CIRCULAR MOTION

- 1. A body is projected at t = 0 with a velocity 10 ms^{-1} at an angle of 60° with the horizontal. The radius of curvature of its trajectory at t = 1 s is R. Neglecting air resistance and taking acceleration due to gravity $g = 10 \text{ ms}^{-2}$, the value of R is :
 - (1) 2.5 m (2) 10.3 m
 - (3) 2.8 m (4) 5.1 m
- 2. A particle is moving along a circular path with a constant speed of 10 ms^{-1} . What is the magnitude of the change is velocity of the particle, when it moves through an angle of 60° around the centre of the circle?
 - (1) zero (2) 10 m/s
 - (3) $10\sqrt{3}$ m/s (4) $10\sqrt{2}$ m/s
- 3. Two particles A, B are moving on two concentric circles of radii R_1 and R_2 with equal angular speed ω . At t = 0, their positions and direction of motion are shown in the figure :

The relative velocity $\vec{v}_{A} - \vec{v}_{B}$ at $t = \frac{\pi}{2\omega}$ is given

by :

(1) $-\omega (\mathbf{R}_1 + \mathbf{R}_2)\hat{\mathbf{i}}$ (2) $\omega (\mathbf{R}_1 + \mathbf{R}_2)\hat{\mathbf{i}}$

(3) $\omega (R_1 - R_2)\hat{i}$ (4) $\omega (R_2 - R_1)\hat{i}$

4. A smooth wire of length $2\pi r$ is bent into a circle and kept in a vertical plane. A bead can slide smoothly on the wire. When the circle is rotating with angular speed ω about the vertical diameter AB, as shown in figure, the bead is at rest with respect to the circular ring at position P as shown. Then the value of ω^2 is equal to :

5.

A uniform rod of length ℓ is being rotated in a horizontal plane with a constant angular speed about an axis passing through one of its ends. If the tension generated in the rod due to rotation is T(x) at a distance x from the axis, then which of the following graphs depicts it most closely?

$$\mathbf{Ans.}(\mathbf{4})$$

N sin
$$\theta$$
 = m $\frac{r}{2} \omega^2$ (1)
N cos θ = mg(2)

$$\tan \theta = \frac{r\omega^2}{2g}$$
$$\frac{r}{2\frac{\sqrt{3}r}{2}} = \frac{r\omega^2}{2g}$$
$$\omega^2 = \frac{2g}{\sqrt{3}r}$$

5. Ans. (4)

$$T = \int_{x=x}^{x=\ell} dm\omega^2 x = \int_{x=x}^{x=\ell} \frac{m}{\ell} dx \, \omega^2 x$$
$$= \frac{m\omega^2}{2\ell} \left(\ell^2 - x^2\right)$$
$$T = \frac{m\omega^2}{2\ell} \left(\ell^2 - x^2\right)$$