MOLE CONCEPT

- 1. A 10 mg effervescent tablet containing sodium bicarbonate and oxalic acid releases 0.25 ml of CO_2 at T = 298.15 K and p = 1 bar. If molar volume of CO₂ is 25.0 L under such condition, what is the percentage of sodium bicarbonate in each tablet ? [Molar mass of $NaHCO_3 = 84 \text{ g mol}^{-1}$
 - (1) 16.8
- (2) 8.4
- (3) 0.84
- (4) 33.6
- 2. For the following reaction, the mass of water produced from 445 g of $C_{57}H_{110}O_6$ is :

$$2C_{57}H_{110}O_6(s) + 163O_2(g) \rightarrow$$

$$114\text{CO}_2(g) + 110 \text{ H}_2\text{O}(l)$$

- (1) 495 g (2) 490 g (3) 890 g (4) 445 g
- **3.** An organic compound is estimated through Dumas method and was found to evolve 6 moles of CO₂. 4 moles of H₂O and 1 mole of nitrogen gas. The formula of the compound is
 - (1) $C_{12}H_8N$
- $(2) C_{12}H_8N_2$
- $(3) C_6H_8N$
- $(4) C_6 H_8 N_2$
- 4. The percentage composition of carbon by mole in methane is:
 - (1) 80%
- (2)25%
- (3)75%
- (4) 20%
- **5.** For a reaction,

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$
; identify dihydrogen (H_2) as a limiting reagent in the following reaction mixtures.

- (1) $14g \text{ of } N_2 + 4g \text{ of } H_2$
- (2) 28g of $N_2 + 6g$ of H_2
- (3) 56g of $N_2 + 10g$ of H_2
- (4) $35g \text{ of } N_2 + 8g \text{ of } H_2$
- 6. What would be the molality of 20% (mass/ mass) aqueous solution of KI?

(molar mass of $KI = 166 \text{ g mol}^{-1}$)

- (1) 1.08
- (2) 1.48
- (3) 1.51
- (4) 1.35

- 7. At 300 K and 1 atmospheric pressure, 10 mL of a hydrocarbon required 55 mL of O₂ for complete combustion and 40 mL of CO₂ is formed. The formula of the hydrocarbon is:
 - $(1) C_4H_8$
- $(2) C_4H_7C1$
- $(3) C_4H_{10}$
- (4) C_4H_6
- 8. The minimum amount of $O_2(g)$ consumed per gram of reactant is for the reaction:

(Given atomic mass : Fe = 56, O = 16,
$$Mg = 24$$
, $P = 31$, $C = 12$, $H = 1$)

(1)
$$C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(l)$$

- (2) $P_4(s) + 5 O_2(g) \rightarrow P_4O_{10}(s)$
- (3) 4 Fe(s) + 3 $O_2(g) \rightarrow 2 \text{ FeO}_3(s)$
- (4) $2 \text{ Mg(s)} + O_2(g) \rightarrow 2 \text{ MgO(s)}$
- 9. 5 moles of AB₂ weigh 125×10^{-3} kg and 10 moles of A_2B_2 weigh 300×10^{-3} kg. The molar mass of $A(M_A)$ and molar mass of $B(M_B)$ in kg mol⁻¹ are:
 - (1) $M_A = 50 \times 10^{-3}$ and $M_B = 25 \times 10^{-3}$
 - (2) $M_A = 25 \times 10^{-3}$ and $M_B = 50 \times 10^{-3}$
 - (3) $M_A = 5 \times 10^{-3}$ and $M_B = 10 \times 10^{-3}$
 - (4) $M_A = 10 \times 10^{-3}$ and $M_B = 5 \times 10^{-3}$
- 10. 25 g of an unknown hydrocarbon upon burning produces 88 g of CO₂ and 9 g of H₂O. This unknown hydrocarbon contains.
 - (1) 20g of carbon and 5 g of hydrogen
 - (2) 24g of carbon and 1 g of hydrogen
 - (3) 18g of carbon and 7 g of hydrogen
 - (4) 22g of carbon and 3 g of hydrogen

