TARGET : JEE 2013

JEE-MAIN

DATE: 31 - 03 - 2013

Maximum Marks : 360

JEE-ADVANCED

CAREER INSTITUTE KOTA (RAJASTHAN)

ccess

ТΜ

Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose. कृपया पृष्ठ की सूचनाओं को ध्यान से पढ़ें। इसके ही लिए आपको 5 मिनट विशेष तौर से दिये गये हैं।

È		—	\$	1
	INSTRUCTIONS	L	सूचनाए	
1.	Immediately fill in the particulars on this page of the Test Booklet with Blue/Black Ball Point Pen. Use of pencil is strictly prohibited.	1.	परीक्षा पुस्तिका के इस पृष्ठ पर आवश्यक विवरण नीले/काले बॉल पाइंट पेन से तत्काल भरें। पेन्सिल का प्रयोग बिल्कुल वर्जित हैं।	
2.	The candidates should not write their Form Number	2.	परीक्षार्थी अपना फार्म नं. (निर्धारित जगह के अतिरिक्त) परीक्षा	
	anywhere else (except in the specified space) on the Test Booklet/Answer Sheet.		पुस्तिका / उत्तर पत्र पर कहीं और न लिखें।	
3.	The test is of 3 hours duration.	3.	परीक्षा की अवधि 3 घंटे है।	
4.	The Test Booklet consists of 90 questions. The maximum marks are 360 .	4.	इस परीक्षा पुस्तिका में 90 प्रश्न हैं। अधिकतम अंक 360 हैं।	
5.	There are three parts in the question paper. The distribution of marks subjectwise in each part is as under for each correct response. Part A-Mathematics(120 marks) - 30 Questions. Questions No. 1 to 30 carry 4 marks each = 120 Marks Part B - Physics (120 marks) - 30 Questions. Questions No. 31 to 60 carry 4 marks each = 120 Marks Part C - Chemistry (120 marks) - 30 Questions. Questions No. 61 to 90 carry 4 marks each = 120 Marks One Fourth mark will be deducted for indicated incorrect response of each question. No deduction from the total score will be made	5.	प्रश्न पत्र में तीन भाग हैं। प्रत्येक भाग में प्रत्येक सही उत्तर के लिये अंकों का विषयवार वितरण नीचे दिए अनुसार होगा। भाग A – गणित (120 अंक) – 30 प्रश्न प्रश्न संख्या 1 से 30 तक प्रत्येक 4 अंक का है = 120 अंक भाग B – भौतिक विज्ञान (120 अंक) – 30 प्रश्न प्रश्न संख्या 31 से 60 तक प्रत्येक 4 अंक का है = 120 अंक भाग C – रसायनिक विज्ञान (120 अंक) – 30 प्रश्न प्रश्न संख्या 61 से 90 तक प्रत्येक 4 अंक का है = 120 अंक प्रत्येक गलत उत्तर के लिए उस प्रश्न के कुल अंक का एक चौथाई अंक काटा जायेगा। उत्तर पुस्तिका में कोई भी	K THE SEALS WITHOUT BEING
	if no response is indicated for an item in the Answer Sheet.		होगा।	BRE/
7.	Use Blue/Black Ball Point Pen only for writting	7.	उत्तर पत्र क पृष्ठ-1 एव पृष्ठ-2 पर वाछित विवरण एव उत्तर	
	Side_2 of the Answer Sheet Lise of nancil is		अंकित करने हेतु केवल नीले/काले बॉल पाइंट पेन का ही प्रयोग	0
	strictly prohibited.		करें। पेन्सिल का प्रयोग बिल्कुल वर्जित है।	
8.	No candidate is allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone any electronic device etc, except the Identity Card inside the examination hall/room.	8.	परीक्षार्थी द्वारा परीक्षा कक्ष / हॉल में परिचय पत्र के अलावा किसी भी प्रकार की पाठ्य सामग्री मुद्रित या हस्तलिखित कागज की पर्चियों, पेजर, मोबाइल फोन या किसी भी प्रकार के इलेक्ट्रानिक उपकरणों या किसी अन्य प्रकार की सामग्री को ले जाने या उपयोग करने की अनुमति नहीं हैं। यह कर्या प्रमिश्म प्रस्तिका में केवल निर्धायित ज्याद पर वी	
9.	for this purpose in the Test Booklet only.	9.	कोजिये।	
10	. On completion of the test, the candidate must hand over the Answer Sheet to the invigilator on duty in the Room/Hall. However, the candidate are allowed to take away this Test Booklet with them.	10	. परीक्षा समाप्त होने पर, परीक्षार्थी कक्ष/हॉल छोड़ने से पूर्व उत्तर पत्र कक्ष निरीक्षक को अवश्य सौंप दें। परीक्षार्थी अपने साथ इस परीक्षा पुस्तिका को ले जा सकते हैं।	
11.	Do not fold or make any stray marks on the Answer Sheet.	11	. उत्तर पत्र को न मोड़ें एवं न ही उस पर अन्य निशान लगाऐं।	
No ma	ote: In case of any correction in the test paper please ail to dlpcorrections@allen.ac.in within 2 days.	ने व	ट : यदि इस प्रश्न पत्र में कोई Correction हो तो कृपया 2 दिन हे अन्दर dlpcorrections@allen.ac.in पर mail करें।	
Do r	not open this Test Booklet until you are asked to do so	o/इर	स परीक्षा पुस्तिका को जब तक ना खोलें जब तक कहा न जाऐ।	i i
	V T	~		

