

TEST PAPER OF JEE(MAIN) EXAMINATION - 2019 (Held On Thursday 10th JANUARY, 2019) TIME : 2 : 30 AM To 5 : 30 PM MATHEMATICS

1. Let
$$z = \left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right)^5 + \left(\frac{\sqrt{3}}{2} - \frac{i}{2}\right)^5$$
. If R(z) and I[z]

respectively denote the real and imaginary parts of z, then :

(1)
$$R(z) > 0$$
 and $I(z) > 0$

(2)
$$R(z) < 0$$
 and $I(z) > 0$

(3)
$$R(z) = -3$$

(4)
$$I(z) = 0$$

Ans. (4)

2. Let $a_1, a_2, a_3, \dots, a_{10}$ be in G.P. with $a_i > 0$ for $i = 1, 2, \dots, 10$ and S be the set of pairs (r,k), r k \in N (the set of natural numbers) for which

$$\begin{vmatrix} \log_{e} a_{1}^{r} a_{2}^{k} & \log_{e} a_{2}^{r} a_{3}^{k} & \log_{e} a_{3}^{r} a_{4}^{k} \\ \log_{e} a_{4}^{r} a_{5}^{k} & \log_{e} a_{5}^{r} a_{6}^{k} & \log_{e} a_{6}^{r} a_{7}^{k} \\ \log_{e} a_{7}^{r} a_{8}^{k} & \log_{e} a_{8}^{r} a_{9}^{k} & \log_{e} a_{9}^{r} a_{10}^{k} \end{vmatrix} = 0$$

Then the number of elements in S, is :

(1) Infinitely many	(2) 4
(3) 10	(4) 2

Ans. (1)

3. The positive value of λ for which the co-efficient of x^2 in the expression

$$x^{2}\left(\sqrt{x} + \frac{\lambda}{x^{2}}\right)^{10}$$
 is 720, is :
(1) $\sqrt{5}$ (2) 4
(3) $2\sqrt{2}$ (4) 3

Ans. (2)

4. The value of
$$\cos \frac{\pi}{2^2} \cdot \cos \frac{\pi}{2^3} \cdot \dots \cdot \cos \frac{\pi}{2^{10}} \cdot \sin \frac{\pi}{2^{10}}$$

is :

(1) $\frac{1}{256}$	(2) $\frac{1}{2}$
(3) $\frac{1}{512}$	(4) $\frac{1}{1024}$

Ans. (3)

5. The value of $\int_{-\pi/2}^{\pi/2} \frac{dx}{[x] + [\sin x] + 4}$, where [t]

denotes the greatest integer less than or equal to t, is :

(1)
$$\frac{1}{12}(7\pi+5)$$
 (2) $\frac{3}{10}(4\pi-3)$

(3)
$$\frac{1}{12}(7\pi-5)$$
 (4) $\frac{3}{20}(4\pi-3)$

Ans. (4)

6. If the probability of hitting a target by a shooter, in any shot, is 1/3, then the minimum number of independent shots at the target required by him so that the probability of hitting the target

at least once is greater than $\frac{5}{6}$, is :

(1) 6	(2) 5
(3) 4	(4) 3

Ans. (2)

- 7. If mean and standard deviation of 5 observations x_1 , x_2 , x_3 , x_4 , x_5 are 10 and 3, respectively, then the variance of 6 observations x_1 , x_2 , ..., x_5 and -50 is equal to :
 - (1) 582.5 (2) 507.5
 - (3) 586.5 (4) 509.5

Ans. (2)

8. The length of the chord of the parabola $x^2 = 4y$ having equation $x - \sqrt{2}y + 4\sqrt{2} = 0$ is :

- (1) $2\sqrt{11}$ (2) $3\sqrt{2}$
- (3) $6\sqrt{3}$ (4) $8\sqrt{2}$

Ans. (3)

JEE (Main) Examination-2019/Evening Session/10-01-2019 Ans. (2) Let $A = \begin{bmatrix} 2 & b & 1 \\ b & b^2 + 1 & b \\ 1 & b & 2 \end{bmatrix}$ where b > 0. Then the 9. 13. minimum value of $\frac{\det(A)}{h}$ is : K has exactly : $(1)\sqrt{3}$ (2) $-\sqrt{3}$ (1) Three elements $(3) - 2\sqrt{3}$ $(4) 2\sqrt{3}$ (3) Five elements Ans. (4) Ans. (1) The tangent to the curve, $y = xe^{x^2}$ passing 10.

