nglish\3D.p65"

node06\B0BA-BB\Kota\JEE INAIN\Jee Main-2020_SubjectTopic PDF

Е

•			
·	3D	6.	If for
1.	If the foot of the perpendicular drawn from the point $(1, 0, 3)$ on a line passing through $(\alpha, 7, 1)$		the fo x + 4 x + 7
	is $\left(\frac{5}{3}, \frac{7}{3}, \frac{17}{3}\right)$, then α is equal to		x + 5y is a line (1) 10
2.	Let P be a plane passing through the points $(2, 1, 0)$, $(4, 1, 1)$ and $(5, 0, 1)$ and R be any point $(2, 1, 6)$. Then the image of R in the plane P is :	7.	(1) 10 (3) 2 The p (2, 1, z = 1)
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.	(1) (0 (3) (0 A pla
3.	The mirror image of the point (1,2,3) in a plane is $\left(-\frac{7}{3}, -\frac{4}{3}, -\frac{1}{3}\right)$. Which of the following	0.	contai 1, -2, also p
	points lies on this plane ? (1) (-1, -1, -1) (2) (-1, -1, 1)		α is e (1) -1
4.	(3) (1, 1, 1) (4) (1, -1, 1) The shortest distance between the lines	9.	(3) 10 The for point
	$\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$ and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$		(1, -2) (1) x
	is	10.	(3) x The p
5.	(1) $\frac{7}{2}\sqrt{30}$ (2) $3\sqrt{30}$ (3) 3 (4) $2\sqrt{30}$ If the distance between the plane, 23x - 10y - 2z + 48 = 0 and the plane containing the lines $\frac{x+1}{2} = \frac{y-3}{4} = \frac{z+1}{3}$ and	11.	points also p (1) (4 (3) (0 If the the int and 3:
	$\frac{x+3}{2} = \frac{y+2}{6} = \frac{z-1}{\lambda} (\lambda \in \mathbb{R}) \text{ is equal to } \frac{k}{\sqrt{633}},$ then k is equal to	12.	some $(3, 2, The di x-y+2)$
			$\frac{x}{2} = \frac{y}{3}$ (1) 7
			(3) $\frac{1}{7}$

•	•	f for some α and β in R, the intersection of			
	the following three places $y = 1$				
	x + 4y - 2z = 1 $x + 7y - 5z = 0$				
	$x + 7y - 5z = \beta$				
	$x + 5y + \alpha z = 5$	$+ \beta$ is equal to :			
	is a line in \mathbb{R}^3 , then α	· ·			
	(1) 10 (2) 2	(2) -10			
,	(3) 2 The plane receive three	(4) 0			
•	The plane passing throu $(2, 1, 2)$ and negative				
	(2, 1, 2) and parallel to the line, $2x = 3y$				
	z = 1 also passes through (1)				
	(1) (0, 6, -2)	(2) (-2, 0, 1)			
	(3) (0, -6, 2)	(4) (2, 0, -1)			
•	A plane passing throu	-			
	contains two lines whose direction ratios are				
	1, -2, 2 and $2, 3, -1$ respectively. If this plane				
	also passes through the	e point (α , -3, 5), then			
	α is equal to:				
	(1) - 10	(2) 5			
	(3) 10 The ford field	(4) -5			
•	The foot of the perpendicular drawn from the				
	point $(4, 2, 3)$ to the line joining the points				
	(1, -2, 3) and $(1, 1, 0)$	-			
	(1) $x + 2y - z = 1$ (2) $x - y - 2z = 1$	-			
0	(3) $x - y - 2z = 1$ The plane which biese	•			
0.	The plane which bisects the line joining the				
	points $(4, -2, 3)$ and $(2, 4, -1)$ at right angles also passes through the point : (1) $(4, 0, -1)$ (2) $(4, 0, -1)$				
	(1) (4, 0, -1) (3) (0, 1, -1)	(2) (4, 0, 1) (4) (0, -1, 1)			
1.					
1.	If the equation of a plane P, passing through the intesection of the planes, $x + 4y - z + 7 = 0$				
	-	-			
	and $3x + y + 5z = 8$ is				
	some a, $b \in R$, then the $(3, 2, 1)$ from the plan	-			
2.	(3, 2, -1) from the pla The distance of the point				
	x-y+z = 5 measured				
		1			
	$\frac{x}{2} = \frac{y}{3} = \frac{z}{-6}$ is:				
	(1) 7	(2) 1			
	$(3)\frac{1}{2}$	$(4) \frac{7}{7}$			

