Statistics 1

ALLEN

STATISTICS

- If the mean and variance of eight numbers
 3, 7, 9, 12, 13, 20, x and y be 10 and 25 respectively, then x·y is equal to_____
- 2. If the variance of the first n natural numbers is 10 and the variance of the first m even natural numbers is 16, then m + n is equal to
- 3. The mean and variance of 20 observations are found to be 10 and 4, respectively. On rechecking, it was found that an observation 9 was incorrect and the correct observation was 11. Then the correct variance is
 - (1) 3.99 (2) 3.98
 - (3) 4.02 (4) 4.01
- 4. The mean and the standard deviation (s.d.) of 10 observations are 20 and 2 resepectively. Each of these 10 observations is multiplied by p and then reduced by q, where p ≠ 0 and q ≠ 0. If the new mean and new s.d. become half of their original values, then q is equal to

(1)-20	(2) 10
(3)-10	(4) –5

- 5. Let the observations $x_i(1 \le i \le 10)$ satisfy the equations, $\sum_{i=1}^{10} (x_i 5) = 10$ and $\sum_{i=1}^{10} (x_i 5)^2 = 40$. If μ and λ are the mean and the variance of the observations, $x_1 3$, $x_2 3$, ..., $x_{10} 3$, then the ordered pair (μ, λ) is equal to :
 - (1) (6, 6) (2) (3, 6)

$$(3) (6, 3) (4) (3, 3)$$

- 6. Let $X = \{x \in N : 1 \le x \le 17\}$ and $Y = \{ax + b: x \in X \text{ and } a, b \in R, a > 0\}$. If mean and variance of elements of Y are 17 and 216 respectively then a + b is equal to : (1) -7 (2) 7 (3) 9 (4) -27
- 7. If the variance of the terms in an increasing A.P., b_1 , b_2 , b_3 ,..., b_{11} is 90, then the common difference of this A.P. is____.

8. For the frequency distribution : Variate (x): X_2 X₃X₁₅ \mathbf{X}_1 Frequency (f): $f_1 \quad f_2 \quad f_3 \dots f_{15}$ where $0 < x_1 < x_2 < x_3 < \dots < x_{15} = 10$ and $\sum_{i=1}^{15} f_i > 0$, the standard deviation cannot be : (1)2(2)1(3)4(4)69. Let x_i ($1 \le i \le 10$) be ten observations of a random variable X. If $\sum_{i=1}^{10} (x_i - p) = 3$ and $\sum_{i=1}^{10} (x_i - p)^2 = 9 \ \text{where } 0 \neq p \in R$, then the standard deviation of these observations is : $(1) \sqrt{\frac{3}{5}}$ (2) $\frac{7}{10}$ $(3) \frac{9}{10}$ $(4) \frac{4}{5}$ The mean and variance of 8 observations are 10. 10 and 13.5, respectively. If 6 of these observations are 5, 7, 10, 12, 14, 15, then the absolute difference of the remaining two observations is : (1)7(2)3(3)5(4)911. If the variance of the following frequency distribution: Class : 10-20 20 - 3030-40 Frequency: 2 2 Х is 50, then x is equal to 12. The mean and variance of 7 observations are 8 and 16, respectively. If five observations are 2, 4, 10, 12, 14, then the absolute difference of the remaining two observations is : (1)2(2)4(3) 3 (4)113. If the mean and the standard deviation of the data 3, 5, 7, a, b are 5 and 2 respectively, then

a and b are the roots of the equation :

- $(1) \ 2x^2 20x + 19 = 0$
- $(2) x^2 10x + 19 = 0$
- (3) $x^2 10x + 18 = 0$ (4) $x^2 - 20x + 18 = 0$

Е

2 Statistics

ALLEN

14. If
$$\sum_{i=1}^{n} (x_i - a) = n$$
 and $\sum_{i=1}^{n} (x_i - a)^2 = na$, (n, a)

1) then the standard deviation of n observations

$$x_1, x_2, ..., x_n$$
 is

(1)
$$n\sqrt{a-1}$$

(2)
$$\sqrt{a-1}$$

(4) $\sqrt{n(a-1)}$

15. Consider the data on x taking the values 0, 2, 4, 8, ..., 2ⁿ with frequencies ⁿC₀, ⁿC₁, ⁿC₂, ..., ⁿC_n respectively. If the mean of this

data is $\frac{728}{2^n}$, then n is equal to _____.