10. The tangent to the curve, $y = xe^{x^2}$ passing through the point (1,e) also passes through the point :

(1)
$$\left(\frac{4}{3}, 2e\right)$$
 (2) (2,3e)
(3) $\left(\frac{5}{3}, 2e\right)$ (4) (3,6e)

Ans. (1)

11. The number of values of $\theta \in (0,\pi)$ for which the system of linear equations

x + 3y + 7z = 0-x + 4y + 7z = 0

 $(\sin 3\theta)x + (\cos 2\theta)y + 2z = 0$

has a non-trivial solution, is :

 (1) One
 (2) Three

 (3) Four
 (4) Two

Ans. (4)

12. If
$$\int_{0}^{x} f(t) dt = x^{2} + \int_{x}^{1} t^{2} f(t) dt$$
, then f'(1/2) is :

(1)
$$\frac{6}{25}$$
 (2) $\frac{24}{25}$

(3) $\frac{18}{25}$ (4) $\frac{4}{5}$

Let $f: (-1,1) \rightarrow R$ be a function defined by $f(x) = \max\left\{-|x|, -\sqrt{1-x^2}\right\}$. If K be the set of all points at which f is not differentiable, then (2) One element (4) Two elements 14. Let $S = \left\{ (x, y) \in \mathbb{R}^2 : \frac{y^2}{1+r} - \frac{x^2}{1-r} = 1 \right\}$, where $r \neq \pm 1$. Then S represents : (1) A hyperbola whose eccentricity is $\frac{2}{\sqrt{r+1}}$, where 0 < r < 1. (2) An ellipse whose eccentricity is $\frac{1}{\sqrt{r+1}}$, where r > 1(3) A hyperbola whose eccentricity is $\frac{2}{\sqrt{1-r}}$, when 0 < r < 1. (4) An ellipse whose eccentricity is $\sqrt{\frac{2}{r+1}}$, when r > 1 Ans. (4) **15.** If $\sum_{r=0}^{25} \{ {}^{50}C_r \cdot {}^{50-r}C_{25-r} \} = K ({}^{50}C_{25}), \text{ then } K \text{ is}$ equal to : (1) $2^{25} - 1$ (2) $(25)^2$ (3) 2^{25} $(4) 2^{24}$ Ans. (3) 16. Let N be the set of natural numbers and two functions f and g be defined as $f,g: N \rightarrow N$ such that : $f(n) = \begin{pmatrix} \frac{n+1}{2} & \text{if } n \text{ is odd} \\ \frac{n}{2} & \text{if } n \text{ is even} \end{cases}$ and $g(n) = n-(-1)^n$. The fog is : (1) Both one-one and onto (2) One-one but not onto (3) Neither one-one nor onto

(4) onto but not one-one

Ans. (4)

Path to Suc		tion-2	2019/Evening Session/10-01-2019	
17.	The values of λ such that sum of the squares	Ans.	(3)	
	of the roots of the quadratic equation,	22.	With the usual notation, in $\triangle ABC$, if	
	$x^{2} + (3 - \lambda) x + 2 = \lambda$ has the least value is :		$\angle A + \angle B = 120^{\circ}, a = \sqrt{3} + 1 \text{ and } b = \sqrt{3} - 1,$	
	(1) 2 (2) $\frac{4}{9}$		then the ratio $\angle A : \angle B$, is :	
	,		(1) 7 : 1 (2) 5 : 3	
	2 15		(3) 9 : 7 (4) 3 : 1	
	$(3) \frac{1}{8}$ (4) 1	Ans.	(1)	
Ans.	(1)	23.	The plane which bisects the line segment	
18	Two vertices of a triangle are $(0, 2)$ and $(4, 3)$		joining the points $(-3, -3, 4)$ and $(3, 7, 6)$ at right	
10.	I we vertices of a mangle are $(0,2)$ and $(4,3)$. If its orthogeneric is at the origin, then its third		angles, passes through which one of the	
	vertex lies in which quadrant?		following points ?	
	(1) Fourth		(1) (4, -1, 7) (2) (4, 1, -2) (2) (4, 2, 2, 5) (4) (2, 1, 2) (4) (2, 1, 2) (4) (2, 1, 2) (4) (2, 1, 2) (4) (2, 1, 2) (4) (4, 1, -2) (4, 1, -2) (4) (4) (4, 1, -2) (4) (4, 1, -2) (4) (4,	
	(1) Fourth		(3) (-2,3,5) (4) (2,1,3)	
	(2) Second	Ans.	(2) Consider the following three statements	
	(3) Third	24.	Consider the following three statements :	
	(4) First		P : 5 is a prime number.	
Ans.	(2)		Q : 7 is a factor of 192.	
19.	Two sides of a parallelogram are along the		R : L.C.M. Of J and / 18 55.	
	lines, $x + y = 3$ and $x - y + 3 = 0$. If its diagonals		following statements is true 2	
	intersect at (2,4), then one of its vertex is :		(1) $(\mathbf{P} \land \mathbf{O}) \lor (\mathbf{z} \mathbf{R})$	
	(1) (2,6) (2) (2,1)		$(1) (1 Q) \lor (CR)$ $(2) (\alpha P) \land (\alpha Q \land R)$	
	(3) (3,5) (4) (3,6)		(2) (-1) (-Q - R) (3) (~P) \((0 ^ R))	
Ans.	(4)		$(4) \mathbb{P} \vee (\sim \mathbb{Q} \wedge \mathbb{R})$	
• •		Ans.	(4)	
20.	Let $\vec{\alpha} = (\lambda - 2)\vec{a} + b$ and $\beta = (4\lambda - 2)\vec{a} + 3b$ be	25.	On which of the following lines lies the point	
	two given vectors where vectors \vec{a} and \vec{b} are non-collinear. The value of λ for which vectors		of intersection of the line, $\frac{x-4}{2} = \frac{y-5}{2} = \frac{z-3}{1}$	
	$\vec{\alpha}$ and $\vec{\beta}$ are collinear, is :		and the plane, $x + y + z = 2$?	
	(1) -3 (2) 4 (2) 2 (4) 4		(1) $\frac{x-2}{2} = \frac{y-3}{2} = \frac{z+3}{3}$	
Ang	(4)		x = 4 $y = 5$ $z = 5$	
A115.			(2) $\frac{x-y}{1} = \frac{y-y}{1} = \frac{z-y}{-1}$	
21.	The value of $\cot\left(\sum_{n=1}^{19} \cot^{-1}\left(1 + \sum_{p=1}^{n} 2p\right)\right)$ is :		(3) $\frac{x-1}{1} = \frac{y-3}{2} = \frac{z+4}{-5}$	

