \frac{1}{\sqrt{e}}$ (3) 3 + e (4) 3 - e28. If a curve y = f(x) passes through the point (1, 2) and satisfies $x \frac{dy}{dx} + y = bx^4$, then for what value of b, $\int_{1}^{2} f(x) dx = \frac{62}{5}$? (1) 5 (2) 10 (3) $\frac{62}{5}$ (4) $\frac{31}{5}$ 29. The population P = P(t) at time 't' of a certain species follows the differential equation dP/dt = 0.5P - 450. If P(0) = 850, then the time at which population becomes zero is :

loge18
loge9
1/2loge18

30. If a curve passes through the origin and the slope of the tangent to it at any point (x, y) is x²-4x+y+8/(x-2), then this curve also passes through the point:

- (1) (5, 4) (2) (4, 5) (3) (4, 4) (4) (5, 5) **31.** If the curve, y = y(x) represented by the solution of the differential equation $(2xy^2 - y)dx + xdy = 0$, passes through the intersection of the lines, 2x - 3y = 1 and 3x + 2y = 8, then |y(1)| is equal to _____.
- 32. Let slope of the tangent line to a curve at any point P(x, y) be given by $\frac{xy^2 + y}{x}$. If the curve intersects the line x + 2y = 4 at x = -2, then the value of y, for which the point (3, y) lies on the curve, is :

(1)
$$\frac{18}{35}$$
 (2) $-\frac{4}{3}$ (3) $-\frac{18}{19}$ (4) $-\frac{18}{11}$

33. The rate of growth of bacteria in a culture is proportional to the number of bacteris present and the bacteria count is 1000 at initial time t = 0. The number of bacteria is increased by 20% in 2 hours. If the population of bacteria is

2000 after
$$\frac{k}{\log_e \left(\frac{6}{5}\right)}$$
 hours, then $\left(\frac{k}{\log_e 2}\right)^2$

equal to

Ε

is

34. If
$$y = y(x)$$
 is the solution of the equaiton
 $e^{\sin y} \cos y \frac{dy}{dx} + e^{\sin y} \cos x = \cos x, y(0) = 0;$
then $1 + y\left(\frac{\pi}{6}\right) + \frac{\sqrt{3}}{2}y\left(\frac{\pi}{3}\right) + \frac{1}{\sqrt{2}}y\left(\frac{\pi}{4}\right)$ is
equal to
35. The difference between degree and order of a
differential equation that represents the family
of curves given by $y^2 = a\left(x + \frac{\sqrt{a}}{2}\right), a > 0$ is
36. If $y = y(x)$ is the solution of the differential
equation $\frac{dy}{dx} + (\tan x) y = \sin x, 0 \le x \le \frac{\pi}{3}$, with
 $y(0) = 0$, then $y\left(\frac{\pi}{4}\right)$ equal to :
(1) $\frac{1}{4}\log_e 2$ (2) $\left(\frac{1}{2\sqrt{2}}\right)\log_e 2$
(3) $\log_e 2$ (4) $\frac{1}{2}\log_e 2$
37. Let C_1 be the curve obtained by the solution of
differential equation $2xy\frac{dy}{dx} = y^2 - x^2, x > 0.$

Let the curve C_2 be the solution of $\frac{2xy}{x^2 - y^2} = \frac{dy}{dx}$. If both the curves pass through (1,1), then the area enclosed by the curves C_1 and C_2 is equal to :

(1)
$$\pi - 1$$
 (2) $\frac{\pi}{2} - 1$ (3) $\pi + 1$ (4) $\frac{\pi}{4} + 1$

38. If y = y(x) is the solution of the differential equation, $\frac{dy}{dx} + 2y \tan x = \sin x$, $y\left(\frac{\pi}{3}\right) = 0$, then the maximum value of the function y(x) over \mathbb{R}

is equal to :

(1) 8 (2)
$$\frac{1}{2}$$
 (3) $-\frac{15}{4}$ (4) $\frac{1}{8}$

39. Let y = y(x) be the solution of the differential equation $\cos x (3\sin x + \cos x + 3)dy =$ $(1 + y \sin x (3\sin x + \cos x + 3))dx$ $0 \le x \le \frac{\pi}{2}$, y(0) = 0. Then, $y\left(\frac{\pi}{2}\right)$ is equal to: (1) $2\log_{e}\left(\frac{2\sqrt{3}+9}{6}\right)$ (2) $2\log_{e}\left(\frac{2\sqrt{3}+10}{11}\right)$ (3) $2\log_{e}\left(\frac{\sqrt{3}+7}{2}\right)$ (4) $2\log_{e}\left(\frac{3\sqrt{3}-8}{4}\right)$ 40. If the curve y = y(x) is the solution of the differential equation $2(x^2 + x^{5/4})dy - y(x + x^{1/4})dx = 2x^{9/4} dx$, x > 0which passes through the point $\left(1, 1 - \frac{4}{3}\log_{e} 2\right)$, then the value of y(16) is equal to : (1) $4\left(\frac{31}{3} + \frac{8}{3}\log_e 3\right)$ (2) $\left(\frac{31}{3} + \frac{8}{3}\log_e 3\right)$ (3) $4\left(\frac{31}{3} - \frac{8}{3}\log_e 3\right)$ (4) $\left(\frac{31}{3} - \frac{8}{3}\log_e 3\right)$ 41. Which of the following is true for y(x) that satisfies the differential equation dv

$$\frac{dy}{dx} = xy - 1 + x - y ; y(0) = 0 :$$
(1) $y(1) = e^{-\frac{1}{2}} - 1$
(2) $y(1) = e^{\frac{1}{2}} - e^{-\frac{1}{2}}$
(3) $y(1) = 1$
(4) $y(1) = e^{\frac{1}{2}} - 1$

42. If $[\cdot]$ represents the greatest integer function, then the value of

$$\int_{0}^{\sqrt{\frac{\pi}{2}}} \left[\left[x^{2} \right] - \cos x \right] dx \quad \text{is } ___$$

43. The differential equation satisfied by the system of parabolas $y^2 = 4a(x + a)$ is :

(1)
$$y\left(\frac{dy}{dx}\right)^2 - 2x\left(\frac{dy}{dx}\right) - y = 0$$

(2) $y\left(\frac{dy}{dx}\right)^2 - 2x\left(\frac{dy}{dx}\right) + y = 0$
(3) $y\left(\frac{dy}{dx}\right)^2 + 2x\left(\frac{dy}{dx}\right) - y = 0$
(4) $y\left(\frac{dy}{dx}\right) + 2x\left(\frac{dy}{dx}\right) - y = 0$

mode06\B0BA-BB\Kota\JEE MAIN\Topicwise JEE MAIN-2021

- 44. Let y = y(x) be the solution of the differential equation $\frac{dy}{dx} = (y+1)((y+1)e^{x^2/2} - x),$ 0 < x < 2.1, with y(2) = 0. Then the value of $\frac{dy}{dx}$ at x = 1 is equal to : $(1) \frac{-e^{3/2}}{(e^2+1)^2}$ (2) $-\frac{2e^2}{(1+e^2)^2}$ (3) $\frac{e^{5/2}}{(1+e^2)^2}$ (4) $\frac{5e^{1/2}}{(e^2+1)^2}$
- **45.** Let y = y(x) be the solution of the differential equation $xdy ydx = \sqrt{(x^2 y^2)} dx$, $x \ge 1$, with y(1) = 0. If the area bounded by the line x = 1, $x = e^{\pi}$, y = 0 and y = y(x) is $\alpha e^{2\pi} + \beta$, then the value of $10(\alpha + \beta)$ is equal to

AREA UNDER THE CURVE

- 1. Let T be the tangent to the ellipse E : $x^2 + 4y^2 = 5$ at the point P(1, 1). If the area of the region bounded by the tangent T, ellipse E, lines x = 1and $x = \sqrt{5}$ is $\alpha\sqrt{5} + \beta + \gamma \cos^{-1}\left(\frac{1}{\sqrt{5}}\right)$, then $|\alpha + \beta + \gamma|$ is equal to
- 2. The area (in sq. units) of the region bounded by the curves $x^2 + 2y - 1 = 0$, $y^2 + 4x - 4 = 0$ and $y^2 - 4x - 4 = 0$, in the upper half plane is _____.
- 3. The area (in sq. units) of the region, given by the set $\{(x, y) \in \mathbf{R} \times \mathbf{R} \mid x \ge 0, 2x^2 \le y \le 4 2x\}$ is :
 - (1) $\frac{8}{3}$ (2) $\frac{17}{3}$ (3) $\frac{13}{3}$ (4) $\frac{7}{3}$
- **4.** If the area of the bounded region

$$R = \left\{ (x, y) : \max \{0, \log_e x\} \le y \le 2^x, \frac{1}{2} \le x \le 2 \right\}$$

is, $\alpha(\log_e 2)^{-1} + \beta(\log_e 2) + \gamma$, then the value of

- $(\alpha + \beta 2\gamma)^2$ is equal to :
- (1) 8 (2) 2 (3) 4 (4) 1

5. The area of the region bounded by y - x = 2 and $x^2 = y$ is equal to :-

(1)
$$\frac{16}{3}$$
 (2) $\frac{2}{3}$ (3) $\frac{9}{2}$ (4) $\frac{4}{3}$

6. The area of the region

S

= {(x, y) :
$$3x^2 \le 4y \le 6x + 24$$
} is _____

- 7. Let a and b respectively be the points of local maximum and local minimum of the function $f(x) = 2x^3 3x^2 12x$. If A is the total area of the region bounded by y = f(x), the x-axis and the lines x = a and x = b, then 4A is equal to _____.
- 8. The area of the region bounded by the parabola $(y-2)^2 = (x-1)$, the tangent to it at the point whose ordinate is 3 and the x-axis is :

- 9. If the line y = mx bisects the area enclosed by the lines x = 0, y = 0, x = $\frac{3}{2}$ and the curve y = 1 + 4x - x², then 12 m is equal to .
- 10. The area, enclosed by the curves $y = \sin x + \cos x$ and $y = |\cos x - \sin x|$ and the lines x = 0, $x = \frac{\pi}{2}$, is: (1) $2\sqrt{2}(\sqrt{2}-1)$ (2) $2(\sqrt{2}+1)$ (3) $4(\sqrt{2}-1)$ (4) $2\sqrt{2}(\sqrt{2}+1)$
- **11.** The area of the region :

R = {(x, y) : $5x^2 \le y \le 2x^2 + 9$ } is : (1) $11\sqrt{3}$ square units (2) $12\sqrt{3}$ square units

- (1) 11 $\sqrt{3}$ square units (2) 12 $\sqrt{3}$ square units (3) $9\sqrt{3}$ square units (4) $6\sqrt{3}$ square units
- 12. The area (in sq. units) of the part of the circle $x^2 + y^2 = 36$, which is outside the parabola $y^2 = 9x$, is :
 - (1) $24\pi + 3\sqrt{3}$ (2) $12\pi 3\sqrt{3}$
 - (3) $24\pi 3\sqrt{3}$ (4) $12\pi + 3\sqrt{3}$

node06\B0BA-BB\Kota\EE MAIN\Topicwise JEE MAIN-2021

MATRICES

1.	Let $A = \begin{bmatrix} 2 & 3 \\ a & 0 \end{bmatrix}$, $a \in \mathbf{R}$ be written as $P + Q$ where
	P is a symmetric matrix and Q is skew symmetric
	matrix. If $det(Q) = 9$, then the modulus of the sum of
	all possible values of determinant of P is equal to :

(1) 36 (2) 24 (3) 45 (4) 18
2. Let
$$A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
 and $B = 7A^{20} - 20A^7 + 2I$,

where I is an identity matrix of order 3×3 . If B = [b_{ij}], then b₁₃ is equal to _____.

3. Let y = y(x) satisfies the equation $\frac{dy}{dx} - |A| = 0$,

for all x > 0 , where A =
$$\begin{bmatrix} y & \sin x & 1 \\ 0 & -1 & 1 \\ 2 & 0 & \frac{1}{x} \end{bmatrix}$$
.

If
$$y(\pi) = \pi + 2$$
, then the value of $y\left(\frac{\pi}{2}\right)$ is :

(1)
$$\frac{\pi}{2} + \frac{4}{\pi}$$
 (2) $\frac{\pi}{2} - \frac{1}{\pi}$
(3) $\frac{3\pi}{2} - \frac{1}{\pi}$ (4) $\frac{\pi}{2} - \frac{4}{\pi}$

4. Let
$$A = \{a_{ii}\}$$
 be a 3 × 3 matrix, where

$$a_{ij} = \begin{cases} (-1)^{j-i} \text{ if } i < j, \\ 2 \text{ if } i = j, \\ (-1)^{i+j} \text{ if } i > j, \end{cases}$$

then det $(3\text{Adj}(2\text{A}^{-1}))$ is equal to _____.

5. Let A = $[a_{ij}]$ be a real matrix of order 3 × 3, such that $a_{i1} + a_{i2} + a_{i3} = 1$, for i = 1, 2, 3. Then, the sum of all the entries of the matrix A³ is equal to :

(1) 2 (2) 1 (3) 3 (4) 9

13. The graphs of sine and cosine functions, intersect each other at a number of points and between two consecutive points of intersection, the two graphs enclose the same area A. Then A⁴ is equal to _____.

ALLEN

- 14. Let A_1 be the area of the region bounded by the curves y = sinx, y = cosx and y-axis in the first quadrant. Also, let A_2 be the area of the region bounded by the curves y = sinx, y = cosx, x-axis
 - and $x = \frac{\pi}{2}$ in the first quadrant. Then,
 - (1) $A_1: A_2 = 1: \sqrt{2}$ and $A_1 + A_2 = 1$
 - (2) $A_1 = A_2$ and $A_1 + A_2 = \sqrt{2}$
 - (3) $2A_1 = A_2$ and $A_1 + A_2 = 1 + \sqrt{2}$
 - (4) $A_1: A_2 = 1: 2$ and $A_1 + A_2 = 1$
- **15.** The area bounded by the lines y = ||x 1| 2| is
- 16. Let the curve y = y(x) be the solution of the differential equation, $\frac{dy}{dx} = 2(x+1)$. If the numerical value of area bounded by the curve y = y(x) and x-axis is $\frac{4\sqrt{8}}{3}$, then the value of y(1) is equal to _____.
- 17. Let $f: [-3, 1] \rightarrow R$ be given as

$$f(x) = \begin{cases} \min\{(x+6), x^2\}, & -3 \le x \le 0\\ \max\{\sqrt{x}, x^2\}, & 0 \le x \le 1. \end{cases}$$

If the area bounded by y = f(x) and x-axis is A, then the value of 6A is equal to _____.

18. The area bounded by the curve

 $4y^2 = x^2 (4 - x)(x - 2)$ is equal to :

(1) $\frac{\pi}{8}$ (2) $\frac{3\pi}{8}$ (3) $\frac{3\pi}{2}$ (4) $\frac{\pi}{16}$

Е

6. Let $A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Then the number of 3×3

matrices B with entries from the set $\{1, 2, 3, 4, 5\}$ and satisfying AB = BA is _____.

7. Let $M = \left\{ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \{\pm 3, \pm 2, \pm 1, 0\} \right\}$.

Define $f : M \to Z$, as f(A) = det(A), for all $A \in M$, where Z is set of all integers. Then the number of $A \in M$ such that f(A) = 15 is equal to

8. If $P = \begin{bmatrix} 1 & 0 \\ 1/2 & 1 \end{bmatrix}$, then P^{50} is: (1) $\begin{bmatrix} 1 & 0 \\ 25 & 1 \end{bmatrix}$ (2) $\begin{bmatrix} 1 & 50 \\ 0 & 1 \end{bmatrix}$ (3) $\begin{bmatrix} 1 & 25 \\ 0 & 1 \end{bmatrix}$ (4) $\begin{bmatrix} 1 & 0 \\ 50 & 1 \end{bmatrix}$

9. Let
$$A = \begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}$$
. If $A^{-1} = \alpha I + \beta A$, $\alpha, \beta \in \mathbf{R}$, I is

a 2 × 2 identity matrix, then 4(α – β) is equal to :

(1) 5 (2)
$$\frac{8}{3}$$
 (3) 2 (4) 4

10. Let A and B be two 3×3 real matrices such that $(A^2 - B^2)$ is invertible matrix. If $A^5 = B^5$ and $A^3B^2 = A^2B^3$, then the value of the determinant of the matrix $A^3 + B^3$ is equal to :

(1) 2 (2) 4 (3) 1 (4) 0

$$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

11. If
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $M = A + A^2 + A^3 + \dots + A^{20}$,

then the sum of all the elements of the matrix M is equal to_____.