3) $\frac{1}{7}$ (4) $\frac{7}{5}$

13.	If (a, b, c) is the image of the point $(1, 2, -3)$ in			
	the line, $\frac{x+1}{2} = \frac{y-3}{-2} =$	$\frac{z}{-1}$, then $a + b + c$ is		
	equal to			
	(1) –1	(2) 2		
	(3) 3	(4) 1		
14.	If for some $\alpha \in \mathbf{R}$, the lines			
	$L_1: \frac{x+1}{2} = \frac{y-2}{-1} = \frac{z-1}{1}$ and			
	$L_2: \frac{x+2}{\alpha} = \frac{y+1}{5-\alpha} = \frac{z+1}{1}$	are coplanar, then the		
	line L_2 passes through the point :			
	(1) (-2, 10, 2)	(2) (10, 2, 2)		
	(3)(10, -2, -2)	(4)(2, -10, -2)		
15.	The shortest distance between the lines			
	$\frac{x-1}{0} = \frac{y+1}{-1} = \frac{z}{1}$ and $x + y + z + 1 = 0$,			
	2x - y + z + 3 = 0 is :			
	(1) $\frac{1}{2}$	(2) 1		
	(3) $\frac{1}{\sqrt{2}}$	(4) $\frac{1}{\sqrt{3}}$		

16. A plane P meets the coordinate axes at A, B and C respectively. The centroid of \triangle ABC is given to be (1, 1, 2). Then the equation of the line through this centroid and perpendicular to the plane P is:

(1)
$$\frac{x-1}{1} = \frac{y-1}{2} = \frac{z-2}{2}$$

(2) $\frac{x-1}{2} = \frac{y-1}{2} = \frac{z-2}{1}$
(3) $\frac{x-1}{2} = \frac{y-1}{1} = \frac{z-2}{1}$
(4) $\frac{x-1}{1} = \frac{y-1}{1} = \frac{z-2}{2}$

nodeok 1006.4 BS Vota-VIE IMAIN Vee Main-2020_shijeo1Topic PDF With Solution Mathamatics English 3D p65"

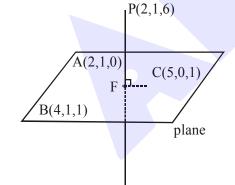
1.

2.

SOLUTION NTA Ans. (4.00) **Sol.** D.R. of BP = $<\frac{5}{3}-\alpha, \frac{7}{3}-7, \frac{17}{3}-1>$ A(1, 0, 3) P (5/3, 7/3, 17/3) $B(\alpha, 7, 1)$ D.R. of AP = $<\frac{5}{3}-1,\frac{7}{3}-0,\frac{17}{3}-3>$ $BP \perp^r AP$ $\Rightarrow \alpha = 4$ NTA Ans. (1) **Sol.** Plane passing through : (2, 1, 0), (4, 1, 1) and (5, 0, 1)

$$\begin{vmatrix} x-2 & y-1 & z \\ 2 & 0 & 1 \\ 3 & -1 & 1 \end{vmatrix} = 0$$

 \Rightarrow x + y - 2z = 3



Let I and F are respectively image and foot of perpendicular of point P in the plane.

eqn of line PI $\frac{x-2}{1} = \frac{y-1}{1} = \frac{z-6}{-2} = \lambda(say)$ Let I $(\lambda + 2, \lambda + 1, -2\lambda + 6)$

$$\Rightarrow F\left(2+\frac{\lambda}{2},1+\frac{\lambda}{2},-\lambda+6\right)$$

F lies in the plane

$$\Rightarrow 2 + \frac{\lambda}{2} + 1 + \frac{\lambda}{2} + 2\lambda - 12 - 3 = 0$$
$$\Rightarrow \lambda = 4$$
$$\Rightarrow I (6, 5, -2)$$
NTA Ans. (4)

Sol. Point on plane $R\left(\frac{-2}{3}, \frac{1}{3}, \frac{4}{3}\right)$

Normal vector of plane is $\frac{10}{3}\hat{i} + \frac{10}{3}\hat{j} + \frac{10}{3}\hat{k}$ Equation of require plane is x + y + z = 1Hence (1, -1, 1) lies on plane

(4) Option

3.

Sol.

NTA Ans. (2) 4.