Your Target is to secure Good Rank in JEE 2013

DO NOT BREAK THE SEALS WITHOUT BEING INSTRUCTED TO DO SO BY THE INVIGILATOR

MAJOR TEST 31-03-2013

HA	VE CONTROL \longrightarrow HAVE PATIENCE —	→ HA	WE CONFIDENCE \Rightarrow 100% SUCCESS					
	BEWARE OF NEGATIVE MARKING							
	PART A - MA	THE	MATICS					
1.	If z_1 , z_2 are non zero complex number and	1.	यदि z1, z2 दो अशून्य सम्मिश्र संख्या हो तथा					
	$ z_1 + z_2 = z_1 - z_2 $ then $\frac{z_1}{z_2}$ is :-		$ z_1 + z_2 = z_1 - z_2 $ हो, तो $\frac{Z_1}{Z_2}$ होगा :-					
	(1) purely positive real number		(1) विशुद्ध धनात्मक वास्तविक संख्या					
	(2) purely negative real number		(2) विशुद्ध ऋणात्मक वास्तविक संख्या					
	(3) purely imaginary number		(3) विशुद्ध काल्पनिक संख्या					
	(4) None		(4) इनमें से कोई नहीं					
2.	If z be complex number such that the equation	2.	यदि z एक सम्मिश्र सख्या हो तथा समीकरण					
	$ z-a^2 + z + 2a = 3$ always represents an ellipse		$ z-a^2 + z + 2a = 3$ एक दाघवृत्त का प्रदाशत कर ता					
	then range of a where $(a \in R)$ is :-		a का परास हागा जहा (a \in R) :-					
	(1) $(1, \sqrt{2})$ (2) $[1, \sqrt{3}]$		(1) $(1, \sqrt{2})$ (2) $[1, \sqrt{3}]$					
	(3) (-3, 1) (4) None		(3) (-3, 1) (4) कोई नहीं					
3.	Four married couples decide to form a committe	3.	चार विवाहित युगल, चार सदस्यों की एक समिति बनाने का					
	of four members. The number of different		निर्णय करते हैं तो उन समितियों की संख्या जिनमें कोई भी					
	committees that can be formed in which no couple		यगल को स्थान न मिले होगी					
	finds a places is :- (1) 10 (2) 12 (2) 14 (4) 16		$\frac{1}{2} (1) 10 \qquad (2) 12 \qquad (2) 14 \qquad (4) 16$					
4	(1) 10 (2) 12 (3) 14 (4) 10 Two friends A and B have equal number of	4	(1) 10 (2) 12 (3) 14 (4) 10					
	daughters. There are three cinema tickets which	4.	दा जापत A जार B की लड़ाकपा की संख्या समान है तया सिनेमा के 3 टिकटों को A व B की लडकियों में बांटना					
	are to be distributed among the daughters of		है सभी टिकटों के A की लड़कियों के पास जाने की पयिकता					
	A & B. The probability that all the tickets go to							
			<u>।</u> है तो उन प्रत्येक की लड़कियों की संख्या					
	daughters of A is $\frac{1}{20}$ then number of daughters		20					
	each of them are having:-		हागा :-					
	(1) 4 (2) 5 (3) 6 (4) 3		(1) 4 (2) 5 (3) 6 (4) 3					
	SDACE FOR R	OUCI	I WORK					