12. If
$$A = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 \\ i & 1 \end{pmatrix}$, $i = \sqrt{-1}$, and

 $Q = A^{T}BA$, then the inverse of the matrix A $Q^{2021} A^{T}$ is equal to :

 $(1) \begin{pmatrix} \frac{1}{\sqrt{5}} & -2021 \\ 2021 & \frac{1}{\sqrt{5}} \end{pmatrix} \qquad (2) \begin{pmatrix} 1 & 0 \\ -2021i & 1 \end{pmatrix}$ $(2) \begin{pmatrix} 1 & 0 \\ -2021i & 1 \end{pmatrix} \qquad (2) \begin{pmatrix} 1 & -2021i \\ 0 & 0 \end{pmatrix} \qquad (2) \begin{pmatrix} 1 & -2021i \\ 0 & 0 \end{pmatrix}$

$$(3) \begin{pmatrix} 1 & 0 \\ 2021i & 1 \end{pmatrix} \qquad (4) \begin{pmatrix} 1 & 2021i \\ 0 & 1 \end{pmatrix}$$

13. Let $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$. Then $A^{2025} - A^{2020}$ is equal to :

(1)
$$A^6 - A$$
 (2) A^5
(3) $A^5 - A$ (4) A^6

- 14. Let A be a 3×3 real matrix. If det(2Adj(2 Adj(Adj(2A)))) = 2^{41} , then the value of det(A²) equal _____.
- **15.** If the matrix $A = \begin{pmatrix} 0 & 2 \\ K & -1 \end{pmatrix}$ satisfies $A(A^3 + 3I) = 2I$, then the value of K is :

(1)
$$\frac{1}{2}$$
 (2) $-\frac{1}{2}$ (3) -1 (4) 1

16. The number of elements in the set $\begin{cases}
A = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}: a, b, d \in \{-1, 0, 1\} \text{ and } (I - A)^3 = I - A^3 \end{cases},$

where I is 2×2 identity matrix, is :

17. Let $J_{n,m} = \int_{0}^{\frac{1}{2}} \frac{x^{n}}{x^{m} - 1} dx$, $\forall n > m$ and $n, m \in \mathbb{N}$. Consider a matrix $A = [a_{ij}]_{3 \times 3}$ where $a_{ij} = \begin{cases} J_{6+i,3} - J_{i+3,3}, & i \le j \\ 0, & i > j \end{cases}$. Then $|adjA^{-1}|$ is : (1) $(15)^{2} \times 2^{42}$ (2) $(15)^{2} \times 2^{34}$

$$(3) (105)^2 \times 2^{38} \qquad (2) (13)^2 \times 2^{36}$$

10de06\B0BA-BB\Kota\EE MAIN\Topicwise JEE MAIN-202

Ε

ALLEN

- **18.** Let A and B be 3×3 real matrices such that A is symmetric matrix and B is skew-symmetric matrix. Then the system of linear equations $(A^2B^2 B^2A^2)X = O$, where X is a 3×1 column matrix of unknown variables and O is a 3×1 null matrix, has :
 - (1) no solution
 - (2) exactly two solutions
 - (3) infinitely many solutions
 - (4) a unique solution
- **19.** Let M be any 3×3 matrix with entries from the set $\{0, 1, 2\}$. The maximum number of such matrices, for which the sum of diagonal elements of M^TM is seven, is _____.

20. Let
$$P = \begin{bmatrix} 3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0 \end{bmatrix}$$
, where $\alpha \in \mathbb{R}$.

Suppose Q = [q_{ij}] is a matrix satisfying PQ = kI₃ for some non-zero k \in R. If $q_{23} = -\frac{k}{8}$ and $4r^2$

$$|\mathbf{Q}| = \frac{\mathbf{k}^2}{2}$$
, then $\alpha^2 + \mathbf{k}^2$ is equal to _____.

- 21. Let A be a 3×3 matrix with det(A) = 4. Let R_i denote the ith row of A. If a matrix B is obtained by performing the operation R₂ \rightarrow 2R₂ + 5R₃ on 2A, then det(B) is equal to :
 - (1) 16 (2) 80 (3) 128 (4) 64
- **22.** If for the matrix, $A = \begin{bmatrix} 1 & -\alpha \\ \alpha & \beta \end{bmatrix}$, $AA^{T} = I_{2}$, then

the value of $\alpha^4 + \beta^4$ is :

(1) 4 (2) 2 (3) 3 (4) 1

$$\begin{bmatrix} x & y & z \end{bmatrix}$$

23. Let $A = \begin{bmatrix} y & z & x \\ z & x & y \end{bmatrix}$, where x, y and z are real

numbers such that x + y + z > 0 and xyz = 2. If $A^2 = I_3$, then the value of $x^3 + y^3 + z^3$ is_____. $\begin{array}{c} \textbf{JEE (Main) Examination-2021} \\ \hline 0 \\ \hline \end{array}$

equal to _____.

node06\B0BA-BB\Kota\JEE MAIN\Topicwise JEE MAIN-2021

Ε

VECTORS

30. If x, y, z are in arithmetic progression with common difference d, $x \neq 3d$, and the determinant of the matrix $\begin{bmatrix} 3 & 4\sqrt{2} & x \\ 4 & 5\sqrt{2} & y \\ 5 & k & 7 \end{bmatrix}$ is zero, then the value of k^2 is (2) 12(1)72(3) 36(4) 6**31.** Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $B = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ such that 2. AB = B and a + d = 2021, then the value of ad – bc is equal to 3. If $A = \begin{pmatrix} 0 & \sin \alpha \\ \sin \alpha & 0 \end{pmatrix}$ and $det \left(A^2 - \frac{1}{2}I \right) = 0$, then 32. a possible value of α is (1) $\frac{\pi}{2}$ (2) $\frac{\pi}{3}$ (3) $\frac{\pi}{4}$ (4) $\frac{\pi}{6}$ **33.** If $A = \begin{bmatrix} 2 & 3 \\ 0 & -1 \end{bmatrix}$, then the value of $det(A^4) + det \left(A^{10} - (Adj(2A))^{10}\right)$ is equal to **34.** Let $A + 2B = \begin{bmatrix} 1 & 2 & 0 \\ 6 & -3 & 3 \\ -5 & 3 & 1 \end{bmatrix}$ and $2A - B = \begin{bmatrix} 2 & -1 & 5 \\ 2 & -1 & 6 \\ 0 & 1 & 2 \end{bmatrix}$. If Tr(A) denotes the sum of all diagonal elements of the matrix A, then Tr(A) - Tr(B) has value equal to (1)1(2) 2(3)0(4) 3Let I be an identity matrix of order 2×2 and 35. $P = \begin{vmatrix} 2 & -1 \\ 5 & -3 \end{vmatrix}.$ Then the value of $n \in N$ for which $P^n = 5I - 8P$ is equal to _____.

- 1. Let $\vec{a} = 2\hat{i} + \hat{j} 2\hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$. If \vec{c} is a vector such that $\vec{a} \cdot \vec{c} = |\vec{c}|, |\vec{c} \vec{a}| = 2\sqrt{2}$ and the angle between $(\vec{a} \times \vec{b})$ and \vec{c} is $\frac{\pi}{6}$, then the value of $|(\vec{a} \times \vec{b}) \times \vec{c}|$ is :
 - (1) $\frac{2}{3}$ (2) 4 (3) 3 (4) $\frac{3}{2}$
 - Let \vec{a} , \vec{b} , \vec{c} be three mutually perpendicular vectors of the same magnitude and equally inclined at an angle θ , with the vector $\vec{a} + \vec{b} + \vec{c}$. Then 36 cos²2 θ is equal to
 - In a triangle ABC, if $|\overrightarrow{BC}| = 3$, $|\overrightarrow{CA}| = 5$ and $|\overrightarrow{BA}| = 7$, then the projection of the vector \overrightarrow{BA} on \overrightarrow{BC} is equal to

(1)
$$\frac{19}{2}$$
 (2) $\frac{13}{2}$ (3) $\frac{11}{2}$ (4) $\frac{15}{2}$

4. For p > 0, a vector $\vec{v}_2 = 2\hat{i} + (p+1)\hat{j}$ is obtained by rotating the vector $\vec{v}_1 = \sqrt{3}p\hat{i} + \hat{j}$ by an angle θ about origin in counter clockwise direction. If $\tan \theta = \frac{(\alpha\sqrt{3}-2)}{(4\sqrt{3}+3)}$, then the value of α is equal

to

5. Let a vector \vec{a} be coplanar with vectors $\vec{b} = 2\hat{i} + \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} - \hat{j} + \hat{k}$. If \vec{a} is perpendicular to $\vec{d} = 3\hat{i} + 2\hat{j} + 6\hat{k}$, and $|\vec{a}| = \sqrt{10}$. Then a possible value of $[\vec{a} \ \vec{b} \ \vec{c}] + [\vec{a} \ \vec{b} \ \vec{d}] + [\vec{a} \ \vec{c} \ \vec{d}]$ is equal to: (1) - 42 (2) - 40 (3) - 29 (4) - 38 6. Let three vectors \vec{a}, \vec{b} and \vec{c} be such that $\vec{a} \times \vec{b} = \vec{c}, \vec{b} \times \vec{c} = \vec{a}$ and $|\vec{a}| = 2$. Then which one of the following is **not** true? (1) $\vec{a} \times ((\vec{b} + \vec{c}) \times (\vec{b} - \vec{c})) = \vec{0}$ (2) Projection of \vec{a} on $(\vec{b} \times \vec{c})$ is 2 (3) $[\vec{a} \ \vec{b} \ \vec{c}] + [\vec{c} \ \vec{a} \ \vec{b}] = 8$ (4) $|3\vec{a} + \vec{b} - 2\vec{c}|^2 = 51$

Ε

7.

8.

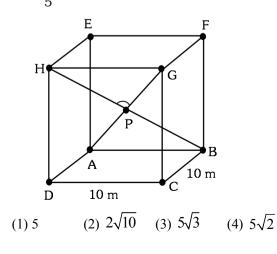
- Let the vectors $(2+a+b)\hat{i} + (a+2b+c)\hat{j} - (b+c)\hat{k},$ $(1+b)\hat{i} + 2b\hat{j} - b\hat{k} \text{ and } (2+b)\hat{i} + 2b\hat{j} + (1-b)\hat{k} \text{ a, b,}$ $c, \in \mathbf{R}$ be co-planar. Then which of the following is true? (1) 2b = a + c (2) 3c = a + b (3) a = b + 2c (4) 2a = b + c Let $\vec{p} = 2\hat{i} + 3\hat{j} + \hat{k}$ and $\vec{q} = \hat{i} + 2\hat{j} + \hat{k}$ be two vectors. If a vector $\vec{r} = (\alpha\hat{i} + \beta\hat{j} + \gamma\hat{k})$ is perpendicular to each of the vectors $(\vec{p} + \vec{q})$ and $(\vec{p} - \vec{q})$, and $|\vec{r}| = \sqrt{3}$, then $|\alpha| + |\beta| + |\gamma|$ is equal to ______.
- 9. Let a, b and c be distinct positive numbers. If the vectors $a\hat{i} + a\hat{j} + c\hat{k}$, $\hat{i} + \hat{k}$ and $c\hat{i} + c\hat{j} + b\hat{k}$ are co-planar, then c is equal to:

(1)
$$\frac{2}{\frac{1}{a} + \frac{1}{b}}$$
 (2) $\frac{a+b}{2}$
(3) $\frac{1}{a} + \frac{1}{b}$ (4) \sqrt{ab}

- **10.** If $|\vec{a}| = 2, |\vec{b}| = 5$ and $|\vec{a} \times \vec{b}| = 8$, then $|\vec{a} \cdot \vec{b}|$ is equal to : (1) 6 (2) 4 (3) 3 (4) 5
- If (a + 3b) is perpendicular to (7a 5b) and (a - 4b) is perpendicular to (7a - 2b), then the angle between a and b (in degrees) is _____.
 Let a = i + j + 2k and b = -i + 2j + 3k. Then the vector product (a + b) × ((a × ((a - b) × b)) × b) is

equal to :

(1) $5(34\hat{i} - 5\hat{j} + 3\hat{k})$ (2) $7(34\hat{i} - 5\hat{j} + 3\hat{k})$ (3) $7(30\hat{i} - 5\hat{j} + 7\hat{k})$ (4) $5(30\hat{i} - 5\hat{j} + 7\hat{k})$ 13. Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, \vec{b} and $\vec{c} = \hat{j} - \hat{k}$ be three vectors such that $\vec{a} \times \vec{b} = \vec{c}$ and $\vec{a} \cdot \vec{b} = 1$. If the length of projection vector of the vector \vec{b} on the vector $\vec{a} \times \vec{c}$ is *l*, then the value of $3l^2$ is equal to _____.


IEE (Main) Examination-2021

51

14. Let \vec{a}, \vec{b} and \vec{c} be three vectors such that $\vec{a} = \vec{b} \times (\vec{b} \times \vec{c})$. If magnitudes of the vectors \vec{a}, \vec{b} and \vec{c} are $\sqrt{2}, 1$ and 2 respectively and the angle between \vec{b} and \vec{c} is $\theta \left(0 < \theta < \frac{\pi}{2}\right)$, then the value of 1+ tan θ is equal to :

(1)
$$\sqrt{3} + 1$$
 (2) 2
(3) 1 (4) $\frac{\sqrt{3} + 1}{\sqrt{3}}$

- 15. Let $\vec{a} = \hat{i} \alpha \hat{j} + \beta \hat{k}$, $\vec{b} = 3\hat{i} + \beta \hat{j} \alpha \hat{k}$ and $\vec{c} = -\alpha \hat{i} - 2\hat{j} + \hat{k}$, where α and β are integers. If $\vec{a} \cdot \vec{b} = -1$ and $\vec{b} \cdot \vec{c} = 10$, then $(\vec{a} \times \vec{b}) \cdot \vec{c}$ is equal to_____.
- 16. Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{j} \hat{k}$. If \vec{c} is a vector such that $\vec{a} \times \vec{c} = \vec{b}$ and $\vec{a} \cdot \vec{c} = 3$, then $\vec{a} \cdot (\vec{b} \times \vec{c})$ is equal to :
- (1) -2
 (2) -6
 (3) 6
 (4) 2
 17. A hall has a square floor of dimension 10m × 10m (see the figure) and vertical walls. If the angle GPH between the diagonals AG and BH is cos⁻¹ 1/r, then the height of the hall (in meters) is :

- If the projection of the vector $\hat{i} + 2\hat{j} + \hat{k}$ on the 18. sum of the two vectors $2\hat{i}+4\hat{j}-5\hat{k}$ and $-\lambda \hat{i} + 2\hat{j} + 3\hat{k}$ is 1, then λ is equal to .
- Let $\vec{a} = \hat{i} + 5\hat{i} + \alpha \hat{k}$, $\vec{b} = \hat{i} + 3\hat{i} + \beta \hat{k}$ and 19. $\vec{c} = -\hat{i} + 2\hat{j} - 3\hat{k}$ be three vectors such that, $|\vec{b} \times \vec{c}| = 5\sqrt{3}$ and \vec{a} is perpendicular to \vec{b} . Then the greatest amongst the values of $\left|\vec{a}\right|^2$ is _____
- The equation of the plane passing through the 20. line of intersection of the planes $\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 1$ and $\vec{r} \cdot (2\hat{i} + 3\hat{j} - \hat{k}) + 4 = 0$ and parallel to the x-axis is :
 - (1) $\vec{r} \cdot (\hat{j} 3\hat{k}) + 6 = 0$ (2) $\vec{r} \cdot (\hat{i} + 3\hat{k}) + 6 = 0$ (3) $\vec{r} \cdot (\hat{i} - 3\hat{k}) + 6 = 0$ (4) $\vec{r} \cdot (\hat{j} - 3\hat{k}) - 6 = 0$
- Let \vec{a} and \vec{b} be two vectors such that 21. $|2\vec{a}+3\vec{b}| = |3\vec{a}+\vec{b}|$ and the angle between \vec{a} and \vec{b} is 60°. If $\frac{1}{8}\vec{a}$ is a unit vector, then $|\vec{b}|$ is equal to : (1)4(2) 6(3)5(4) 8
- 22. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors mutually perpendicular to each other and have same magnitude.
 - If а vector ŕ satisfies. $\vec{a} \times \{(\vec{r} - \vec{b}) \times \vec{a}\} + \vec{b} \times \{(\vec{r} - \vec{c}) \times \vec{b}\} + \vec{c} \times \{(\vec{r} - \vec{a}) \times \vec{c}\} = \vec{0},$ then \vec{r} is equal to :
 - (1) $\frac{1}{3}(\vec{a}+\vec{b}+\vec{c})$ (2) $\frac{1}{3}(2\vec{a}+\vec{b}-\vec{c})$ (3) $\frac{1}{2}(\vec{a}+\vec{b}+\vec{c})$ (4) $\frac{1}{2}(\vec{a}+\vec{b}+2\vec{c})$
- Let $\vec{a} = 2\hat{i} \hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} \hat{k}$. Let a 23. vector \vec{v} be in the plane containing \vec{a} and \vec{b} . If \vec{v} is perpendicular to the vector $3\hat{i}+2\hat{j}-\hat{k}$ and its projection on \vec{a} is 19 units, then $|2\vec{v}|^2$ is equal to _____.