Shortest distance =
$$\frac{\begin{vmatrix} 6 & 15 & -3 \\ 3 & -1 & 1 \\ -3 & 2 & 4 \end{vmatrix}}{\sqrt{11 \times 29 - 49}} = \frac{270}{\sqrt{270}}$$

$$=\sqrt{270}=3\sqrt{30}$$

5. NTA Ans. (3)

Sol. If $\lambda = -7$, then planes will be parallel & distance

between them will be
$$\frac{3}{\sqrt{633}} \Rightarrow k = 3$$

But if $\lambda \neq -7$, then planes will be intersecting & distance between them will be 0

6. NTA Ans. (1)

Sol. For planes to intersect on a line \Rightarrow there should be infinite solution of the given system of equations for infinite solutions

$$\Delta = \begin{vmatrix} 1 & 4 & -2 \\ 1 & 7 & -5 \\ 1 & 5 & \alpha \end{vmatrix} = 0 \implies 3\alpha + 9 = 0 \implies \alpha = -3$$

Е

3D

 $\Delta_{z} = \begin{vmatrix} 1 & 7 & \beta \\ 1 & 7 & \beta \\ 1 & 5 & 5 \end{vmatrix} = 0 \Longrightarrow 13 - \beta = 0 \Longrightarrow \beta = 13$ Also for $\alpha = -3$ and $b = 13 \Delta_x = \Delta_y = 0$ $\therefore \alpha + \beta = -3 + 13 = 10$ 7. Official Ans. by NTA (2) **Sol.** Two points on the line (L say) $\frac{x}{3} = \frac{y}{2}$, z = 1 are (0, 0, 1) & (3, 2, 1)So dr's of the line is < 3, 2, 0 >Line passing through (1, 2, 1), parallel to L and coplanar with given plane is $\vec{r} = \hat{i} + 2\hat{j} + \hat{k} + t(3\hat{i} + 2j), t \in \mathbb{R}$ (-2, 0, 1) satisfies the line (for t = -1) \Rightarrow (-2, 0, 1) lies on given plane. Answer of the question is (2) We can check other options by finding eqution of plane x - 1 y - 2 z - 1Equation plane : $|1+2 \ 2-0 \ 1-1| = 0$ 2+2 1-0 2-1 $\Rightarrow 2(x-1) - 3(y-2) - 5(z-1) = 0$ $\Rightarrow 2x - 3y - 5z + 9 = 0$

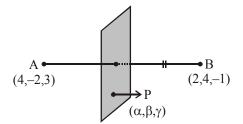
- 8. Official Ans. by NTA (2)
- **Sol.** Hence normal is \perp^{r} to both the lines so normal vector to the plane is

$$\vec{n} = (\hat{i} - 2\hat{j} + 2\hat{k}) \times (2\hat{i} + 3\hat{j} - \hat{k})$$
$$\vec{n} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 2 \\ 2 & 3 & -1 \end{vmatrix} = \hat{i}(2 - 6) - \hat{j}(-1 - 4) + \hat{k}(3 + 4)$$
$$\vec{n} = -4\hat{i} + 5\hat{j} + 7\hat{k}$$

Now equation of plane passing through (3,1,1) is $\Rightarrow -4(x-3) + 5(y-1) + 7(z-1) = 0$ $\Rightarrow -4x + 12 + 5y - 5 + 7z - 7 = 0$ $\Rightarrow -4x + 5y + 7z = 0$...(1)

Plane is also passing through $(\alpha, -3, 5)$ so this point satisfies the equation of plane so put in equation (1) $-4\alpha + 5 \times (-3) + 7 \times (5) = 0$ $\Rightarrow -4\alpha - 15 + 35 = 0$ $\Rightarrow \alpha = 5$ 9. Official Ans. by NTA (4) **Sol.** Equation of AB = $\vec{r} = (\hat{i} + \hat{j}) + \lambda(3\hat{j} - 3\hat{k})$ P(4,2,3)(1,1,0)(1, -2, 3)Let coordinates of M = $(1, (1 + 3\lambda), -3\lambda)$. $\overrightarrow{PM} = -3\hat{i} + (3\lambda - 1)\hat{j} - 3(\lambda + 1)\hat{k}$ $\overrightarrow{AB} = 3\hat{j} - 3\hat{k}$ $\therefore \overrightarrow{PM} \perp \overrightarrow{AB} \Rightarrow \overrightarrow{PM} \cdot \overrightarrow{AB} = 0$ $\Rightarrow 3(3\lambda - 1) + 9(\lambda + 1) = 0$ $\Rightarrow \lambda = -\frac{1}{3}$ \therefore M = (1, 0, 1) Clearly M lies on 2x + y - z = 1. **Official Ans. by NTA (1)** 10.

