PRACTICAL ORGANIC CHEMISTRY (POC)

- 1. A solution of m-chloroaniline, m-chlorophenol and m-chlorobenzoic acid in ethyl acetate was extracted initially with a saturated solution of NaHCO₃ to give fraction A. The left over organic phase was extracted with dilute NaOH solution to give fraction B. The final organic layer was labelled as fraction C. Fractions A, B and C, contain respectively:
 - (1) m-chlorobenzoic acid, m-chloroaniline and m-chlorophenol
 - (2) m-chloroaniline, m-chlorobenzoic acid and m-chlorophenol
 - (3) m-chlorobenzoic acid, m-chlorophenol and m-chloroaniline
 - (4) m-chlorophenol, m-chlorobenzoic acid and m-chloroaniline
- 2. A chromatography column, packed with silica gel as stationary phase, was used to separate a mixture of compounds consisting of (A) benzanilide (B) aniline and (C) acetophenone. When the column is eluted with a mixture of solvents, hexane: ethyl acetate (20:80), the sequence of obtained compounds:
 - (1) (B), (C) and (A)
 - (2) (C), (A) and (B)
 - (3) (A), (B) and (C)
 - (4) (B), (A) and (C)
- 3. A flask contains a mixture of isohexane and 3-methylpentane. One of the liquids boils at 63°C while the other boils at 60°C. What is the best way to seprate the two liquids and which one will be distilled out first?
 - (1) simple distillation, 3-methylpentane
 - (2) simple distillation, isohexane
 - (3) fractional distillation, isohexane
 - (4) fractional distillation, 3-methylpentane
- 4. Kjeldahl's method cannot be used to estimate nitrogen for which of the following compounds?
 - $(1) C_6H_5NO_2$
- (2) $C_6H_5NH_2$
- (3) $CH_3CH_2-C\equiv N$ (4) NH_2-C-NH ,

- 5. A chemist has 4 samples of artificial sweetener A, B, C and D. To identify these samples, he performed certain experiments and noted the following observations:
 - (i) A and D both form blue-violet colour with ninhydrin.
 - (ii) Lassaigne extract of C gives positive AgNO₃ test and negative $Fe_4[Fe(CN)_6]_3$ test.
 - (iii)Lassaigne extract of B and D gives positive sodium nitroprusside test

Based on these observations which option is correct?

- (1) A: Aspartame; B: Saccharin;
 - C: Sucralose; D; Alitame
- (2) A: Alitame; B: Saccharin;
- C: Aspartame; D; Sucralose
- (3) A : Saccharin ; B : Alitame ;
 - C: Sucralose; D; Aspartame
- (4) A: Aspartame; B: Alitame;
 - C: Saccharin; D; Sucralose
- 6. Two compounds A and B with same molecular formula (C₃H₆O) undergo Grignard's reaction with methylmagnesium bromide to give products C and D. Products C and D show following chemical tests.

Test	С	D	
Ceric ammonium nitrate Test	Positive	Positive	
Lucas Test	Turbidity obtained after five minutes	Turbidity obtained immediately	
Iodoform Test	Positive	Negative	

C and D respectively are:

$$CH_3$$
 (1) $C=H_3C-CH_3$ CH_3 CH_3 CH_3 CH_3 CH_3

 $(2)C=H_3C-CH_2-CH_2-CH_2-OH$;

OH
$$CH_3$$
 $C=H_3C-CH_2-CH-CH_3$; $D=H_3C-C-OH_3$ CH_3

7. Consider the following reaction:

$$d \oplus O \oplus c$$
 CH_3
 $O \oplus b$
 $O \oplus a$

Chromic anhydride 'P'

The product 'P' gives positive ceric ammonium nitrate test. This is because of the presence of which of these -OH group(s)?