- The vector equation of the plane passing 24. through the intersection of the planes $\vec{r}.(\hat{i}+\hat{j}+\hat{k})=1$ and $\vec{r}.(\hat{i}-2\hat{j})=-2$, and the point (1, 0, 2) is : (1) $\vec{r}.(\hat{i}+7\hat{j}+3\hat{k})=\frac{7}{2}$ (2) $\vec{r} \cdot (3\hat{i} + 7\hat{i} + 3\hat{k}) = 7$ (3) $\vec{r} \cdot (\hat{i} + 7\hat{i} + 3\hat{k}) = 7$
 - (4) $\vec{r} \cdot (\hat{i} 7\hat{j} + 3\hat{k}) = \frac{7}{2}$
- 25. Let three vectors \vec{a} , \vec{b} and \vec{c} be such that \vec{c} is coplanar with \vec{a} and \vec{b} , $\vec{a} \cdot \vec{c} = 7$ and \vec{b} is perpendicular to \vec{c} , where $\vec{a} = -\hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = 2\hat{i} + \hat{k}$, then the value of $2|\vec{a} + \vec{b} + \vec{c}|^2$ is _____
- Let $\vec{a} = \hat{i} + 2\hat{j} \hat{k}$, $\vec{b} = \hat{i} \hat{j}$ and $\vec{c} = \hat{i} \hat{j} \hat{k}$ be 26. three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{a} = \vec{c} \times \vec{a}$ and $\vec{r} \cdot \vec{b} = 0$, then $\vec{r} \cdot \vec{a}$ is equal to
- Let $\vec{a} = \hat{i} + \alpha \hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} \alpha \hat{j} + \hat{k}$. If the 27. area of the parallelogram whose adjacent sides are represented by the vectors \vec{a} and \vec{b} is $8\sqrt{3}$ square units, then $\vec{a} \cdot \vec{b}$ is equal to _____:
- If vectors $\vec{a}_1 = x\hat{i} \hat{j} + \hat{k}$ and $\vec{a}_2 = \hat{i} + y\hat{j} + z\hat{k}$ are 28.

collinear, then a possible unit vector parallel to
the vector
$$\hat{x}\hat{i} + \hat{y}\hat{j} + \hat{z}\hat{k}$$
 is
(1) $\frac{1}{\sqrt{2}}(-\hat{j} + \hat{k})$ (2) $\frac{1}{\sqrt{2}}(\hat{i} - \hat{j})$
(3) $\frac{1}{\sqrt{3}}(\hat{i} + \hat{j} - \hat{k})$ (4) $\frac{1}{\sqrt{3}}(\hat{i} - \hat{j} + \hat{k})$

Ε

ALLEN

	LLEN	
29.	If \vec{a} and \vec{b} are perpendicular, then	34
	$\vec{a} \times \left(\vec{a} \times \left(\vec{a} \times \left(\vec{a} \times \vec{b} \right) \right) \right)$ is equal to	
	(1) $\vec{0}$ (2) $\frac{1}{2} \vec{a} ^4 \vec{b}$	
	(3) $\vec{a} \times \vec{b}$ (4) $ \vec{a} ^4 \vec{b}$	
30.	Let $\vec{a} = \hat{i} + 2\hat{j} - 3\hat{k}$ and $\vec{b} = 2\hat{i} - 3\hat{j} + 5\hat{k}$. If	
	$\vec{r} \times \vec{a} = \vec{b} \times \vec{r}$, $\vec{r} \cdot \left(\alpha \hat{i} + 2\hat{j} + \hat{k}\right) = 3$ and	35
	$\vec{r}.(2\hat{i}+5\hat{j}-\alpha\hat{k})=-1, \alpha \in \mathbb{R}$, then the value of	
	$\alpha + \left \vec{r} \right ^2$ is equal to :	
	(1) 9 (2) 15 (3) 13 (4) 11	30
31.	Let \vec{c} be a vector perpendicular to the vectors	
	$\vec{a} = \hat{i} + \hat{j} - \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$.	
	If $\vec{c} \cdot (\hat{i} + \hat{j} + 3\hat{k}) = 8$ then the value of $\vec{c} \cdot (\vec{a} \times \vec{b})$	
	is equal to	
32.	Let a vector $\alpha \hat{i} + \beta \hat{j}$ be obtained by rotating the	
	vector $\sqrt{3}\hat{i} + \hat{j}$ by an angle 45° about the origin	37
	in counterclockwise direction in the first	
	quadrant. Then the area of triangle having	
	vertices (α, β) , $(0, \beta)$ and $(0, 0)$ is equal to	
	(1) $\frac{1}{2}$ (2) 1 (3) $\frac{1}{\sqrt{2}}$ (4) $2\sqrt{2}$	
33.	Let O be the origin. Let $\overrightarrow{OP} = x\hat{i} + y\hat{j} - \hat{k}$ and	

origin. Let OP = xi + yj $\overrightarrow{OQ} = -\hat{i} + 2\hat{j} + 3x\hat{k}$, x, y \in R, x > 0, be such that $\left| \overrightarrow{PQ} \right| = \sqrt{20}$ and the vector \overrightarrow{OP} is perpendicular to \overrightarrow{OQ} . If $\overrightarrow{OR} = 3\hat{i} + z\hat{j} - 7\hat{k}$, $z \in R$, is coplanar with \overrightarrow{OP} and \overrightarrow{OQ} , then the value of $x^2 + y^2 + z^2$ is equal to (1)7(2)9(4) 1(3) 2

JEE (Main) Examination-2021 Let \vec{x} be a vector in the plane containing 4. vectors $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} - \hat{k}$. If the vector \vec{x} is perpendicular to $\left(3\hat{i}+2\hat{j}-\hat{k}\right)$ and its projection on \vec{a} is $\frac{17\sqrt{6}}{2}$, then the value of $|\vec{\mathbf{x}}|^2$ is equal to **5.** Let $\vec{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}$ and $\vec{b} = 7\hat{i} + \hat{j} - 6\hat{k}$. If $\vec{r} \times \vec{a} = \vec{r} \times \vec{b}$, $\vec{r} \cdot (\hat{i} + 2\hat{j} + \hat{k}) = -3$, then $\vec{r} \cdot (2\hat{i} - 3\hat{j} + \hat{k})$ is equal to : (1) 12(2) 8(3) 13(4) 10If $\vec{a} = \alpha \hat{i} + \beta \hat{j} + 3 \hat{k}$, 6. $\vec{b} = -\beta \hat{i} - \alpha \hat{j} - \hat{k}$ and $\vec{c} = \hat{i} - 2\hat{i} - \hat{k}$ such that $\vec{a} \cdot \vec{b} = 1$ and $\vec{b} \cdot \vec{c} = -3$, then

53

$$\frac{1}{3}((\vec{a} \times \vec{b}) \cdot \vec{c})$$
 is equal to _____.

7. A vector \vec{a} has components 3p and 1 with respect to a rectangular cartesian system. This system is rotated through a certain angle about the origin in the counter clockwise sense. If, with respect to new system, \vec{a} has components p + 1 and $\sqrt{10}$, then a value of p is equal to:

(1) 1 (2)
$$-\frac{5}{4}$$
 (3) $\frac{4}{5}$ (4) -1

In a triangle ABC, if $\left|\overrightarrow{BC}\right| = 8$, $\left|\overrightarrow{CA}\right| = 7$, 38. $\left| \overrightarrow{AB} \right| = 10$, then the projection of the vector \overrightarrow{AB} on \overrightarrow{AC} is equal to :

(1)
$$\frac{25}{4}$$
 (2) $\frac{85}{14}$ (3) $\frac{127}{20}$ (4) $\frac{115}{16}$

39. Let \vec{a} and \vec{b} be two non-zero vectors perpendicular to each other and $|\vec{a}| = |\vec{b}|$. If $|\vec{a} \times \vec{b}| = |\vec{a}|$, then the angle between the vectors $(\vec{a} + \vec{b} + (\vec{a} \times \vec{b}))$ and \vec{a} is equal to :

5.

6.

7.

8.

9.

(1)
$$\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$$
 (2) $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$
(3) $\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$ (4) $\sin^{-1}\left(\frac{1}{\sqrt{6}}\right)$

40. Let the mirror image of the point (1, 3, a) with respect to the plane $\vec{r} \cdot (2\hat{i} - \hat{j} + \hat{k}) - b = 0$ be (-3, 5, 2). Then the value of |a + b| is equal to _____

3D

- 1. Let P be a plane passing through the points (1, 0, 1), (1, -2, 1) and (0, 1, -2). Let a vector $\vec{a} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$ be such that \vec{a} is parallel to the plane P, perpendicular to $(\hat{i}+2\hat{j}+3\hat{k})$ and $\vec{a} \cdot (\hat{i} + \hat{j} + 2\hat{k}) = 2$, then $(\alpha - \beta + \gamma)^2$ equals _____.
- 2. If the shortest distance between the lines $\vec{\mathbf{r}_i} = \alpha \hat{\mathbf{i}} + 2 \hat{\mathbf{j}} + 2 \hat{\mathbf{k}} + \lambda (\hat{\mathbf{i}} - 2 \hat{\mathbf{j}} + 2 \hat{\mathbf{k}}), \lambda \in \mathbf{R}, \alpha > 0$ and $\vec{r_2} = -4\hat{i} - \hat{k} + \mu(3\hat{i} - 2\hat{j} - 2\hat{k}), \mu \in \mathbf{R}$ is 9, then α is equal to
- The lines x = ay 1 = z 2 and x = 3y 2 = bz 2. 3. $(ab \neq 0)$ are coplanar, if : (1) b = 1, $a \in R - \{0\}$ (2) $a = 1, b \in R - \{0\}$ (3) a = 2, b = 2
 - (4) a = 2, b = 3
- 4. Consider the line L given by the equation $\frac{x-3}{2} = \frac{y-1}{1} = \frac{z-2}{1}$. Let Q be the mirror image of the point (2, 3, -1) with respect to L. Let a plane P be such that it passes through Q, and the line L is perpendicular to P. Then which of the following points is on the plane P? (1)(-1, 1, 2)(2)(1, 1, 1)
 - (3)(1, 1, 2)(4)(1, 2, 2)
- Let L be the line of intersection of planes $\vec{r}.(\hat{i}-\hat{j}+2\hat{k})=2$ and $\vec{r}.(2\hat{i}+\hat{j}-\hat{k})=2$. If $P(\alpha, \beta, \gamma)$ is the foot of perpendicular on L from the point (1,2,0), then the value of $35(\alpha + \beta + \gamma)$ is equal to : (1) 101(2) 119(3) 143(4) 134If the shortest distance between the straight lines 3(x - 1) = 6(y - 2) = 2(z - 1) and $4(x-2) = 2(y-\lambda) = (z-3), \lambda \in \mathbf{R}$ is $\frac{1}{\sqrt{38}}$, then the integral value of λ is equal to : (1)3(2) 2(3)5(4) - 1Let the foot of perpendicular from a point P(1, 2, -1) to the straight line L: $\frac{x}{1} = \frac{y}{0} = \frac{z}{-1}$ be N. Let a line be drawn from P parallel to the plane x + y + 2z = 0 which meets L at point Q. If α is the acute angle between the lines PN and PQ, then $\cos\alpha$ is equal to (1) $\frac{1}{\sqrt{5}}$ (2) $\frac{\sqrt{3}}{2}$ (3) $\frac{1}{\sqrt{3}}$ (4) $\frac{1}{2\sqrt{3}}$ If the lines $\frac{x-k}{1} = \frac{y-2}{2} = \frac{z-3}{3}$ and $\frac{x+1}{3} = \frac{y+2}{2} = \frac{z+3}{1}$ are co-planar, then the value of k is . Let the plane passing through the point (-1, 0, -2)and perpendicular to each of the planes 2x + y - z = 2and x - y - z = 3 be ax + by + cz + 8 = 0. Then the value of a + b + c is equal to : (1)3(2) 8(3)5(4) 410. For real numbers α and β , consider the following system of linear equations : x + y - z = 2, $x + 2y + \alpha z = 1$, $2x - y + z = \beta$. If the system has infinite solutions, then $\alpha + \beta$ is equal to

MAIN-202

JEE MAIN

node06\B0BA

Ε

12. For real numbers α and $\beta \neq 0$, if the point of intersection of the straight lines $\frac{x-\alpha}{1} = \frac{y-1}{2} = \frac{z-1}{3}$ and $\frac{x-4}{\beta} = \frac{y-6}{3} = \frac{z-7}{3}$,

lies on the plane x + 2y - z = 8, then $\alpha - \beta$ is equal to :

- 13. The distance of the point P(3, 4, 4) from the point of intersection of the line joining the points. Q(3, -4, -5) and R(2, -3, 1) and the plane 2x + y + z = 7, is equal to_____.
- 14. A plane P contains the line
 x + 2y + 3z + 1 = 0 = x y z 6, and is perpendicular to the plane -2x + y + z + 8 = 0. Then which of the following points lies on P ?

 (1) (-1, 1, 2)
 (2) (0, 1, 1)
 (3) (1, 0, 1)
 (4) (2, -1, 1)

 15. Let the line L be the projection of the line
 - $\frac{x-1}{2} = \frac{y-3}{1} = \frac{z-4}{2}$ in the plane x 2y z = 3.

If d is the distance of the point (0, 0, 6) from L, then d² is equal to _____.