Sol. PA = PB



$$\Rightarrow PA^{2} = PB^{2}$$
$$\Rightarrow (\alpha - 4)^{2} + (\beta + 2)^{2} + (\gamma - 3)^{2}$$
$$= (\alpha - 2)^{2} + (\beta - 4)^{2} + (\gamma + 1)^{2}$$
$$\Rightarrow -4\alpha + 12\beta - 8\gamma = -8$$
$$\Rightarrow 2x - 6y + 4z = 4$$

Е

Е

Official Ans. by NTA (3) 11. **Sol.** $D_1 = \begin{vmatrix} -7 & 4 & -1 \\ 8 & 1 & 5 \\ 15 & b & 6 \end{vmatrix} = 0 \Longrightarrow b = -3$ $D = \begin{vmatrix} 1 & 4 & -1 \\ 3 & 1 & 5 \\ a & b & 6 \end{vmatrix} = 0 \Longrightarrow 21a - 8b - 66 = 0 \dots (1)$ P: 2x - 3y + 6z = 15so required distance $=\frac{21}{7}=3$ 12. **Official Ans. by NTA (2) Sol.** equation of line parallel to $\frac{x}{2} = \frac{y}{3} = \frac{z}{-6}$ passes through (1, -2, 3) is $\frac{x-1}{2} = \frac{y+2}{3} = \frac{z-3}{-6} = r$ x = 2r + 1y = 3r - 2, z = -6r + 3So 2r + 1 - 3r + 2 - 6r + 3 = 5 $\Rightarrow -7r + 1 = 0$ $r = \frac{1}{7}$ $x = \frac{9}{7}, y = \frac{-11}{7}, z = \frac{15}{7}$ Distance is = $\sqrt{\left(\frac{9}{7}-1\right)^2 + \left(2-\frac{11}{7}\right)^2 + \left(3-\frac{15}{7}\right)^2}$ $=\sqrt{\left(\frac{2}{7}\right)^2 + \left(\frac{3}{7}\right)^2 + \left(\frac{6}{7}\right)^2}$

 $L_2 \equiv \frac{x+2}{-4} = \frac{y+1}{9} = \frac{z+1}{1}$ Check options (2, -10, -2) lies on L₂ 15. Official Ans. by NTA (4) Sol. Line of intersection of planes x + y + z + 1 = 0...(1) $2\mathbf{x} - \mathbf{y} + \mathbf{z} + \mathbf{3} = \mathbf{0}$...(2) eliminate y 3x + 2z + 4 = 0 $x = \frac{-2z - 4}{3}$...(3) put in equaiton (1) z = -3y + 1...(4) from (3) and (4) $\frac{3x+4}{-2} = -3y+1 = z$ $\frac{x - \left(-\frac{4}{3}\right)}{-\frac{2}{-\frac{1}{3}}} = \frac{y - \frac{1}{3}}{-\frac{1}{2}} = \frac{z - 0}{1}$

now shortest distance between skew lines

$$\frac{x-1}{0} = \frac{y+1}{-1} = \frac{z}{1}$$
$$\frac{x-\left(-\frac{4}{3}\right)}{-\frac{2}{3}} = \frac{y-\left(\frac{1}{3}\right)}{-\frac{1}{3}} = \frac{z-0}{1}$$

S.D. = $\left| \frac{(\vec{b} - \vec{a}).(\vec{c} \times \vec{d})}{|\vec{c} \times \vec{d}|} \right|$ where $\vec{a} = (1, -1, 0)$ $\vec{b} = \left(-\frac{4}{3}, \frac{1}{3}, 0 \right)$ $\vec{c} = (0, -1, 1)$ $\vec{d} = \left(-\frac{2}{3}, -\frac{1}{3}, 1 \right)$ $\Rightarrow S.D = \frac{1}{\sqrt{3}}$ Official Ans. by NTA (2)

16.

Sol.
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

 $A \equiv (a, 0, 0), B \equiv (0, b, 0), C \equiv (0, 0, c)$
 $Centroid \equiv \left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right) = (1, 1, 2)$
 $a = 3, b = 3, c = 6$
Plane : $\frac{x}{3} + \frac{y}{3} + \frac{z}{6} = 1$
 $2x + 2y + z = 6$

line \perp to the plane (DR of line = $2\hat{i} + 2\hat{j} + \hat{k}$)

$$\frac{x-1}{2} = \frac{y-1}{2} = \frac{z-2}{1}$$

ode06 \B08.4.88 \Kota\LEE INAIN\Jee Main-2020_SubjectTopic PDF With Solution\Mathamatics\English\3D.p65 "

Е