SPACE FOR ROUGH WORK

E/H

				MAJOR TEST				
Patte in Succe		HUSI	AST COURSE	31-03-2013				
5.	If α , β are two value of θ satisfying the sec ² θ + p tan θ + q = 1, then tan(α + β) is equal to :-	5.	यदि α , β θ के दो मान sec ² θ + p tan θ + q = 1 के tan(α + β) का मान है :-	हो जो समीकरण सन्तुष्ट करते है, तो				
	(1) $\frac{q}{p-1}$ (2) $\frac{p}{q+1}$ (3) $\frac{q}{p+1}$ (4) $\frac{p}{q-1}$		(1) $\frac{q}{p-1}$ (2) $\frac{p}{q+1}$ (3)	$\frac{q}{p+1} (4) \ \frac{p}{q-1}$				
6.	If S_1 , S_2 and S_3 denote the sum of first n_1 , n_2 and n_3 terms respectively of an AP, then	6.	यदि किसी समान्तर श्रेढ़ी के प्रथम $\mathbf{n}_{_{1}},$ क्रमश: $\mathbf{S}_{_{1}},\mathbf{S}_{_{2}}$ एवं $\mathbf{S}_{_{3}}$ हो तो	${\rm n_2}$ एवं ${\rm n_3}$ पदों के योग				
	$\frac{S_1}{n_1}(n_2 - n_3) + \frac{S_2}{n_2}(n_3 - n_1) + \frac{S_3}{n_3}(n_1 - n_2)$		$\frac{S_1}{n_1}(n_2 - n_3) + \frac{S_2}{n_2}(n_3 - n_1) + \frac{S_2}{n_2}(n_3 - n_1) + \frac{S_2}{n_1}(n_3 - n_1) + \frac{S_2}{n_2}(n_3 - n_1) + \frac{S_2}{n_1}(n_2 - n_3) + \frac{S_2}{n_2}(n_3 - n_1) + \frac{S_2}{n_1}(n_2 - n_2) + \frac{S_2}{n_2}(n_3 - n_1) + \frac{S_2}{n_2}(n_3 - n_1) + \frac{S_2}{n_1}(n_2 - n_2) + \frac{S_2}{n_1}(n_2 - n_2) + \frac{S_2}{n_1}(n_2 - n_2) + \frac{S_2}{n_2}(n_2 - n_2) + \frac{S_2}{n_2}(n_2 - n_2) + \frac{S_2}{n_1}(n_2 - n_2) + \frac{S_2}{n_2}(n_2 - n_2) + \frac{S_2}{n_1}(n_2 - n_2) + \frac{S_2}{n_2}(n_2 - n$	$\frac{3}{3}(n_1 - n_2)$				
	is equal to :- (1) 0 (2) 1 (3) $S S S S$ (4) n n n		बराबर है-					
7.	(1) 0 (2) 1 (3) $S_1 S_2 S_3$ (4) $\Pi_1 \Pi_2 \Pi_3$ The value of		(1) 0 (2) 1 (3) (3)	$S_1 S_2 S_3$ (4) $n_1 n_2 n_3$				
	$^{n-1}C_0 C_2 + ^{n-1}C_1 C_3 + ^{n-1}C_2 C_4 + \dots + ^{n-1}C_{n-2} C_n is:$	/.	\mathbb{C}_{0} \mathbb{C}_{2} +" \mathbb{C}_{1} \mathbb{C}_{3} +" \mathbb{C}_{2} \mathbb{C}_{4} +. होगा–	+" [.] C _{n-2} "C _n ବା मାମ				
	(1) ${}^{2n}C_{n-2}$ (2) ${}^{2n-1}C_{n}$		$(1)^{2n}$ C (2) ²	n-1 C				
	$(3)^{2n-1}C_{n-2} \qquad (3)^{2n-1}C_{n+3}$		$(1) \bigcirc_{n-2} \qquad (2)$ $(3) 2^{n-1} \qquad (3) $	ⁿ⁻¹ C				
8.	If the matrices, A, B,(A + B) are non-singular then $[A(A + B)^{-1}B]^{-1}$ is equal to :-	8.	(J) C _{n-2} (J) यदि मैट्रिक्स A, B, (A + B) [A(A + B) ⁻¹ B] ⁻¹ बराबर है-	व्युत्क्रमणीय हो तो				
	(1) $A + B$ (2) $A^{-1} + B^{-1}$		(1) $A + B$ (2) A	$A^{-1} + B^{-1}$				
9.	(3) $A(A + B)^{-1}$ (4) $B(A + B)^{-1}$ If $(x_1 - x_2)^2 + (y_1 - y_2)^2 = a^2$; $(x_2 - x_3)^2 + (y_2 - y_3)^2 = b^2$;	9.	(3) $A(A + B)^{-1}$ (4) 1 $aftarrow (x_1 - x_2)^2 + (y_1 - y_2)^2 = a^2; (x_2 - x_3)$	$B(A + B)^{-1}$ $(x_2 - y_3)^2 = b^2; (x_3 - b^2)^2 = b^2$				
	$(x_3 - x_1)^2 + (y_3 - y_1)^2 = c^2 \text{ and } \lambda \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}^2 =$		$(x_1)^2 + (y_3 - y_1)^2 = c^2 \pi$ सा	$\lambda \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}^2 =$				
	(a + b + c) (b + c - a) (c + a - b) (a + b - c) then		(a + b + c) (b + c - a) (c + a - b) (c +	- b) (a + b – c) तब				
	the value of λ is :-		λ का मान होगा:-					
	(1) 1 (2) 2 (3) 4 (4) 8		(1) 1 (2) 2 (3)	4 (4) 8				
	SPACE FOR ROUGH WORK							