- 16. Let P be the plane passing through the point (1,2,3) and the line of intersection of the planes $\vec{r} \cdot (\hat{i} + \hat{j} + 4\hat{k}) = 16$ and $\vec{r} \cdot (-\hat{i} + \hat{j} + \hat{k}) = 6$. Then which of the following points does **NOT**
 - lie on P ?
 - (1) (3, 3, 2) (2) (6, -6, 2)
 - (3) (4, 2, 2) (4) (-8, 8, 6)

17. Let Q be the foot of the perpendicular from the point P(7,-2,13) on the plane containing the lines $\frac{x+1}{6} = \frac{y-1}{7} = \frac{z-3}{8}$ and $\frac{x-1}{3} = \frac{y-2}{5} = \frac{z-3}{7}$. Then (PQ)², is equal to

IEE (Main) Examination-2021

55

18. The distance of the point (1, -2, 3) from the plane x - y + z = 5 measured parallel to a line, whose direction ratios are 2, 3, -6 is :

- (1) 3 (2) 5 (3) 2 (4) 1
- **19.** Equation of a plane at a distance $\sqrt{\frac{2}{21}}$ from the

origin, which contains the line of intersection of the planes x - y - z - 1 = 0 and 2x + y - 3z + 4 = 0, is : (1) 3x - y - 5z + 2 = 0 (2) 3x - 4z + 3 = 0(3) -x + 2y + 2z - 3 = 0 (4) 4x - y - 5z + 2 = 0

20. The angle between the straight lines, whose direction cosines are given by the equations 2l + 2m - n = 0 and mn + nl + lm = 0, is :

(1)
$$\frac{\pi}{2}$$
 (2) $\pi - \cos^{-1}\left(\frac{4}{9}\right)$

(3)
$$\cos^{-1}\left(\frac{8}{9}\right)$$
 (4) $\frac{\pi}{3}$

- 21. Let S be the mirror image of the point Q(1, 3, 4) with respect to the plane 2x y + z + 3 = 0 and let R (3, 5, γ) be a point of this plane. Then the square of the length of the line segment SR is
- 22. Let the equation of the plane, that passes through the point (1, 4, -3) and contains the line of intersection of the planes 3x - 2y + 4z - 7 = 0and x + 5y - 2z + 9 = 0, be $\alpha x + \beta y + \gamma z + 3 = 0$, then $\alpha + \beta + \gamma$ is equal to :

$$(1) -23 \qquad (2) -15 \qquad (3) 23 \qquad (4) 15$$

23. The square of the distance of the point of intersection of the line $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z+1}{6}$ and the plane 2x - y + z = 6 from the point (-1, -1, 2) is _____.

56 JEE (Main) Examination-2021

24. The distance of the point (-1, 2, -2) from the line of intersection of the planes 2x + 3y + 2z = 0 and x - 2y + z = 0 is :

(1)
$$\frac{1}{\sqrt{2}}$$
 (2) $\frac{5}{2}$ (3) $\frac{\sqrt{42}}{2}$ (4) $\frac{\sqrt{34}}{2}$

25. Suppose the line
$$\frac{x-2}{\alpha} = \frac{y-2}{-5} = \frac{z+2}{2}$$
 lies on
the plane $x + 3y - 2z + \beta = 0$. Then $(\alpha + \beta)$ is
equal to

26. Let the acute angle bisector of the two planes x - 2y - 2z + 1 = 0 and 2x - 3y - 6z + 1 = 0 be the plane P. Then which of the following points lies on P?

(1)
$$\left(3,1,-\frac{1}{2}\right)$$
 (2) $\left(-2,0,-\frac{1}{2}\right)$
(3) $(0, 2, -4)$ (4) $(4, 0, -2)$

27. The distance of line 3y - 2z - 1 = 0 = 3x - z + 4from the point (2, -1, 6) is :

(1)
$$\sqrt{26}$$
 (2) $2\sqrt{5}$ (3) $2\sqrt{6}$ (4) $4\sqrt{2}$

28. Let a, $b \in R$. If the mirror image of the point P(a, 6, 9) with respect to the line

$$\frac{x-3}{7} = \frac{y-2}{5} = \frac{z-1}{-9}$$
 is (20, b, -a -9), then $|a + b|$ is equal to :

(1) 88 (2) 86 (3) 84 (4) 90

29. Let λ be an interger. If the shortest distance between the lines $x - \lambda = 2y - 1 = -2z$ and $x = y + 2\lambda = z - \lambda$ is $\frac{\sqrt{7}}{2\sqrt{2}}$, then the value of $|\lambda|$ is _____.

30. The equation of the plane passing through the point (1, 2, -3) and perpendicular to the planes 3x + y - 2z = 5 and 2x - 5y - z = 7, is (1) 3x - 10y - 2z + 11 = 0
(2) 6x - 5y - 2z - 2 = 0
(3) 11x + y + 17z + 38 = 0
(4) 6x - 5y + 2z + 10 = 0

31. The distance of the point (1, 1, 9) from the point of intersection of the line $\frac{x-3}{1} = \frac{y-4}{2} = \frac{z-5}{2}$ and the plane x + y + z = 17 is :

(1)
$$2\sqrt{19}$$
 (2) $19\sqrt{2}$

(3) 38 (4)
$$\sqrt{38}$$

- 32. The equation of the line through the point (0,1,2) and perpendicular to the line $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{-2}$ is: (1) $\frac{x}{3} = \frac{y-1}{4} = \frac{z-2}{3}$ (2) $\frac{x}{3} = \frac{y-1}{-4} = \frac{z-2}{3}$ (3) $\frac{x}{3} = \frac{y-1}{4} = \frac{z-2}{-3}$ (4) $\frac{x}{-3} = \frac{y-1}{4} = \frac{z-2}{3}$
- 33. Let α be the angle between the lines whose direction cosines satisfy the equations l + m - n = 0 and $l^2 + m^2 - n^2 = 0$. Then the value of $\sin^4 \alpha + \cos^4 \alpha$ is :

(1)
$$\frac{3}{4}$$
 (2) $\frac{3}{8}$ (3) $\frac{5}{8}$ (4) $\frac{1}{2}$

34. A plane passes through the points A(1, 2, 3), B(2, 3, 1) and C(2, 4, 2). If O is the origin and P is (2, -1, 1), then the projection of OP on this plane is of length :

(1)
$$\sqrt{\frac{2}{7}}$$
 (2) $\sqrt{\frac{2}{3}}$ (3) $\sqrt{\frac{2}{11}}$ (4) $\sqrt{\frac{2}{5}}$

35. A line '*l*' passing through origin is perpendicular to the lines

$$l_1 : \vec{\mathbf{r}} = (3+t)\hat{\mathbf{i}} + (-1+2t)\hat{\mathbf{j}} + (4+2t)\hat{\mathbf{k}}$$
$$l_2 : \vec{\mathbf{r}} = (3+2s)\hat{\mathbf{i}} + (3+2s)\hat{\mathbf{j}} + (2+s)\hat{\mathbf{k}}$$

If the co-ordinates of the point in the first octant on $'l_2'$ at a distance of $\sqrt{17}$ from the point of intersection of 'l' and 'l_1' are (a, b, c), then 18(a + b + c) is equal to _____.

	LLEN		JEE (Main) Examination-2021 57
36.	Let L be a line obtained from the intersection of	42.	If the foot of the perpendicular from point
	two planes $x + 2y + z = 6$ and $y + 2z = 4$. If		(4, 3, 8) on the line $L_1: \frac{x-a}{l} = \frac{y-2}{3} = \frac{z-b}{4}$,
	point $P(\alpha, \beta, \gamma)$ is the foot of perpendicular from		$(4, 5, 8)$ on the line $L_1 \cdot \frac{l}{l} = \frac{3}{3} = \frac{4}{4}$,
	(3, 2, 1) on L, then the value of		$l \neq 0$ is (3, 5, 7), then the shortest distance
	$21(\alpha + \beta + \gamma)$ equals :		between the line L_1 and line
	(1) 142 (2) 68 (3) 136 (4) 102		$L_2: \frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}$ is equal to :
37.	If the mirror image of the point (1, 3, 5) with		$L_2 \cdot \frac{1}{3} - \frac{1}{4} - \frac{1}{5}$ is equal to .
	respect to the plane $4x - 5y + 2z = 8$ is (α, β, γ) ,		(1) $\frac{1}{2}$ (2) $\frac{1}{\sqrt{6}}$ (3) $\sqrt{\frac{2}{3}}$ (4) $\frac{1}{\sqrt{3}}$
	then $5(\alpha + \beta + \gamma)$ equals :		$\begin{array}{c} (1) \\ 2 \end{array} \qquad \begin{array}{c} (2) \\ \hline \sqrt{6} \end{array} \qquad \begin{array}{c} (3) \\ \sqrt{3} \end{array} \qquad \begin{array}{c} (4) \\ \hline \sqrt{3} \end{array}$
	(1) 47 (2) 43 (3) 39 (4) 41	43.	If the distance of the point $(1, -2, 3)$ from the
38.	Consider the three planes		plane $x + 2y - 3z + 10 = 0$ measured parallel to
	$P_1: 3x + 15y + 21z = 9,$		the line, $\frac{x-1}{3} = \frac{2-y}{m} = \frac{z+3}{1}$ is $\sqrt{\frac{7}{2}}$, then the
	$P_2: x - 3y - z = 5$, and		are fine, $3 \text{ m} 1 \text{ V} 2$, then the
	$P_3: 2x + 10y + 14z = 5$		value of m is equal to
	Then, which one of the following is true ?	44.	If for $a > 0$, the feet of perpendiculars from the
	(1) P_1 and P_2 are parallel		points A(a, $-2a$, 3) and B(0, 4, 5) on the plane
	(2) P_1 and P_3 are parallel		lx + my + nz = 0 are points C(0, -a, -1) and D
	(3) P_2 and P_3 are parallel		respectively, then the length of line segment CD
20	(4) P_1, P_2 and P_3 all are parallel		is equal to : $(1) \sqrt{21} \qquad (2) \sqrt{41} \qquad (3) \sqrt{55} \qquad (4) \sqrt{55}$
39.	Let $(\lambda, 2, 1)$ be a point on the plane which	47	(1) $\sqrt{31}$ (2) $\sqrt{41}$ (3) $\sqrt{55}$ (4) $\sqrt{66}$
	passes through the point $(4, -2, 2)$. If the plane is perpendicular to the line joining the points	45.	Let the position vectors of two points P and Q $\frac{1}{2}$
	(-2, -21, 29) and $(-1, -16, 23)$, then		be $3\hat{i} - \hat{j} + 2\hat{k}$ and $\hat{i} + 2\hat{j} - 4\hat{k}$, respectively. Let
			R and S be two points such that the direction
	$\left(\frac{\lambda}{11}\right)^2 - \frac{4\lambda}{11} - 4$ is equal to		ratios of lines PR and QS are $(4, -1, 2)$ and
40.	If $(1,5,35)$, $(7,5,5)$, $(1,\lambda,7)$ and $(2\lambda,1,2)$ are		(-2, 1, -2), respectively. Let lines PR and
-10.	coplanar, then the sum of all possible values of		QS intersect at T. If the vector \overline{TA} is
	λ is		perpendicular to both PR and QS and the
			length of vector \overrightarrow{TA} is $\sqrt{5}$ units, then the
	(1) $\frac{39}{5}$ (2) $-\frac{39}{5}$ (3) $\frac{44}{5}$ (4) $-\frac{44}{5}$		modulus of a position vector of A is :
41.	If (x, y, z) be an arbitrary point lying on a plane P		(1) $\sqrt{482}$ (2) $\sqrt{171}$ (3) $\sqrt{5}$ (4) $\sqrt{227}$
-2021	which passes through the point (42, 0, 0),	46.	Let P be a plane $lx + my + nz = 0$ containing the
E MAIN	(0, 42, 0) and $(0, 0, 42)$, then the value of expression		line, $\frac{1-x}{1} = \frac{y+4}{2} = \frac{z+2}{3}$. If plane P divides
picwise J	$3 + \frac{x-11}{(x-19)^2(z-12)^2} + \frac{y-19}{(x-11)^2(z-12)^2}$		1 2 5
MAIN\To	$(y-19)^2(z-12)^2 (x-11)^2(z-12)^2$		the line segment AB joining points
node06\B0BA-BB\Kob\LEF MAIN\Tqpicwise JEF MAIN-202'	$+\frac{z-12}{(x-11)^2(y-19)^2}-\frac{x+y+z}{14(x-11)(y-19)(z-12)}$		A(-3 , -6 , 1) and B(2, 4, -3) in ratio k : 1 then the value of k is equal to :
BA-BB\K	$(x-11)^2(y-19)^2$ 14(x-11)(y-19)(z-12)		the value of k is equal to : (1) 1.5 (2) 3 (3) 2 (4) 4
de06\B0	(1) 0 (2) 3 (3) 39 (4) -45		(1) 1.5 (2) 3 (3) 2 (4) 4
Ň			•

Ε

IEE (Main) Examination-2021 57

58 JEE (Main) Examination-2021

- 47. If the equation of plane passing through the mirror image of a point (2, 3, 1) with respect to line $\frac{x+1}{2} = \frac{y-3}{1} = \frac{z+2}{-1}$ and containing the line $\frac{x-2}{2} = \frac{1-y}{2} = \frac{z+1}{1}$ is $\alpha x + \beta y + \gamma z = 24$, then $\alpha + \beta + \gamma$ is equal to : (1) 20(2) 19(3) 18(4) 21Let P be an arbitrary point having sum of **48.** the squares of the distance from the planes x + y + z = 0, lx - nz = 0 and x - 2y + z = 0, equal to 9. If the locus of the point P is $x^2 + y^2 + z^2 = 9$, then the value of l - n is equal
- **49.** The equation of the plane which contains the y-axis and passes through the point (1, 2, 3) is :

to

- (1) x + 3z = 10(2) x + 3z = 0(3) 3x + z = 6(4) 3x - z = 0
- 50. If the equation of the plane passing through the line of intersection of the planes 2x 7y + 4z 3 = 0, 3x 5y + 4z + 11 = 0 and the point (-2, 1, 3) is ax + by + cz 7 = 0, then the value of 2a + b + c 7 is _____.
- 51. Let the plane ax + by + cz + d = 0 bisect the line joining the points (4,-3,1) and (2, 3, -5) at the right angles. If a, b, c, d are integers, then the minimum value of $(a^2 + b^2 + c^2 + d^2)$ is
- 52. The equation of the planes parallel to the plane x - 2y + 2z - 3 = 0 which are at unit distance from the point (1, 2, 3) is ax + by + cz + d = 0. If (b - d) = K(c - a), then the positive value of K is

53. Let P be a plane containing the line $\frac{x-1}{3} = \frac{y+6}{4} = \frac{z+5}{2}$ and parallel to the line $\frac{x-3}{4} = \frac{y-2}{-3} = \frac{z+5}{7}$. If the point (1, -1, α) lies on the plane P, then the value of $|5\alpha|$ is equal to _____.