SOLUTION

1. NTA Ans. (54.00)

Sol.
$$\frac{3+7+9+12+13+20+x+y}{8} = 10$$
$$x + y = 16$$
$$\frac{\Sigma x^{2}}{n} - \left(\frac{\Sigma x}{n}\right)^{2} = 25$$
$$3^{2} + 7^{2} + 9^{2} + 12^{2} + 13^{2} + 20^{2} + x^{2} + y^{2}$$
$$1000$$
$$x^{2} + y^{2} = 148$$
$$xy = 54$$
2. NTA Ans. (18)

=

Sol. Variance of first 'n' natural numbers = $\frac{n^2 - 1}{12} = 10$ \Rightarrow n = 11

and variance of first 'm' even natural numbers

$$= 4\left(\frac{m^2-1}{12}\right) \Rightarrow \frac{m^2-1}{3} = 16 \Rightarrow m = 7$$

m + n = 18

- 3. NTA Ans. (1)
- **Sol.** $\frac{\sum x_i}{20} = 10 \implies \Sigma x_i = 200$

...(i)

$$\frac{\sum x_i^2}{20} - 100 = 4 \implies \Sigma x_i^2 = 2080$$
...(ii)

Actual mean =
$$\frac{200 - 9 + 11}{20} = \frac{202}{20}$$

Variance =
$$\frac{2080 - 81 + 121}{20} - \left(\frac{202}{20}\right)^2 = 3.99$$

...(i)

(1) Option NTA Ans. (1)

Sol.
$$20p - q = 10$$

and
$$2|\mathbf{p}| = 1 \implies \mathbf{p} = \pm \frac{1}{2}$$
 ...(ii)
so, $\mathbf{p} = -\frac{1}{2}$ and $\mathbf{q} = -20$

NTA Ans. (4) 5. **Sol.** $\sum_{i=1}^{10} (x_i - 5) = 10$ \Rightarrow Mean of observation $x_i - 5 = \frac{1}{10} \sum_{i=1}^{3} (x_i - 5) = 1$ $\Rightarrow \mu = \text{mean of observation } (x_i - 3)$ = (mean of observation $(x_i - 5)) + 2$ = 1 + 2 = 3Variance of observation $x_i - 5 = \frac{1}{10} \sum_{i=1}^{10} (x_i - 5)^2$ $- (\text{Mean of } (x_i - 5))^2 = 3$ $\Rightarrow \lambda =$ variance of observation (x_i - 3) = variance of observation $(x_i - 5) = 3$ $\therefore (\mu, \lambda) = (3, 3)$ 6. Official Ans. by NTA (1) **Sol.** σ^2 = variance $\mu = mean$ $\sigma^2 = \frac{\sum_{i=1}^n (x_i - \mu)^2}{n}$ $\mu = 17$ $\Rightarrow \frac{\sum_{x=1}^{17} (ax+b)}{17} = 17$ \Rightarrow 9a + b = 17(1) $\sigma^2 = 216$

$$\Rightarrow \quad \frac{\sum_{x=1}^{17} (ax+b-17)^2}{17} = 216$$

$$\Rightarrow \quad \frac{\sum_{x=1}^{17} a^2 (x-9)^2}{17} = 216$$

$$\Rightarrow a^{2}81 - 18 \times 9a^{2} + a^{2} \ 3 \times (35) = 216$$
$$\Rightarrow a^{2} = \frac{216}{24} = 9 \Rightarrow a = 3 \ (a > 0)$$
$$\Rightarrow From (1), b = -10$$
So, $a + b = -7$

Ε

4

Statistics 4

7. Official Ans. by NTA (3.00)

Sol. Let a be the first term and d be the common difference of the given A.P. Where d > 0

$$\overline{X} = a + \frac{0 + d + 2d + \dots + 10d}{11}$$
$$= a + 5d$$

$$\Rightarrow \text{ varience} = \frac{\Sigma(\overline{X} - x_i)^2}{11}$$
$$\Rightarrow 90 \times 11 = (25d^2 + 16d^2 + 9d^2 + 4d^2) \times 2$$
$$\Rightarrow d = \pm 3 \Rightarrow d = 3$$

8. **Official Ans. by NTA (4)**

Sol.
$$\because \sigma^2 \leq \frac{1}{4}(M-m)^2$$

Where M and m are upper and lower bounds of values of any random variable.

$$\therefore \sigma^2 < \frac{1}{4}(10-0)^2$$
$$\Rightarrow 0 < \sigma < 5$$
$$\therefore \sigma \neq 6.$$