(1)
$$\frac{22}{23}$$
 (2) $\frac{23}{22}$ (3) $\frac{21}{19}$ (4) $\frac{19}{21}$

MAJOR COMPUTER BASED TEST (CBT) SERIES

(4) $\frac{x+3}{3} = \frac{4-y}{3} = \frac{z+1}{-2}$

JEE (Advanced)- Target 2019

dlp.allen.ac.in Test Dates: 3rd Feb, 21st & 28th April, 12th May 0744-2750275

Ans. (3)

26. Let f be a differentiable function such that

$$f'(x) = 7 - \frac{3}{4} \frac{f(x)}{x}, (x > 0) \text{ and } f(1) \neq 4.$$

Then $\lim_{x\to 0^+} x f\left(\frac{1}{x}\right)$:

- (1) Exists and equals 4
- (2) Does not exist

(3) Exist and equals 0

(4) Exists and equals
$$\frac{4}{7}$$

Ans. (1)

27. A helicopter is flying along the curve given by $y - x^{3/2} = 7$, $(x \ge 0)$. A soldier positioned at the

point $\left(\frac{1}{2}, 7\right)$ wants to shoot down the helicopter

when it is nearest to him. Then this nearest distance is :

(4) $\frac{\sqrt{5}}{6}$

(1) $\frac{1}{2}$ (2) $\frac{1}{3}\sqrt{\frac{7}{3}}$

$$(3) \ \frac{1}{6}\sqrt{\frac{7}{3}}$$

Ans. (3)

28. If $\int x^5 e^{-4x^3} dx = \frac{1}{48} e^{-4x^3} f(x) + C$, where C is a constant of integration, then f(x) is equal to : (1) $-4x^3 - 1$ (2) $4x^3 + 1$

(1)
$$-4x^3 - 1$$
 (2) $4x^3 + 1$
(3) $-2x^3 - 1$ (4) $-2x^3 + 1$

Ans. (1)

29. The curve amongst the family of curves, represented by the differential equation, $(x^2 - y^2)dx + 2xy dy = 0$ which passes through (1,1) is :

(1) A circle with centre on the y-axis

(2) A circle with centre on the x-axis

(3) An ellipse with major axis along the y-axis

(4) A hyperbola with transverse axis along the x-axis

Ans. (2)

30. If the area of an equilateral triangle inscribed in the circle, $x^2 + y^2 + 10x + 12y + c = 0$ is $27\sqrt{3}$ sq. units then c is equal to :

(1) 20	(2) 25
(3) 13	(4) -25

Ans. (2)

MAJOR COMPUTER BASED TEST (CBT) SERIES JEE (Main)- Target 2019

dlp.allen.ac.in

Test Dates: 24th & 31st March

0744-2750275