COMPLEX NUMBER

1. If z and ω are two complex numbers such that $|z\omega| = 1$ and $\arg(z) - \arg(\omega) = \frac{3\pi}{2}$, then arg $\left(\frac{1-2 \,\overline{z} \,\omega}{1+3 \,\overline{z} \,\omega}\right)$ is : (Here arg(z) denotes the principal argument of complex number z) (1) $\frac{\pi}{4}$ (2) $-\frac{3\pi}{4}$ (3) $-\frac{\pi}{4}$ (4) $\frac{3\pi}{4}$ 2. If the real part of the complex number $(1 - \cos\theta + 2i\sin\theta)^{-1}$ is $\frac{1}{\epsilon}$ for $\theta \in (0, \pi)$, then the value of the integral $\int_{0}^{\theta} \sin x \, dx$ is equal to : (3) - 1(1)1(2) 2(4) 03. Let n denote the number of solutions of the equation $z^2 + 3\overline{z} = 0$, where z is a complex number. Then the value of $\sum_{k=0}^{\infty} \frac{1}{n^k}$ is equal to (2) $\frac{4}{3}$ (3) $\frac{3}{2}$ (4) 2 (1)14. Let $S = \left\{ n \in \mathbf{N} \left| \begin{pmatrix} 0 & i \\ 1 & 0 \end{pmatrix}^n \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \forall a, b, c, d \in \mathbf{R} \right\},\$ where $i = \sqrt{-1}$. Then the number of 2-digit numbers in the set S is 5. The equation of a circle is $Re(z^{2}) + 2(Im(z))^{2} + 2Re(z) = 0$, where z = x + iy. A line which passes through the center of the given circle and the vertex of the parabola, $x^2 - 6x - y + 13 = 0$, has y-intercept equal to . Let C be the set of all complex numbers. Let 6. $S_1 = \{z \in C \mid |z - 3 - 2i|^2 = 8\},\$ ise JEE MAIN-202 $S_2 = \{z \in C \mid Re(z) > 5\}$ and $S_3 = \{z \in C \mid |z - \overline{z}| \ge 8\}.$ Then the number of elements in $\,S_1 \cap S_2 \cap S_3\,$ is iode06\B0BA-BB\Kota\EE MAIN\ equal to (1)1(2)0(4) Infinite (3) 2

Ε

	LLEN		JEE (Main) Examination-2021 59
7.	Let \mathbb{C} be the set of all complex numbers. Let	12.	The least positive integer n such that
	$S_1 = \left\{ z \in \mathbb{C} : \lvert z - 2 \rvert \leq 1 \right\}$ and		$\frac{(2i)^n}{(1-i)^{n-2}}, i = \sqrt{-1}$ is a positive integer, is
	$S_2 = \left\{ z \in \mathbb{C} : z(1+i) + \overline{z}(1-i) \ge 4 \right\}.$		$(1-i)^{n-2}$, $1-\sqrt{1}$ is a positive integer, is
	Then, the maximum value of $\left z - \frac{5}{2}\right ^2$ for	13.	If $S = \left\{ z \in \mathbb{C} : \frac{z - i}{z + 2i} \in \mathbb{R} \right\}$, then :
	$z \in S_1 \cap S_2$ is equal to :		(1) S contains exactly two elements
	(1) $\frac{3+2\sqrt{2}}{4}$ (2) $\frac{5+2\sqrt{2}}{2}$		(2) S contains only one element
	$(1) \frac{1}{4} \qquad (2) \frac{1}{2}$		(3) S is a circle in the complex plane
	(3) $\frac{3+2\sqrt{2}}{2}$ (4) $\frac{5+2\sqrt{2}}{4}$		(4) S is a straight line in the complex plane
	2 4	14.	Let z_1 and z_2 be two complex numbers such that
8.	If the real part of the complex number $z = \frac{3+2i\cos\theta}{1-3i\cos\theta}, \ \theta \in \left(0, \frac{\pi}{2}\right) \text{ is zero, then the}$		arg $(z_1 - z_2) = \frac{\pi}{4}$ and z_1 , z_2 satisfy the equation
	$2 - \frac{1}{1 - 3i\cos\theta}, \theta \in (0, \frac{1}{2})$ is zero, then the		$ z - 3 = \text{Re}(z)$. Then the imaginary part of $z_1 + z_2$
	value of $\sin^2 3\theta + \cos^2 \theta$ is equal to		z ₂ is equal to
9.	The equation $\arg\left(\frac{z-1}{z+1}\right) = \frac{\pi}{4}$ represents a circle	15.	A point z moves in the complex plane such that
	with:		$\arg\left(\frac{z-2}{z+2}\right) = \frac{\pi}{4}$, then the minimum value of
	(1) centre at $(0, -1)$ and radius $\sqrt{2}$		$\left z-9\sqrt{2}-2i\right ^2$ is equal to
	(2) centre at (0, 1) and radius $\sqrt{2}$		
	(3) centre at (0, 0) and radius $\sqrt{2}$	16.	If z is a complex number such that $\frac{z-1}{z-1}$ is purely
	(4) centre at (0, 1) and radius 2		imaginary, then the minimum value of $ z - (3 + 3i) $
10.	Let $z = \frac{1 - i\sqrt{3}}{2}$, $i = \sqrt{-1}$. Then the value of		is :
	2		(1) $2\sqrt{2} - 1$ (2) $3\sqrt{2}$
	$21 + \left(z + \frac{1}{z}\right)^3 + \left(z^2 + \frac{1}{z^2}\right)^3 + \left(z^3 + \frac{1}{z^3}\right)^3 + \dots + \left(z^{21} + \frac{1}{z^{21}}\right)^3$		(3) $6\sqrt{2}$ (4) $2\sqrt{2}$
	is	17.	If for the complex numbers z satisfying $ z-2-2i \le 1$,
11.	If $(\sqrt{3} + i)^{100} = 2^{99} (p + iq)$, then p and q are		the maximum value of $ 3iz + 6 $ is attained at $a + ib$,
IN-2021	roots of the equation :		then $a + b$ is equal to
owise JEE MA	(1) $x^2 - (\sqrt{3} - 1)x - \sqrt{3} = 0$	18.	Let $i = \sqrt{-1}$. If $\frac{(-1+i\sqrt{3})^{21}}{(1-i)^{24}} + \frac{(1+i\sqrt{3})^{21}}{(1+i)^{24}} = k$,
MIN\Topi	(2) $x^{2} + (\sqrt{3} + 1)x + \sqrt{3} = 0$		
(ota∖JEE ∧	(3) $x^2 + (\sqrt{3} - 1)x - \sqrt{3} = 0$		and $n = [k]$ be the greatest integral part of $ k $.
rode06\B0BA-BB\Konb\JEF MAIN\Tqpicwise JEF MAIN-202	(4) $x^{2} - (\sqrt{3} + 1)x + \sqrt{3} = 0$		Then $\sum_{j=0}^{n+5} (j+5)^2 - \sum_{j=0}^{n+5} (j+5)$ is equal to
_			
Е			•

- **19.** If the least and the largest real values of α , for which the equation $z + \alpha |z - 1| + 2i = 0$ $(z \in C \text{ and } i = \sqrt{-1})$ has a solution, are p and q respectively; then $4(p^2 + q^2)$ is equal to _____
- 20. Let the lines $(2 i)z = (2 + i)\overline{z}$ and $(2 + i)z + (i - 2)\overline{z} - 4i = 0$, (here $i^2 = -1$) be normal to a circle C. If the line $iz + \overline{z} + 1 + i = 0$ is tangent to this circle C, then its radius is:

(1)
$$\frac{3}{\sqrt{2}}$$
 (2) $\frac{1}{2\sqrt{2}}$ (3) $3\sqrt{2}$ (4) $\frac{3}{2\sqrt{2}}$

- 21. Let z be those complex numbers which satisfy $|z+5| \le 4$ and $z(1+i) + \overline{z}(1-i) \ge -10, i = \sqrt{-1}$. If the maximum value of $|z + 1|^2$ is $\alpha + \beta \sqrt{2}$, then the value of $(\alpha + \beta)$ is _____.
- 22. The sum of 162th power of the roots of the equation $x^3 - 2x^2 + 2x - 1 = 0$ is
- 23. The least value of |z| where z is complex number which satisfies the inequality

$$\exp\left(\frac{\left(|z|+3\right)\left(|z|-1\right)}{||z|+1|}\log_{e} 2\right) \ge \log_{\sqrt{2}}\left|5\sqrt{7}+9i\right|,$$

i = $\sqrt{-1}$, is equal to :

(1) 3 (2)
$$\sqrt{5}$$
 (3) 2 (4) 8

24. Let a complex number z, $|z| \neq 1$,

satisfy
$$\log_{\frac{1}{\sqrt{2}}} \left(\frac{|z|+11}{(|z|-1)^2} \right) \le 2$$
. Then, the largest

value of |z| is equal to _____.

$$P = \begin{bmatrix} -30 & 20 & 56\\ 90 & 140 & 112\\ 120 & 60 & 14 \end{bmatrix} \text{ and } A = \begin{bmatrix} 2 & 7 & \omega^2\\ -1 & -\omega & 1\\ 0 & -\omega & -\omega+1 \end{bmatrix}$$

Where $\omega = \frac{-1 + i\sqrt{3}}{2}$, and I_3 be the identity matrix of order 3. If the determinant of the matrix $(P^{-1}AP - I_3)^2$ is $\alpha \omega^2$, then the value of α is equal to _____.

26. Let z and w be two complex numbers such that $w = z\overline{z} - 2z + 2$, $\left|\frac{z+i}{z-3i}\right| = 1$ and Re(w) has

minimum value. Then, the minimum value of $n \in \mathbb{N}$ for which w^n is real, is equal to .

27. Let S₁, S₂ and S₃ be three sets defined as

$$S_1 = \{ z \in \mathbb{C} : |z - 1| \le \sqrt{2} \}$$
$$S_2 = \{ z \in \mathbb{C} : \operatorname{Re}((1 - i)z) \ge 1 \}$$

$$\mathbf{S}_3 = \{ \mathbf{z} \in \mathbb{C} : \mathrm{Im}(\mathbf{z}) \le 1 \}$$

Then the set $S_1 \cap S_2 \cap S_3$

- (1) is a singleton
- (2) has exactly two elements
- (3) has infinitely many elements
- (4) has exactly three elements
- 28. The area of the triangle with vertices A(z), B(iz)and C (z + iz) is :

(1) 1 (2)
$$\frac{1}{2}|z|^2$$

(3)
$$\frac{1}{2}$$
 (4) $\frac{1}{2} |z + iz|^2$

29. If the equation
$$a|z|^2 + \overline{\alpha}z + \alpha\overline{z} + d = 0$$

represents a circle where a,d are real constants
then which of the following condition is
correct?

(1)
$$|\alpha|^2 - ad \neq 0$$

(2) $|\alpha|^2 - ad > 0$ and $a \in R - \{0\}$
(3) $|\alpha|^2 - ad \ge 0$ and $a \in R$
(4) $\alpha = 0, a, d \in R^+$

(3)
$$|\alpha|^2 - ad \ge 0$$
 and $a \in \mathbb{R}$
(4) $\alpha = 0$, $a, d \in \mathbb{R}^+$
30. Let z_1, z_2 be the roots of the equation
 $z^2 + az + 12 = 0$ and z_1, z_2 form an equilateral
triangle with origin. Then, the value of |a| is

Ε

31. Let a complex number be $w = 1 - \sqrt{3}i$. Let another complex number z be such that |zw| = 1 and $arg(z) - arg(w) = \frac{\pi}{2}$. Then the area of the triangle with vertices origin z and

ALLEN

area of the triangle with vertices origin, z and w is equal to :

(1) 4 (2)
$$\frac{1}{2}$$
 (3) $\frac{1}{4}$ (4) 2

32. If f(x) and g(x) are two polynomials such that the polynomial $P(x) = f(x^3) + xg(x^3)$ is divisible by $x^2 + x + 1$, then P(l) is equal to_____.

PROBABILITY

 Words with or without meaning are to be formed using all the letters of the word EXAMINATION. The probability that the letter M appears at the fourth position in any such word is :

(1)
$$\frac{1}{66}$$
 (2) $\frac{1}{11}$ (3) $\frac{1}{9}$ (4) $\frac{2}{11}$

2. The probability of selecting integers $a \in [-5, 30]$ such that $x^2 + 2(a + 4)x - 5a + 64 > 0$, for all $x \in \mathbf{R}$, is :

(1)
$$\frac{7}{36}$$
 (2) $\frac{2}{9}$ (3) $\frac{1}{6}$ (4) $\frac{1}{4}$

3. Let A, B and C be three events such that the probability that exactly one of A and B occurs is (1 - k), the probability that exactly one of B and C occurs is (1 - 2k), the probability that exactly one of C and A occurs is (1 - k) and the probability of all A, B and C occur simultaneously is k^2 , where 0 < k < 1. Then the probability that at least one of A, B and C occur is :

Four dice are thrown simultaneously and the numbers shown on these dice are recorded in 2×2 matrices. The probability that such formed matrices have all different entries and are non-singular, is :

(1)
$$\frac{45}{162}$$
 (2) $\frac{23}{81}$ (3) $\frac{22}{81}$ (4) $\frac{43}{162}$

Let 9 distinct balls be distributed among 4 boxes, B₁, B₂, B₃ and B₄. If the probability than B₃ contains exactly 3 balls is $k\left(\frac{3}{4}\right)^9$ then k

lies in the set :

4.

5.

6.

9.

- (1) $\{x \in \mathbf{R} : |x-3| < 1\}$ (2) $\{x \in \mathbf{R} : |x-2| \le 1\}$ (3) $\{x \in \mathbf{R} : |x-1| < 1\}$ (4) $\{x \in \mathbf{R} : |x-5| \le 1\}$
- Let x be a random variable such that the probability function of a distribution is given by

$$P(X = 0) = \frac{1}{2}, P(X = j) = \frac{1}{3^{j}}$$
 (j = 1, 2, 3,,

 ∞). Then the mean of the distribution and P(X is positive and even) respectively are :

- (1) $\frac{3}{8}$ and $\frac{1}{8}$ (2) $\frac{3}{4}$ and $\frac{1}{8}$ (3) $\frac{3}{4}$ and $\frac{1}{9}$ (4) $\frac{3}{4}$ and $\frac{1}{16}$
- 7. A fair coin is tossed n-times such that the probability of getting at least one head is at least 0.9. Then the minimum value of n is _____.
 8. The probability that a randomly selected 2-digit number belongs to the set{n ∈ N : (2ⁿ 2) is a
 - number belongs to the set $\{n \in \mathbb{N} : (2^n 2) \}$ is a multiple of 3 is equal to

(1)
$$\frac{1}{6}$$
 (2) $\frac{2}{3}$ (3) $\frac{1}{2}$ (4) $\frac{1}{3}$

A student appeared in an examination consisting of 8 true–false type questions. The student guesses the answers with equal probability. The smallest value of n, so that the probability of guessing at least 'n' correct answers is less than $\frac{1}{2}$, is :

(1) 5 (2) 6 (3) 3 (4) 4

10. Let A and B be independent events such that P(A) = p, P(B) = 2p. The largest value of p, for which P (exactly one of A, B occurs) = $\frac{5}{9}$, is :

(1)
$$\frac{1}{3}$$
 (2) $\frac{2}{9}$ (3) $\frac{4}{9}$ (4) $\frac{5}{12}$

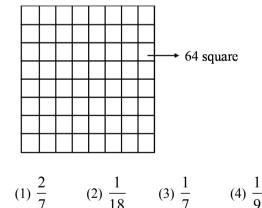
11. A fair die is tossed until six is obtained on it. Let X be the number of required tosses, then the conditional probability $P(X \ge 5 | X > 2)$ is :

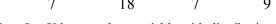
(1)
$$\frac{125}{216}$$
 (2) $\frac{11}{36}$ (3) $\frac{5}{6}$ (4) $\frac{25}{36}$

- 12. Two fair dice are thrown. The numbers on them are taken as λ and μ , and a system of linear equations
 - x + y + z = 5 $x + 2y + 3z = \mu$
 - $x + 3y + \lambda z = 1$

is constructed. If p is the probability that the system has a unique solution and q is the probability that the system has no solution, then :

- (1) $p = \frac{1}{6}$ and $q = \frac{1}{36}$ (2) $p = \frac{5}{6}$ and $q = \frac{5}{36}$ (3) $p = \frac{5}{6}$ and $q = \frac{1}{36}$ (4) $p = \frac{1}{6}$ and $q = \frac{5}{36}$
- 13. When a certain biased die is rolled, a particular face occurs with probability $\frac{1}{6} x$ and its opposite face occurs with probability $\frac{1}{6} + x$. All other faces occur with probability $\frac{1}{6} + x$. All other faces occur with probability $\frac{1}{6}$. Note that opposite faces sum to 7 in any die. If $0 < x < \frac{1}{6}$, and the probability of obtaining total sum = 7, when such a die is rolled twice, is $\frac{13}{96}$, then the value of x is: $(1) \frac{1}{16} \qquad (2) \frac{1}{8} \qquad (3) \frac{1}{9} \qquad (4) \frac{1}{12}$


14. Each of the persons A and B independently tosses three fair coins. The probability that both of them get the same number of heads is :


(1)
$$\frac{1}{8}$$
 (2) $\frac{5}{8}$ (3) $\frac{5}{16}$ (4) 1

- 15. An electric instrument consists of two units. Each unit must function independently for the instrument to operate. The probability that the first unit functions is 0.9 and that of the second unit is 0.8. The instrument is switched on and it fails to operate. If the probability that only the first unit failed and second unit is functioning is p, then 98 p is equal to _____.
- 16. Let S = {1, 2, 3, 4, 5, 6}. Then the probability that a randomly chosen onto function g from S to S satisfies g(3) = 2g(1) is :