SOLUTION

1. Ans. (2)

$$2\mathrm{NaHCO_3} + \mathrm{H_2C_2O_4} \rightarrow \mathrm{Na_2C_2O_4} + 2\mathrm{H_2O} + \\$$

$$2CO_2 \quad moles \ of \ CO_2 = \frac{0.25 \times 10^{-3}}{25} = 10^{-5}$$

moles of NaHCO₃ =
$$10^{-5}$$
 mol mass of NaHCO₃ = $10^{-5} \times 84$ gm

% of naHCO₃ =
$$\frac{84 \times 10^{-5}}{10 \times 10^{-3}} = 100$$

2. Ans. (1)

moles of
$$C_{57}H_{110}O_6(s) = \frac{445}{890} = 0.5$$
 moles

$$2C_{57}H_{110}O_6(s) + 163 O_2(g) \rightarrow 114 CO_2(g) + 110$$

 $H_2O(l)$

$$n_{\rm H_2O} = \frac{110}{4} = \frac{55}{2}$$

$$m_{\rm H_2O} = \frac{55}{2} \times 18$$

$$= 495 gm$$

3. Ans. (4)

$$[C_x H_y N_z] \xrightarrow{Duma} 6CO_2 + 4H_2O + N_2$$

Hence, C₆H₈N₂

4. Ans. (4)

 CH_4

% by mole of carbon =
$$\frac{1 \text{ mol atom}}{5 \text{ mol atom}} \times 100$$

= 20%

5. Ans. (3)

$$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$$

6. Ans. (3)

$$\frac{w}{w}\% = 20$$

100 gm solution has 20 gm KI

80 gm solvent has 20 gm KI

$$m = \frac{\frac{20}{166}}{\frac{80}{1000}} = \frac{20 \times 1000}{166 \times 80} = 1.506 \approx 1.51 \text{ mol/kg}$$

7. Ans. (4)

$$C_x H_y + \left(x + \frac{y}{4}\right) O_2 \longrightarrow xCO_2 + \frac{y}{2} H_2O$$

$$10 \qquad 10\left(x + \frac{y}{4}\right) \qquad 10x$$

By given data,
$$10(x + \frac{y}{4}) = 55$$
 (1)

$$10x = 40$$
 (2)

$$\therefore x = 4, y = 6 \Rightarrow C_4 H_6$$

8. Ans. (3)

$$\textbf{Sol.} \quad C_3H_8(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(\ell)$$

Each 1g of C₃H₈ requires 3.63 g of O₂

$$P_4(s) + 5O_2(g) \longrightarrow P_4O_{10}(s)$$

Each 1g of P₄ requires 1.29 g of O₂

$$4\text{Fe(s)} + 3\text{O}_2(\text{g}) \longrightarrow 2\text{Fe}_2\text{O}_3(\text{s})$$

Each 1g of Fe requires 0.428 g of O₂

$$2Mg(s) + O_2(g) \longrightarrow 2MgO(s)$$

Each 1g of Mg requires 0.66 g of O₂

therefore least amount of O_2 is required in option (3).

$$5[M_A + 2M_B] = 125$$

$$M_A + 2M_B = 25$$
(1)

$$2M_A + 2M_B = 30$$
(2)

from eq. (1) & (2)

$$M_A = 5$$

$$M_{\rm B} = 10$$

10. Ans. (2)

$$C_x H_y + \left(x + \frac{y}{4}\right) O_2 \longrightarrow xCO_2 + \frac{y}{2}H_2O$$

$$\left(\frac{25}{M}\right)$$

$$x \times \frac{25}{M}$$
 $\frac{y}{2} \times \frac{25}{M}$

$$=2$$
 $=0.5$

$$C x \times \frac{25}{M} = 2$$

H
$$y \times \frac{25}{M} = 1$$

$$C_{2y}H_y = 24y \text{ gm C} + y \text{ gm H}$$

or

24: 1 ratio by mass