- (1) (c) and (d)
- (2) (b) only
- (3) (d) only
- (4) (b) and (d)

8. Match the following:

Test/Method

Reagent

- Lucas Test (i)
- (a) C₆H₅SO₂Cl/aq. KOH
- (ii) Dumas method
- (b) HNO₃/AgNO₃
- (iii) Kjeldahl's method (c) CuO/CO₂ (iv) Hinsberg Test
 - (d) Conc. HCl and ZnCl₂
 - (e) H_2SO_4
- (1) (i)-(d), (ii)-(c), (iii)-(e), (iv)-(a)
- (2) (i)-(b), (ii)-(d), (iii)-(e), (iv)-(a)
- (3) (i)-(d), (ii)-(c), (iii)-(b), (iv)-(e)
- (4) (i)-(b), (ii)-(a), (iii)-(c), (iv)-(d)

SOLUTION

1. NTA Ans. (3)

Sol.
$$OH$$
 OH $COOH$

$$O = C - OH$$

$$O = C - O^{-}Na^{+}$$

$$Cl$$

$$H_{2}CO_{3} \rightarrow H_{2}O + CO_{2}$$
Fraction-A

2. NTA Ans. (2)

- Sol. (A) Benzanilide \rightarrow Ph-NH-C-Ph (μ = 2.71 D)
 - (B) Aniline \rightarrow Ph-NH₂ ($\mu = 1.59 \text{ D}$)

(C) Acetophenone
$$\rightarrow Ph-C-CH_3$$
 ($\mu = 3.05 D$)

Dipole moment : C > A > B

Hence the sequence of obtained compounds is (C), (A) and (B)

- 3. NTA Ans. (3)
- **Sol.** Liquid which have less difference in boiling point can be isolated by fractional distillation and liquid with less boiling point will be isolated first.
- 4. NTA Ans. (1)
- **Sol.** Kjeldahl's method for estimation of nitrogen is not applicable for nitrobenzene $C_6H_5NO_2$. because reaction with H_2SO_4 , nitrobenzene can not give ammonia.
- 5. NTA Ans. (1)
- Sol. (i) Blue voilet color with Ninhydrine → amino acid derivative. So it cannot be saccharide or sucralose.

- (ii) Lassaigne extract give +ve test with AgNO₃. So Cl is present, -ve test with Fe₄[Fe(CN)₆]₃ means N is absent. So it can't be Aspartame or Saccharine or Alitame, so C is sucralose.
- (iii) Lassaigne solution of B and D given +ve sodium nitroprusside test, so it is having S, so it is Saccharine and Alitame.
- (A) Aspartame HO ONH₂ OHOMe
- (B) Saccharine NH
- (C) Sucralose OH OH OH OH
- (D) Alitame S NH CH₃ OH
- 6. Official Ans. by NTA (3)

Sol.

$$\begin{array}{c} O \\ H \\ CH_3-CH_2-C \\ CH_3-CH_3-CH_3-CH_3-CH_2-CH-CH_3 \\ \end{array}$$

$$(A) \qquad \qquad \begin{array}{c} OH \\ I \\ CH_3-CH_2-CH-CH_3 \\ \end{array}$$

$$\begin{array}{c} OH \\ I \\ CH_3-CH_2-CH-CH_3 \\ \end{array}$$

$$\begin{array}{c} OH \\ I \\ CH_3-CH_2-CH-CH_3 \\ \end{array}$$

CAN test for alcohol: ✓

Iodoform test: ✓

$$CH_{3}-C-CH_{3}\xrightarrow{CH_{3}MgBr}CH_{3}-C-CH_{3}$$
(B)
$$CH_{3}-C-CH_{3}$$

$$CH_{3}-C-CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$
3° Alcohol

CAN test for alcohol: ✓

Lucas test: Immediately

Iodoform test: *

7. Official Ans. by NTA (2)

Sol. Compound
$$\xrightarrow{\text{Chronic}} 0$$
 $\xrightarrow{\text{OH}} 0$ $\xrightarrow{\text{OH}} 0$ $\xrightarrow{\text{OH}} 0$ $\xrightarrow{\text{H}} 0$

due to pressure of b

8. Official Ans. by NTA (1)

Sol. Test Correct reagent

- (i) Lucas test \longrightarrow conc. HCl + ZnCl₂
- (ii) Dumas method \longrightarrow CuO / CO₂
- (iii) Kjeldahl's method $\longrightarrow H_2SO_4$
- (iv) Hinsberg Test $\longrightarrow C_6H_5SO_2Cl + aq. KOH$