(1)
$$\frac{1}{10}$$
 (2) $\frac{1}{15}$ (3) $\frac{1}{5}$ (4) $\frac{1}{30}$

17. Two squares are chosen at random on a chessboard (see figure). The probability that they have a side in common is :

18. Let X be a random variable with distribution.

X	-2	-1	3	4	6				
P(X = x)	$\frac{1}{5}$	a	$\frac{1}{3}$	$\frac{1}{5}$	b				
If the mean of X is 2.3 and variance of X is o									
then 100 σ^2 is equal to :									

node06\B0BA-BB\Kota \JEE MAIN\Topicwise JEE MAIN-202

19. The probability that two randomly selected subsets of the set {1, 2, 3, 4, 5} have exactly two elements in their intersection, is :

(1)
$$\frac{65}{2^7}$$
 (2) $\frac{65}{2^8}$ (3) $\frac{135}{2^9}$ (4) $\frac{35}{2^7}$

20. An ordinary dice is rolled for a certain number of times. If the probability of getting an odd number 2 times is equal to the probability of getting an even number 3 times, then the probability of getting an odd number for odd number of times is :

(1)
$$\frac{1}{32}$$
 (2) $\frac{5}{16}$ (3) $\frac{3}{16}$ (4) $\frac{1}{2}$

- 21. Let B_i (i = 1, 2, 3) be three independent events in a sample space. The probability that only B_1 occur is α , only B_2 occurs is β and only B_3 occurs is γ . Let p be the probability that none of the events B_i occurs and these 4 probabilities satisfy the equations ($\alpha - 2\beta$) p = $\alpha\beta$ and ($\beta - 3\gamma$)p = $2\beta\gamma$ (All the probabilities are assumed to lie in the interval (0,1)). Then $\frac{P(B_1)}{P(B_3)}$ is equal to_____.
- 22. When a missile is fired from a ship, the probability that it is intercepted is $\frac{1}{3}$ and the probability that the missile hits the target, given that it is not intercepted, is $\frac{3}{4}$. If three missiles are fired independently from the ship, then the probability that all three hit the target, is :

(1)
$$\frac{1}{27}$$
 (2) $\frac{3}{4}$ (3) $\frac{1}{8}$ (4) $\frac{3}{8}$

23. The coefficients a, b and c of the quadratic equation, $ax^2 + bx + c = 0$ are obtained by throwing a dice three times. The probability that this equation has equal roots is:

(1)
$$\frac{1}{72}$$
 (2) $\frac{5}{216}$ (3) $\frac{1}{36}$ (4) $\frac{1}{54}$

24. In a group of 400 people, 160 are smokers and non-vegetarian; 100 are smokers and vegetarian and the remaining 140 are non-smokers and vegetarian. Their chances of getting a particular chest disorder are 35%, 20% and 10% respectively. A person is chosen from the group at random and is found to be suffering from the chest disorder. The probability that the selected person is a smoker and non-vegetarian is:

IEE (Main) Examination-2021

63

(1)
$$\frac{7}{45}$$
 (2) $\frac{14}{45}$ (3) $\frac{28}{45}$ (4) $\frac{8}{45}$

25. Let A be a set of all 4-digit natural numbers whose exactly one digit is 7. Then the probability that a randomly chosen element of A leaves remainder 2 when divided by 5 is :

(1)
$$\frac{2}{9}$$
 (2) $\frac{122}{297}$ (3) $\frac{97}{297}$ (4) $\frac{1}{5}$

26. A seven digit number is formed using digits 3,3, 4, 4, 4, 5, 5. The probability, that number so formed is divisible by 2, is :

(1)
$$\frac{6}{7}$$
 (2) $\frac{1}{7}$ (3) $\frac{3}{7}$ (4) $\frac{4}{7}$

27. A fair coin is tossed a fixed number of times. If the probability of getting 7 heads is equal to probability of getting 9 heads, then the probability of getting 2 heads is

(1)
$$\frac{15}{2^{13}}$$
 (2) $\frac{15}{2^{12}}$ (3) $\frac{15}{2^8}$ (4) $\frac{15}{2^{14}}$

28. Let A denote the event that a 6-digit integer formed by 0, 1, 2, 3, 4, 5, 6 without repetitions, be divisible by 3. Then probability of event A is equal to :

(1)
$$\frac{9}{56}$$
 (2) $\frac{4}{9}$ (3) $\frac{3}{7}$ (4) $\frac{11}{27}$

29. A pack of cards has one card missing. Two cards are drawn randomly and are found to be spades. The probability that the missing card is not a spade, is :

(1)
$$\frac{3}{4}$$
 (2) $\frac{52}{867}$ (3) $\frac{39}{50}$ (4) $\frac{22}{425}$

Let a computer program generate only the digits 30. 0 and 1 to form a string of binary numbers with probability of occurrence of 0 at even places be $\frac{1}{2}$ and probability of occurrence of 0 at the odd place be $\frac{1}{3}$. Then the probability that '10' is followed by '01' is equal to :

(1)
$$\frac{1}{18}$$
 (2) $\frac{1}{3}$ (3) $\frac{1}{6}$ (4) $\frac{1}{9}$

31. Let there be three independent events E_1 , E_2 and E_3 . The probability that only E_1 occurs is α , only E_2 occurs is β and only E_3 occurs is $\gamma.$ Let 'p' denote the probability of none of events occurs that satisfies the equations $(\alpha - 2\beta) p = \alpha\beta$ and $(\beta - 3\gamma)p = 2\beta\gamma$. All the given probabilities are assumed to lie in the interval (0, 1).

Then,
$$\frac{\text{Probability of occurrence of E}_1}{\text{Probability of occurrence of E}_3}$$
 is equal to _____.

32. Let in a Binomial distribution, consisting of 5 independent trials, probabilities of exactly 1 and 2 successes be 0.4096 and 0.2048 respectively. Then the probability of getting exactly 3 successes is equal to :

(1)
$$\frac{32}{625}$$
 (2) $\frac{80}{243}$ (3) $\frac{40}{243}$ (4) $\frac{128}{625}$

ALLEN

	STATISTICS
1.	The mean of 6 distinct observations is 6.5 and
	their variance is 10.25. If 4 out of 6
	observations are 2, 4, 5 and 7, then the
	remaining two observations are:
	(1) 10, 11 (2) 3, 18 (3) 8, 13 (4) 1, 20
2.	If the mean and variance of six observations 7,
	10, 11, 15, a, b are 10 and $\frac{20}{3}$, respectively,
	then the value of $ a - b $ is equal to :
	(1) 9 (2) 11 (3) 7 (4) 1
3.	Consider the following frequency distribution :
	Class: $0-6$ $6-12$ $12-18$ $18-24$ $24-30$
	Frequency: a b 12 9 5
	If mean = $\frac{309}{22}$ and median = 14, then the
	value $(a - b)^2$ is equal to
4.	Consider the following frequency distribution :
	class: 10–20 20–30 30–40 40–50 50–60
	Frequency: α 110 54 30 β
	If the sum of all frequencies is 584 and median
	is 45, then $ \alpha - \beta $ is equal to
5.	The first of the two samples in a group has 100
	items with mean 15 and standard deviation 3. If
	the whole group has 250 items with mean 15.6
	and standard deviation $\sqrt{13.44}$, then the
	standard deviation of the second sample is : (1) 8 (2) 6 (2) 4 (4) 5
6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6.	If the mean and variance of the following data :
	6, 10, 7, 13, a, 12, b, 12 are 9 and $\frac{37}{4}$
	4
	respectively, then $(a - b)^2$ is equal to : (1) 24 (2) 12 (2) 22 (4) 16
-	(1) 24 (2) 12 (3) 32 (4) 16
7.	Let the mean and variance of the frequency
	distribution
	$x: x_1 = 2 \ x_2 = 6 \qquad x_3 = 8 \qquad x_4 = 9 \qquad \qquad$
	f: 4 4 α β
	be 6 and 6.8 respectively. If x_3 is changed from
	distribution x: $x_1 = 2 x_2 = 6$ $x_3 = 8 x_4 = 9$ f: 4 4 α β be 6 and 6.8 respectively. If x_3 is changed from 8 to 7, then the mean for the new data will be : (1) 4 (2) 5 (3) $\frac{17}{3}$ (4) $\frac{16}{3}$
	(1) 4 (2) 5 (3) $\frac{17}{3}$ (4) $\frac{16}{3}$
	(1) (2) (3)

Е

- 8. The mean and standard deviation of 20 observations were calculated as 10 and 2.5 respectively. It was found that by mistake one data value was taken as 25 instead of 35. If α and $\sqrt{\beta}$ are the mean and standard deviation respectively for correct data, then (α, β) is : (1) (11, 26) (2) (10.5, 25)
 - (3) (11, 25) (4) (10.5, 26)
- 9. Let the mean and variance of four numbers 3, 7, x and y(x > y) be 5 and 10 respectively. Then the mean of four numbers 3 + 2x, 7 + 2y, x + y and x y is _____.
- **10.** Let n be an odd natural number such that the variance of 1, 2, 3, 4, ..., n is 14. Then n is equal to _____.
- The probability distribution of random variable X is given by :

	Х	X 1		3	4	5						
	P(X)	K	2K	2K	3K	K						
]	Let p = I	P(1 < Y)	$X < 4 \mid X$	< 3). If	$5p = \lambda K$, then λ						
(equal to											

- 12. An online exam is attempted by 50 candidates out of which 20 are boys. The average marks obtained by boys is 12 with a variance 2. The variance of marks obtained by 30 girls is also 2. The average marks of all 50 candidates is 15. If μ is the average marks of girls and σ^2 is the variance of marks of 50 candidates, then $\mu + \sigma^2$ is equal to _____.
- **13.** The mean and variance of 7 observations are 8 and 16 respectively. If two observations are 6 and 8, then the variance of the remaining 5 observations is :

(1)
$$\frac{92}{5}$$
 (2) $\frac{134}{5}$ (3) $\frac{536}{25}$ (4) $\frac{112}{5}$

14. If the variance of 10 natural numbers 1, 1, 1,..., 1, k is less than 10, then the maximum possible value of k is _____.

- Let X₁, X₂, ..., X₁₈ be eighteen observations such that $\sum_{i=1}^{18} (X_i - \alpha) = 36$ and $\sum_{i=1}^{18} (X_i - \beta)^2 = 90$, where α and β are distinct real numbers. If the standard deviation of these observations is 1, then the value of $|\alpha - \beta|$ is . Consider the statistics of two sets of observations as follows : Variance Size Mean 2 2 Observation I 10 Observation II 3 1 n If the variance of the combined set of these two observations is $\frac{17}{9}$, then the value of n is equal to Consider three observations a, b and c such that b = a + c. If the standard deviation of a + 2, b + 2, c + 2 is d, then which of the following is true? (1) $b^2 = 3(a^2 + c^2) + 9d^2$ (2) $b^2 = a^2 + c^2 + 3d^2$ (3) $b^2 = 3(a^2 + c^2 + d^2)$ (4) $b^2 = 3(a^2 + c^2) - 9d^2$ Consider a set of 3n numbers having variance 4. In this set, the mean of first 2n numbers is 6 and the mean of the remaining n numbers is 3. A new set is constructed by adding 1 into each of first 2n numbers, and subtracting 1 from each of the remaining n numbers. If the variance of the new set is k, then 9k is equal to .
- **19.** The mean age of 25 teachers in a school is 40 years. A teacher retires at the age of 60 years and a new teacher is appointed in his place. If the mean age of the teachers in this school now is 39 years, then the age (in years) of the newly appointed teacher is
- 20. Let in a series of 2n observations, half of them are equal to a and remaining half are equal to -a. Also by adding a constant b in each of these observations, the mean and standard deviation of new set become 5 and 20, respectively. Then the value of $a^2 + b^2$ is equal to :

(1) 425 (2) 650 (3) 250 (4) 925

Е

15.

16.

17.

18.

MATHEMATICAL REASONING is equivalent to: The Boolean expression $(p \land \neg q) \Rightarrow (q \lor \neg p)$ 1. (1) $P \lor O$ is equivalent to : (2) $P \wedge \sim Q$ (1) $q \Rightarrow p$ (2) $p \Rightarrow q$ $(3) \sim (P \Rightarrow Q)$ $(3) \sim q \Rightarrow p$ (4) $p \Rightarrow \sim q$ 2. Consider the following three statements : (A) If 3 + 3 = 7 then 4 + 3 = 8. 7. (B) If 5 + 3 = 8 then earth is flat. (C) If both (A) and (B) are true then 5 + 6 = 17. $x \ge M''$? Then, which of the following statements is correct? (1) (A) is false, but (B) and (C) are true (2) (A) and (C) are true while (B) is false (3) (A) is true while (B) and (C) are false (4) (A) and (B) are false while (C) is true 8. 3. Which of the following Boolean expressions is **not** a tautology ? (1) $(p \Rightarrow q) \lor (\sim q \Rightarrow p)$ (2) $(q \Rightarrow p) \lor (\sim q \Rightarrow p)$ (1) T F T (3) $(p \Rightarrow q) \lor (\sim q \Rightarrow p)$ (3) T F F (4) $(\sim p \Rightarrow q) \lor (\sim q \Rightarrow p)$ 9. The Boolean expression $(p \Rightarrow q) \land (q \Rightarrow \sim p)$ 4. is equivalent to : (1)~q (3) p (2) q (4)~p Then : 5. Consider the statement "The match will be played only if the weather is good and ground is not wet". Select the correct negation from the following: (1) The match will not be played and weather is 10.

(2) If the match will not be played, then either weather is not good or ground is wet.

not good and ground is wet.

- (3) The match will be played and weather is not good or ground is wet.
- (4) The match will not be played or weather is good and ground is not wet.