9. Official Ans. by NTA (3)

Sol. Variance =
$$\frac{\Sigma(x_i - p)^2}{n} - \left(\frac{\Sigma(x_i - p)}{n}\right)^2$$

 $=\frac{9}{10}-\left(\frac{3}{10}\right)^2=\frac{81}{100}$

S.D. =
$$\frac{9}{10}$$

10. **Official Ans. by NTA (1)**

Sol. $\overline{\mathbf{x}} = 10$

$$\Rightarrow \overline{x} = \frac{63 + a + b}{8} = 10 \Rightarrow a + b = 17 \dots (1)$$

Since, variance is independent of origin. So, we subtract 10 from each observation.

So,
$$\sigma^2 = 13.5 = \frac{79 + (a - 10)^2 + (b - 10)^2}{8} - (10 - 10)^2$$

 $\Rightarrow a^2 + b^2 - 20(a + b) = -171$
 $\Rightarrow a^2 + b^2 = 169 \dots(2)$
From (i) & (ii) ; $a = 12$ & $b = 5$

11. **Official Ans. by NTA (4)**

12.

13.

: Variance is independent of shifting of origin Sol.

 \Rightarrow x_i: 15 25 35 or -10 0 10 $f_i : 2 x 2$ 2 х 2 \Rightarrow Variance $(\sigma^2) = \frac{\Sigma x_i^2 f_i}{\Sigma f_i} - (\vec{x})^2$ $\Rightarrow 50 = \frac{200 + 0 + 200}{x + 4} - 0 \quad \left\{\overline{x} = 0\right\}$ $\Rightarrow 200 + 50x = 200 + 200$ $\Rightarrow x = 4$ Official Ans. by NTA (1) **Sol.** $\overline{\mathbf{x}} = \frac{2+4+10+12+14+\mathbf{x}+\mathbf{y}}{7} = 8$ x + y = 14....(i) $(\sigma)^2 = \frac{\sum (x_i)^2}{n} - \left(\frac{\sum x_i}{n}\right)^2$ $16 = \frac{4 + 16 + 100 + 144 + 196 + x^2 + y^2}{7} - 8^2$ $16 + 64 = \frac{460 + x^2 + y^2}{7}$ $560 = 460 + x^2 + y^2$ $x^2 + y^2 = 100$(ii) Clearly by (i) and (ii), |x - y| = 2Ans. 1 **Official Ans. by NTA (2)** Sol. Mean = 5 $\frac{3+5+7+a+b}{5} = 5$ a + b = 10S.d. = 2 $\Rightarrow \sqrt{\frac{\sum_{i=1}^{5} (x_i - \overline{x})^2}{5}} = 2$ $(3-5)^2 + (5-5)^2 + (7-5)^2 + (a-5)^2 + (b-5)^2 =$ 20 $\Rightarrow 4 + 0 + 4 + (a - 5)^2 + (b - 5)^2 = 20$ $a^2 + b^2 - 10(a + b) + 50 = 12$ $(a + b)^2 - 2ab - 100 + 50 = 12$ ab = 19(ii) Equation is $x^2 - 10x + 19 = 0$

Е

ALLEN

Statistics 5

14. Official Ans. by NTA (2)

Sol. S.D = $\sqrt{\frac{\sum_{i=1}^{n} (x_i - a)}{n} - \left(\frac{\sum_{i=1}^{n} (x_i - a)}{n}\right)^2}$

$$=\sqrt{\frac{na}{n} - \left(\frac{n}{n}\right)^2}$$

{Given $\sum_{i=1}^n (x_i - a) = n \sum_{i=1}^n (x_i - a)^2 = na$ }

 $=\sqrt{a-1}$

15. Official Ans. by NTA (6.00)

Sol. x 0 2 4 8 2ⁿ

$$f {}^{n}C_{0} {}^{n}C_{1} {}^{n}C_{2} {}^{n}C_{3} {}^{n}C_{n}$$

Mean =
$$\frac{\sum x_i f_i}{\sum f_i} = \frac{\sum_{r=1}^{n} 2^{r-n} C_r}{\sum_{r=0}^{n} C_r}$$

Mean =
$$\frac{(1+2)^n - {}^nC_0}{2^n} = \frac{728}{2^n}$$

$$\Rightarrow \frac{3^{n}-1}{2^{n}} = \frac{728}{2^{n}}$$

$$\Rightarrow 3^n = 729 \Rightarrow n = 6$$