6. The compound statement $(P \lor Q) \land (\sim P) \Rightarrow Q$ (4) ~ (P \Rightarrow O) \Leftrightarrow P \land ~ O Which of the following is the negation of the statement "for all M > 0, there exists $x \in S$ such that (1) there exists M > 0, such that x < M for all $x \in S$ (2) there exists $M \ge 0$, there exists $x \in S$ such that $x \ge M$ (3) there exists M > 0, there exists $x \in S$ such that x < M(4) there exists M > 0, such that $x \ge M$ for all $x \in S$ If the truth value of the Boolean expression $((p \lor q) \land (q \to r) \land (\sim r)) \to (p \land q)$ is false, then the truth values of the statements p, q, r respectively can be : (2) F F T (4) F T F Consider the two statements : (S1): $(p \rightarrow q) \lor (\sim q \rightarrow p)$ is a tautology. $(S2): (p \land \sim q) \land (\sim p \lor q)$ is a fallacy. (1) only (S1) is true. (2) both (S1) and (S2) are false. (3) both (S1) and (S2) are true. (4) only (S2) is true. The statement $(p \land (p \rightarrow q) \land (q \rightarrow r)) \rightarrow r$ is : (2) equivalent to $p \rightarrow \sim r \stackrel{\text{id}}{\approx}$ (1) a tautology (4) equivalent to $q \rightarrow \sim r \equiv$ (3) a fallacy 11. The Boolean expression $(p \land q) \Rightarrow ((r \land q) \land p)$ is equivalent to : (1) $(p \land q) \Rightarrow (r \land q)$ (2) $(q \land r) \Rightarrow (p \land q)$ (4) $(p \land r) \Rightarrow (p \land q)$ (3) $(p \land q) \Rightarrow (r \lor q)$

Е

-		10	JEE (Main) Examination-2021 67
12.	Let $*, \square \in \{\land,\lor\}$ be such that the Boolean	18.	Let $F_1(A,B,C) = (A \land \neg B) \lor [\neg C \land (A \lor B)] \lor \neg A$
	expression (p * \sim q) \Rightarrow (p \square q) is a tautology.		and $F_2(A, B) = (A \lor B) \lor (B \to \neg A)$ be two
	Then :		logical expressions. Then :
	$(1) *= \lor, \square = \lor \qquad (2) *= \land, \square = \land$		(1) F_1 and F_2 both are tautologies
			(2) F_1 is a tautology but F_2 is not a tautology (2) F_1 is not tautology but F_2 is a tautology
	$(3) *= \land, \square = \lor \qquad (4) *= \lor, \square = \land$		 (3) F₁ is not tautology but F₂ is a tautology (4) Both F₁ and F₂ are not tautologies
13.	Negation of the statement $(p \lor r) \Rightarrow (q \lor r)$ is :	19.	(4) Both Γ_1 and Γ_2 are not tautologies The negative of the statement $\sim p \land (p \lor q)$ is
	(1) $p \wedge \sim q \wedge \sim r$ (2) $\sim p \wedge q \wedge \sim r$	19.	(1) $\sim p \lor q$ (2) $p \lor \sim q$
	$(3) \sim p \wedge q \wedge r \qquad (4) p \wedge q \wedge r$		(1) $\sim p \lor q$ (2) $p \lor \sim q$ (3) $\sim p \land q$ (4) $p \land \sim q$
14.	Which of the following is equivalent to the	20.	The statement $A \rightarrow (B \rightarrow A)$ is equivalent to :
	Boolean expression $p \land \neg q$?		$(1) A \to (A \land B) \qquad (2) A \to (A \to B)$
	$(1) \sim (q \rightarrow p) \qquad (2) \sim p \rightarrow \sim q$		$(3) A \rightarrow (A \leftrightarrow B) \qquad (4) A \rightarrow (A \lor B)$
	$(3) \sim (p \rightarrow \sim q) \qquad (4) \sim (p \rightarrow q)$	21.	Which of the following Boolean expression is a
15.	For the statements p and q, consider the		tautology ?
	following compound statements :		$(1) (p \land q) \lor (p \lor q) \qquad (2) (p \land q) \lor (p \to q)$
	(a) $(\sim q \land (p \rightarrow q)) \rightarrow \sim p$		$(3) (p \land q) \land (p \to q) \qquad (4) (p \land q) \to (p \to q)$
	(b) $((p \lor q) \land \sim p) \to q$	22.	If the Boolean expression $(p \land q) \circledast (p \otimes q)$ is a
	Then which of the following statements is		tautology, then \circledast and \otimes are respectively
	correct?		given by
	(1) (a) and (b) both are not tautologies.		$(1) \rightarrow, \rightarrow (2) \land, \lor (3) \lor, \rightarrow (4) \land, \rightarrow$
	(2) (a) and (b) both are tautologies.	23.	If the Boolean expression $(p \Rightarrow q) \Leftrightarrow (q * (\sim p))$
	(3) (a) is a tautology but not (b).		is a tautology, then the Boolean expression $p * (a)$ is acquiredent to :
16.	(4) (b) is a tautology but not (a).		p * (~q) is equivalent to : (1) q \Rightarrow p (2) ~q \Rightarrow p (3) p \Rightarrow ~q (4) p \Rightarrow q
10.	The statement among the following that is a tautology is :	24.	The missing value in the following figure is
	(1) $A \lor (A \land B)$		
			$\begin{pmatrix} 2 & 3 \\ 1 & 1 & 2 & 5 \end{pmatrix}$
	(2) $A \land (A \lor B)$		$\begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}$
	$(3) B \rightarrow [A \land (A \rightarrow B)]$		12 4 3 4 3 4
	$(4) [A \land (A \to B)] \to B$		
17.	The contrapositive of the statement "If you will	25.	If P and Q are two statements, then which of th
	work, you will earn money" is :		following compound statement is a tautology ? (1) $((P \Rightarrow Q) \land \sim Q) \Rightarrow Q$
	(1) You will earn money, if you will not work		(1) $((P \Rightarrow Q) \land \sim Q) \Rightarrow Q$ (2) $((P \Rightarrow Q) \land \sim Q) \Rightarrow \sim P$
	(2) If you will earn money, you will work		$(2) ((P \Rightarrow Q) \land \neg Q) \Rightarrow P$ $(3) ((P \Rightarrow Q) \land \neg Q) \Rightarrow P$
	(3) If you will not earn money, you will not work		$(4) ((P \Rightarrow Q) \land \sim Q) \Rightarrow (P \land Q)$
	(4) To earn money, you need to work		

	ANSWER KEY													
		1				L	OGAI	RITI	HM					
Q.No.	1	2												
Ans.	1	2					DOIN		NOT					
COMPOUND ANGLE														
Q.No.	1	2	3	4	5	6	7	8	9					
Ans.	2	3	1	3	2	1	1	4	4					
0.11	QUADRATIC EQUATION O.No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14													
Q.No.	1	2	3	-	5	6	7	-		10	11		13	14
Ans.	3 15	1 16	1 17	1 18	13 19	3 20	2 21	66 22	18 23	4	4	1	4	1
Q.No. Ans.	2	4	1	2	19	324	1	5	<u>23</u>					
Ans.	2	4	1		-		-	-	GRES	SION				
Q.No.	1	2	3	3 E	5	6	<u>7</u>	8	9	10	11	12	13	14
Q.110.	1	4	5	-	3		,	0	• NTA (4)	10	11	14	15	14
Ans.	4	7	1	1251	1	3	3	832		2	2021	4	2	2
Q.No.	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Ans.	398	3	5143		1	2	4	3	4	9	2	10	3	1
Q.No.	29	30	31	32	33	34	35	36						
Ans.	14	16	3	2	2	2	4	210						
		1	-	-		1		-		TION				
Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	-
Ans.	3	4	3	1	56	2	4	2	11	1	2	2	1	
1		r -	1 -	2	SOI	JUT	ION O	F T	RIAN	JLE				
Q.No.	1	2	3											
Ans.	3	2	15		тт	FIO	IIT O	DIC	TANC					
O N-	1		3	4	н 5	-			TANC	E.				
Q.No. Ans.	1 2	2	3	4 2	5 3	6 4	7 2	8 2	-					
Ans.	2	1	3	Z	3				A NT					
Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Ans.	1	2	4	1	2	6	2	5	2	10	4	3	2	3
Q.No.	15	16	17	18			21	22		24	25	5	2	5
Ans.	4	21	4	2	4	2	3	4	4	2	1			
			<u> </u>	_	·		RAIG			_	1 ·	1		
Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Ans.	9	3	3	2	2	3	3	4	1	3	6	4	56	4
Q.No.	15	16	17	18	19	20	21	22	23		•	•!		
Ans.	4	3	2	144	2	904	2	1	1					
							CIR	CLE	C					
Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Ans.	3	4	3	4	3	2	16	1	61	2	40	165	18	BONUS
Q.No.	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Ans.	3	2	1	9	2	3	1	2	3	1	2	1	3	2
Q.No.	29	4												
Ans.	3	<u> </u>					I							

						-								
]	PARA		LA			1		
Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Ans.	1	34	2	9	2	4	3	1	2	3	2	2	4	3
Q.No.	15	16	17	18	19									
Ans.	3	2	9	1	4									
							ELLI	PSF	<u> </u>			-		
Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Ans.	1	3	1	3	1	2	2	3	2	4	3	1	2	3
						H	IYPER	BO	LA					
Q.No.	1	2	3	4	5	6	7	8	9	10	11			
Ans.	4	1	3	36	2	3	2	2	4	80	3			
			I	PER	MU	ТАТ	TION 8	k C(OMBI	NATION				
Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Ans.	777	96	238	3	924	52	7744	100	80	576	3	77	31650	1
Q.No.	15	16	17	18	19	20	21	22	23	24	25	26		
Ans.	4	32	2	45	3	4	4	3	3	1	300	1000		
					B	INO	MIAL	TH	EORE	Μ				
Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Ans.	2	21	4	9	8	96	3	1	210	4	4	1	98	55
Q.No.	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Ans.	3	4	4	136	49	1	3	15	55	315	924	2	BONUS	2
Q.No.	29	30	31	32	33	34	35	36	37	38	39	40	41	42
A	1	45	2	6	1	3	4	4	2	1	1	4	2	16
Ans.	1		-	Ŭ,	-	_								
Ans. Q.No.	43	44		Ű		-								
Q.No.	43	44 NTA (19)		0	-		1	<u> </u>						
	-	44 NTA (19) ALLEN												
Q.No.	43	44 NTA (19)			-		SE	T						
Q.No. Ans.	43 8	44 NTA (19) ALLEN BONUS			5	6	SE	T						
Q.No.	43	44 NTA (19) ALLEN	<u>3</u> 5	4 4	5	6 2	SE	T						
Q.No. Ans. Q.No.	43 8 1	44 NTA (19) ALLEN BONUS 2	3	4		2			N					
Q.No. Ans. Q.No. Ans.	43 8 1 3	44 NTA (19) ALLEN BONUS 2 256	3 5	4 4		2	SE RELA		N					
Q.No. Ans. Q.No. Ans. Q.No.	43 8 1 3 1	44 NTA (19) ALLEN BONUS 2 256 2	3 5 3	4 4 4		2			N					
Q.No. Ans. Q.No. Ans.	43 8 1 3	44 NTA (19) ALLEN BONUS 2 256	3 5	4 4		2	RELA	TIO						
Q.No. Ans. Q.No. Ans. Q.No. Ans.	43 8 1 3 1 2	44 NTA (19) ALLEN BONUS 2 256 2 2	3 5 3 4	4 4 4 3	3	2	RELA FUNC	TIO TIO	N	10	11	12	13	14
Q.No. Ans. Q.No. Ans. Q.No. Ans.	43 8 1 3 1 2 1 2	44 NTA (19) ALLEN BONUS 2 256 2 2 2 2 2 2 2 2	3 5 3 4	4 4 3 4	3	2 6	RELA FUNC 7	TIO TIO 8	9 9	<u>10</u>	11	12 4	<u>13</u> 26	
Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans.	43 8 1 3 1 2 1 3	44 NTA (19) ALLEN BONUS 2 256 2 2 2 2 2 2 2 2 2 2 2	3 5 3 4 3 4	4 4 3 4 720	3 5 1	2 6 2	RELA FUNC 7 3	TIO TIO 8 490	N <u>9</u> 3	10 4	11 2	12 4	13 26	
Q.No. Ans. Q.No. Ans. Q.No. Ans.	43 8 1 3 1 2 1 2	44 NTA (19) ALLEN BONUS 2 256 2 2 2 2 2 2 2 2	3 5 3 4	4 4 3 4	3	2 6	RELA FUNC 7	TIO TIO 8	9 9					
Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans.	43 8 1 3 1 2 1 3	44 NTA (19) ALLEN BONUS 2 256 2 2 2 2 2 2 2 2 2 2 2	3 5 3 4 3 4	4 4 3 4 720	3 5 1	2 6 2	FUNC 7 3 21 NTA (3) ALLEN	TIO 8 490 22 3	N <u>9</u> 3					
Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No.	43 8 1 3 1 2 1 3 15	44 NTA (19) ALLEN BONUS 2 256 2 2 2 2 2 2 16	3 5 3 4 3 4 17 3	4 4 3 720 18 4	3 5 1 19 2	2 6 2 20 1	RELA FUNC 7 3 21 NTA (3) ALLEN 1 or 2 or 3	TIO 8 490 22 3	N <u>9</u> <u>3</u> <u>23</u> <u>3</u>	4	2			
Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans. Ans.	43 8 1 3 1 2 1 3 1 4 1 4	44 NTA (19) ALLEN BONUS 2 256 2 2 2 2 2 1	3 5 3 4 3 4 17 3 INV	4 4 3 4 720 18 4	3 5 1 19 2 SE 7	2 6 2 20 1 TRI(FUNC 7 3 21 NTA (3) ALLEN 1 or 2 or 3 GONO	TIO 8 490 22 3 ME	PN 9 3 23 3 TRY I	4 FUNCTIO	2 DN	4	26	4
Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans.	43 8 1 3 1 2 1 3 1 4 1 3 15 4 1 1 1 1 1 1 1 1 1 1	44 NTA (19) ALLEN BONUS 2 256 2 2 2 2 2 1 2 2 1 2	3 5 3 4 3 4 17 3 INV 3	4 4 3 4 720 18 4 /ER	3 5 1 19 2 SE 7 5	2 6 2 20 1 FRIC 6	FUNC 7 3 21 NTA (3) ALLEN 1 or 2 or 3 GONO 7	TIO 8 490 22 3 ME ⁻ 8	PN 9 3 23 3 FRY 1 9	4 FUNCTIC 10	2 DN 11	4	26 13	4
Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans.	43 8 1 3 1 2 1 3 15 4 1 4 1 4	44 NTA (19) ALLEN BONUS 2 256 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 <td>3 5 4 3 4 17 3 INV 3 1</td> <td>4 4 3 4 720 18 4</td> <td>3 5 1 19 2 SE 7</td> <td>2 6 2 20 1 TRI(</td> <td>FUNC 7 3 21 NTA (3) ALLEN 1 or 2 or 3 GONO</td> <td>TIO 8 490 22 3 ME</td> <td>PN 9 3 23 3 TRY I</td> <td>4 FUNCTIO</td> <td>2 DN</td> <td>4</td> <td>26</td> <td>4</td>	3 5 4 3 4 17 3 INV 3 1	4 4 3 4 720 18 4	3 5 1 19 2 SE 7	2 6 2 20 1 TRI(FUNC 7 3 21 NTA (3) ALLEN 1 or 2 or 3 GONO	TIO 8 490 22 3 ME	PN 9 3 23 3 TRY I	4 FUNCTIO	2 DN	4	26	4
Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No.	43 8 1 3 1 2 1 3 15 4 1 4 1 4 1 5 1 1 1 1 1 1 1 1	44 NTA (19) ALLEN BONUS 2 256 2 2 2 2 2 1 2 2 16 1 2 16 1 2 16	3 5 4 3 4 17 3 1 17	4 4 3 4 720 18 4 /ER	3 5 1 19 2 SE 7 5	2 6 2 20 1 FRIC 6	FUNC 7 3 21 NTA (3) ALLEN 1 or 2 or 3 GONO 7	TIO 8 490 22 3 ME ⁻ 8	PN 9 3 23 3 FRY 1 9	4 FUNCTIC 10	2 DN 11	4	26 13	4
Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans.	43 8 1 3 1 2 1 3 15 4 1 4 1 4	44 NTA (19) ALLEN BONUS 2 256 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 <td>3 5 4 3 4 17 3 INV 3 1</td> <td>4 4 3 4 720 18 4 /ER</td> <td>3 5 1 19 2 SE 7 5</td> <td>2 6 2 20 1 FRIC 6</td> <td>FUNC 7 3 21 NTA (3) ALLEN 1 or 2 or 3 GONO 7 3</td> <td>TIO 8 490 22 3 ME⁷ 8 3</td> <td>PN 9 3 23 3 FRY 1 9</td> <td>4 FUNCTIC 10</td> <td>2 DN 11</td> <td>4</td> <td>26 13</td> <td>4</td>	3 5 4 3 4 17 3 INV 3 1	4 4 3 4 720 18 4 /ER	3 5 1 19 2 SE 7 5	2 6 2 20 1 FRIC 6	FUNC 7 3 21 NTA (3) ALLEN 1 or 2 or 3 GONO 7 3	TIO 8 490 22 3 ME ⁷ 8 3	PN 9 3 23 3 FRY 1 9	4 FUNCTIC 10	2 DN 11	4	26 13	4
Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans.	43 8 1 3 1 2 1 3 15 4 1 4 1 4 15 1 1	44 NTA (19) ALLEN BONUS 2 256 2 2 2 2 2 1 2 2 1 2 16 1 1 1	3 5 3 4 3 4 17 3 INV 3 1 17 2	4 4 3 720 18 4 /ER 4 2	3 5 1 19 2 SE 5 2	2 6 2 20 1 FRIC 6 4	FUNC 7 3 21 NTA (3) ALLEN 1 or 2 or 3 GONO 7 3	TIO 8 490 22 3 MET 8 3	PN 9 3 23 3 TRY I 9 2	4 FUNCTIO 10 1	2 DN 11 3	4 12 3	26 13 3	4 14 2
Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans.	43 8 1 3 1 2 1 3 15 4 1 1 1 1 1 1 1 1	44 NTA (19) ALLEN BONUS 2 256 2 2 2 2 2 2 1 2 2 1 2 16 1 2 2 2 2 16 1	3 5 3 4 3 4 17 3 1 17 2 3 3	4 4 3 720 18 4 /ERS 4 2	3 5 1 19 2 SE 5 2	2 6 2 20 1 TRIC 6 4	FUNC 7 3 21 NTA (3) ALLEN 1 or 2 or 3 GONO 7 3 LIN 7	TIO 8 490 22 3 ME ⁷ 8 3 IIT 8	PN 9 3 23 3 TRY 1 9 2 9	4 FUNCTIO 10 10	2 DN 11 3	4 12 3	26 13 3	4 14 2 14
Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans.	43 8 1 3 1 2 1 3 15 4 1 1 1 1 1 1 1 1	44 NTA (19) ALLEN BONUS 2 256 2 2 2 2 2 1 2 2 16 1 2 3	3 5 3 4 3 4 17 3 1 17 2 3 4	4 4 3 4 720 18 4 720 18 4 2 4 2	3 5 1 19 2 SE 5 2 5 1	2 6 2 20 1 TRIC 6 4	FUNC 7 3 21 NTA (3) ALLEN 1 or 2 or 3 GONO 7 3 LIN 7 1	TIO 8 490 22 3 ME 8 3 IIT 8 2	PN 9 3 23 3 TRY I 9 2 9 3	4 FUNCTIO 10 1	2 DN 11 3	4 12 3	26 13 3	4 14 2 14
Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans. Q.No. Ans.	43 8 1 3 1 2 1 3 15 4 1 1 1 1 1 1 1 1	44 NTA (19) ALLEN BONUS 2 256 2 2 2 2 2 2 1 2 2 1 2 16 1 2 2 2 2 16 1	3 5 3 4 3 4 17 3 1 17 2 3 3	4 4 3 720 18 4 /ERS 4 2	3 5 1 19 2 SE 5 2	2 6 2 20 1 TRIC 6 4	FUNC 7 3 21 NTA (3) ALLEN 1 or 2 or 3 GONO 7 3 LIN 7	TIO 8 490 22 3 ME ⁷ 8 3 IIT 8	PN 9 3 23 3 TRY 1 9 2 9	4 FUNCTIO 10 10	2 DN 11 3	4 12 3	26 13 3	14 14 14 2 14 4

1 2	2	3	-		C	ONTI	NUL	IY					
	2	· · · ·				-		6	4.0		I		
			4	5	6	7	8	9	10	11			
Z	1	3	14		2	3	2	1	6	4			
				-		EREN				<u> </u>			. <u> </u>
1	2	3	4	5	6	7	8	9	10	11	12	13	1
1	1	•		-	_	1	-	_	-	2	4	3	
			-	-			-		1				
			-		6		8		10				
39	3	40		-	1		1		1	481			-
					(TAI	NGEN	Т&	NOR	MAL)				
1													
3	3	1	4										
						MONO		NICI	ļ				
1			4	5	6	7	8	9	10	11	12		
3	4	3		2	1		1	1	2	1	2		
			A	-) (M.		A &	MIN	,		•		
1	2	3	4	5	6	7	8	9	10	11	12	13	14
4	1	3	3	36	3	4	3	22	1250	9	144	2	3
2													
			<u> </u>	NDF	EFIN	ITE IN	ITE	GRA	ΓΙΟΝ	-			
1	2	3	4	5	6	7	8	9	10	1			
15	7	3	3	3	4		6	1	4				
				DEI	FINI	TE IN	ГЕС	FRAT	ION				
1	2	3	4	5	6	7	8	9	10	11	12	13	14
2	ALLEN	2	1	3	1	3	2	2	1	3	5	2	2
15		17	18	10	20	21	22	23	24	25	26	27	28
										-			1
													42
			1		1	4	1						1
				_	-		-	5	U	10		-	
BONUS													
		-	D	IFF	ERF	ENTIA	LE	OUA	ΓΙΟΝ				
1	2	3	4	1		7	8			11	12	13	14
1		1		2		4	4	4	1	1	1		2
15	16	17	18	19	20	21	22	23	24	25	26	27	28
2	2	4	3	1	3	4	4	4	2	1	2	4	2
29	30	31	32	33	34	35	36	37	38	39	40	41	42
4	4	1	3	1	1	2	2	2	4	2	3	1	1
43	44	45											_
3	1	4											
			A	ARE	A U	NDER	TH	E CU	RVE				
1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	2	4	2	3	27	114	1	26	1	2	3	64	1
15	16	17	18	[
BONUS	2	41	3										
	1 1 39 1 39 1 3 1 3 1 3 1 3 1 1 15 2 29 19 43 BONUS 1 1 15 2 29 19 43 BONUS 1 1 15 2 29 4 4 3 3 1 1 15 2 29 19 43 BONUS 1 1 15 2 29 19 43 BONUS 1 1 15 2 29 19 43 BONUS 1 1 15 2 2 29 19 43 BONUS 1 1 15 2 2 29 19 43 BONUS 1 1 15 2 2 2 19 43 BONUS 1 1 15 2 2 2 19 43 3 3 1 15 2 2 2 2 9 19 43 3 3 1 1 15 2 2 2 2 2 9 19 43 3 3 1 1 15 2 2 2 2 9 19 43 3 3 1 1 15 2 2 19 43 3 3 1 1 15 2 2 2 2 9 19 43 3 3 1 1 15 2 2 2 2 2 9 19 43 3 3 1 1 15 2 2 2 2 2 2 9 19 43 3 3 1 1 15 2 2 2 2 9 4 4 3 3 3 1 1 1 15 2 2 2 2 9 4 4 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 2 39 3 1 2 3 3 1 2 3 3 1 2 3 4 1 2 4 1 15 7 1 2 1 2 1 2 1 2 1 2 1 2 1 2 3 3 15 16 2 2 1 2 1 2 15 16 2 2 2 30 19 3 43 44 3 1 1 2 29 30 4 4 3 1 1 2 1 2 15 16 1 <t< td=""><td>1 1 4 1 2 3 39 3 40 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 4 3 1 2 3 3 4 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3</td><td>1 1 4 4 MET MET 1 2 3 4 39 3 40 17 A0 A0 17 A0 A0 17 A0 A0 17 A0 A0 A0 1 2 3 4 3 3 1 4 1 2 3 4 3 4 3 2 I 2 3 4 4 1 3 3 1 2 3 4 4 1 3 3 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 2 3 1 1 3 1 3 4 1 2 3 4 1</td><td>1 1 4 4 5 METHO 1 2 3 4 5 39 3 40 17 1 AOD AOD AOD 1 2 3 4 5 3 3 1 4 406 AOD AOD AOD 1 2 3 4 5 3 3 1 4 406 AOD 1 2 3 4 5 3 4 3 2 2 AOD A 5 3 3 3 1 2 3 4 5 3 1 2 3 4 5 3 15 16 17 18 19 2 3 1 3 1 2 43 44 45 3 1 2 1 2 3 4 5 1 2</td><td>1 1 4 4 5 2 METHOD C 1 2 3 4 5 6 39 3 40 17 1 1 AOD (TAI) 1 2 3 4 5 6 3 3 1 4 406 AOD (TAI) 1 2 3 4 5 6 3 3 1 4 406 AOD (M) 1 2 3 4 5 6 3 4 3 2 2 1 1 2 3 4 5 6 3 4 3 3 3 3 3 1 2 3 4 5 6 15 16 17 18 19 20 2 3 1 3 1 5 29 30 31 32 33 34 1 2</td><td>1 1 4 4 5 2 1 METHOD OF DIF 1 2 3 4 5 6 7 39 3 40 1 1 2 a b c c</td><td>1 1 4 4 5 2 1 3 METHOD OF DIFFER 1 2 3 4 5 6 7 8 39 3 40 17 1 1 2 1 AOD (TANGENT & 1 2 3 4 5 6 7 8 3 3 1 4 406 </td><td>1 1 4 4 5 2 1 3 2 METHOD OF DIFFERENT 1 2 3 40 17 1 1 2 1 2 AOD (TANGENT & NOR 1 2 3 4 5 6 7 8 9 3 3 1 4 406 </td><td>1 1 4 4 5 2 1 3 2 5 METHOD OF DIFFERENTIATION 1 2 3 4 5 6 7 8 9 10 39 3 40 17 1 1 2 1 2 1 2 1 2 1 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 3 3 1 4 406 7 8 9 10 3 4 3 2 1 4 1 2 10 4 1 3 3 3 4 2 6 7 8 9 10 4 1 3 3 3 4 2 6 7 8 9</td><td>1 1 4 4 5 2 1 3 2 5 2 METHOD OF DIFFERENTIATION 1 2 3 4 5 6 7 8 9 10 11 39 3 40 1 1 2 1 2 1 2 1 481 AOD (TANGENT & NORMAL) 1 2 3 4 5 6 7 8 9 10 11 3 3 1 4 406 7 8 9 10 11 3 3 1 4 406 7 8 9 10 11 4 1 3 3 36 3 4 3 22 12 10 11 4 1 3 3 3 4 5 6 7 8 9 10 11</td><td>1 1 4 4 5 2 1 3 2 5 2 4 METHOD OF DIFFERENTIATION 1 2 3 4 5 6 7 8 9 10 11 39 3 40 17 1 2 1 2 1 41 39 3 40 17 1 2 1 2 1 481 AOD (TANGENT & NORMAL) 1 2 3 4 5 6 7 8 9 10 11 12 3 4 3 2 2 1 4 1 1 2 1 2 4 3 3 3 3 3 3 2 11 1</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></t<>	1 1 4 1 2 3 39 3 40 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 4 3 1 2 3 3 4 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3	1 1 4 4 MET MET 1 2 3 4 39 3 40 17 A0 A0 17 A0 A0 17 A0 A0 17 A0 A0 A0 1 2 3 4 3 3 1 4 1 2 3 4 3 4 3 2 I 2 3 4 4 1 3 3 1 2 3 4 4 1 3 3 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 2 3 1 1 3 1 3 4 1 2 3 4 1	1 1 4 4 5 METHO 1 2 3 4 5 39 3 40 17 1 AOD AOD AOD 1 2 3 4 5 3 3 1 4 406 AOD AOD AOD 1 2 3 4 5 3 3 1 4 406 AOD 1 2 3 4 5 3 4 3 2 2 AOD A 5 3 3 3 1 2 3 4 5 3 1 2 3 4 5 3 15 16 17 18 19 2 3 1 3 1 2 43 44 45 3 1 2 1 2 3 4 5 1 2	1 1 4 4 5 2 METHOD C 1 2 3 4 5 6 39 3 40 17 1 1 AOD (TAI) 1 2 3 4 5 6 3 3 1 4 406 AOD (TAI) 1 2 3 4 5 6 3 3 1 4 406 AOD (M) 1 2 3 4 5 6 3 4 3 2 2 1 1 2 3 4 5 6 3 4 3 3 3 3 3 1 2 3 4 5 6 15 16 17 18 19 20 2 3 1 3 1 5 29 30 31 32 33 34 1 2	1 1 4 4 5 2 1 METHOD OF DIF 1 2 3 4 5 6 7 39 3 40 1 1 2 a b c	1 1 4 4 5 2 1 3 METHOD OF DIFFER 1 2 3 4 5 6 7 8 39 3 40 17 1 1 2 1 AOD (TANGENT & 1 2 3 4 5 6 7 8 3 3 1 4 406	1 1 4 4 5 2 1 3 2 METHOD OF DIFFERENT 1 2 3 40 17 1 1 2 1 2 AOD (TANGENT & NOR 1 2 3 4 5 6 7 8 9 3 3 1 4 406	1 1 4 4 5 2 1 3 2 5 METHOD OF DIFFERENTIATION 1 2 3 4 5 6 7 8 9 10 39 3 40 17 1 1 2 1 2 1 2 1 2 1 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 3 3 1 4 406 7 8 9 10 3 4 3 2 1 4 1 2 10 4 1 3 3 3 4 2 6 7 8 9 10 4 1 3 3 3 4 2 6 7 8 9	1 1 4 4 5 2 1 3 2 5 2 METHOD OF DIFFERENTIATION 1 2 3 4 5 6 7 8 9 10 11 39 3 40 1 1 2 1 2 1 2 1 481 AOD (TANGENT & NORMAL) 1 2 3 4 5 6 7 8 9 10 11 3 3 1 4 406 7 8 9 10 11 3 3 1 4 406 7 8 9 10 11 4 1 3 3 36 3 4 3 22 12 10 11 4 1 3 3 3 4 5 6 7 8 9 10 11	1 1 4 4 5 2 1 3 2 5 2 4 METHOD OF DIFFERENTIATION 1 2 3 4 5 6 7 8 9 10 11 39 3 40 17 1 2 1 2 1 41 39 3 40 17 1 2 1 2 1 481 AOD (TANGENT & NORMAL) 1 2 3 4 5 6 7 8 9 10 11 12 3 4 3 2 2 1 4 1 1 2 1 2 4 3 3 3 3 3 3 2 11 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

node06\B0BA-BB\Kota\EE MAIN\Topicwise JEE MAIN-2021

A	LL	E),	
_		_	

							MATR		76					
\mathbf{O} N	1	•			-			-		10	11	10	10	14
Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Ans.	1	910	1	108	3	3125	16	1	4	4	2020	2	1	4
Q.No.	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Ans.	1	8	3	3	540	17	4	4	7	13	4	1	1	3
Q.No.	29	30	31	32	33	34	35	+						
Ans.	766	1	2020	3	16	2	6 VECT	'OP	5					
O No	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Q.No.	4	4	3	6	3 1	4	1	3	4	10	60	2	2	14 2
Ans. Q.No.	4	4 16	17	18	1 19	4 20	21	22	23	24	25	<u>2</u> 26	<u> </u>	2 28
Ans.	9	10	4	5	90	1	3	3	1494	3	<u>23</u> 75	12	2	4
Q.No.	29	30	31	32	33	¹ 34	35	36	37	38	<u>39</u>	40	2	4
Ans.	4	2	28	1	2	486	1	2	4	2	2	1		
A115.	4	2	20	1	2	400	3		+	2	2	1		
Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Ans.	81	6	1	4	2	1	3	1	4	5	3	4	7	2
Q.No.	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Ans.	26	3	96	4	4	1	72	1	61	4	7	2	3	1
Q.No.	29	30	31	32	33	34	35	36	37	38	39	40	41	42
Ans.	1	3	4	4	3	3	44	4	1	2	8	3	2	2
Q.No.	43	44	45	46	47	48	49	50	51	52	53			•
Ans.	2	4	2	3	2	0	4	4	28	4	38			
					(COM	PLEX	NU	MBE	R				
Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Ans.	NTA (3) ALLEN (2)	1	2	11	1	1	4	1	2	13	1	6	4	6
Q.No.	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Ans.	98	4	5	310	10	4	48	3	1	2	36	4	3	2
Q.No.	29	30	31	32						•				<u>.</u>
Ans.	2	6	2	0	1									
						P	ROBA	BIL	ITY					
Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Ans.	2	2	2	4	1	2	4	3	1	4	4	2	2	3
Q.No.	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Ans.	28	1	2	781	3	4	6	3	2	3	3	3	1	2
Q.No.	29	30	31	32										
Ans.	3	4	6	1										
						S	STATI	STI	CS					
Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Ans.	1	4	4	164	3	4	3	4	12	13	30	25	3	11
Q.No.	15	16	17	18	19	20								
Ans.	4	5	4	68	35	1								
-								-		ONING				-
Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Ans.	2	2	4	4	3	4	1	3	3	1	1	3	1	4
Q.No.	15	16	17	18	19	20	21	22	23	24	25			
Ans.	2	4	3	3	2	4	4	1	1	4 or 16 or 64	2			

node06/B0BA-BB\Kotc\JEE MAIN\Topiowise JEE MAIN-2021