E/H

SPACE FOR ROUGH WORK

MAJOR TEST

31-03-201

				MAJOR TEST
Path to Succ		IUSI	AST COURSE	31-03-2013
14.	The volume of the tetrahedron whose vertices are	14.	एक चतुष्फलक, जिसके शीर्ष बिन्दु	\hat{i} , \hat{i} + \hat{j} , \hat{i} + \hat{j} + \hat{k} व
	the points \hat{i} , $\hat{i} + \hat{j}$, $\hat{i} + \hat{j} + \hat{k}$ and $2\hat{i} + 3\hat{j} + \lambda\hat{k}$ is		$2\hat{i}+3\hat{j}+\lambda\hat{k}$ है, का आयतन 1/6 इ	काई है, तब λ का मान
	1/6 units. Then, the values of λ :-		होगा:-	
	(1) no value (2) is 7		(1) कोई मान नही (2) 7	7
	(3) is -1 (4) is any real value		(3) -1 (4) $\overline{\circ}$	कोई भी वास्तविक मान
15.	$\int \sin(\log x) dx =$	15.	$\int \sin(\log x) dx =$	
	(1) $x{sin(log x) + log(cosx)} + c$		(1) $x{sin(log x) + log(cosx)}$	+ c
	(2) $\frac{x}{2} \{ \cos(\log x) - \sin(\log x) \} + c$		(2) $\frac{x}{2}$ {cos(log x) - sin(log x)}	+ c
	(3) $\frac{x}{2} \{ \sin(\log x) - \cos(\log x) \} + c$		(3) $\frac{x}{2}$ {sin(log x) - cos(log x)}	+ c
	(4) None of these		(4) इनमें से कोई नहीं	
16.	Area bounded by the curves $x = -4y^2$ and	16.	वक्रों $x = -4y^2$ और $x = 1 - 5y^2$	से परिबद्ध क्षेत्रफल है
	$x = 1 - 5y^2$ is (1) 2/4 (2) 4/2		(1) 3/4 (2) 4	4/3
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(3) 4 (4) 3	3
17.	The differential equation $\frac{dy}{dx} = \frac{\sqrt{1-y^2}}{y}$	17.	अवकल समीकरण $\frac{dy}{dx} = \frac{\sqrt{1-y^2}}{y}$	जो वृत्तों के समूह से
	determine a family of circles with		ज्ञात किया जाता है, होगी	
	(1) variable radii and a fixed centre at $(0, 1)$		(1) चर त्रिज्या और (0, 1) पर मूल	केन्द्र
	(2) variable radii and a fixed centre at $(0, -1)$		(2) चर त्रिज्या और (0, -1) पर म	ल केन्द्र
	(3) fixed radius 1 and variable centres along the		(3) मल त्रिज्या 1 और v-अक्ष के र	पापेश्व चर केन्ट
	(4) fixed radius 1 and variable centres along the			
	y-axis		(4) मूल ।त्रज्या 1 आर y-अक्ष क र 	सापदा चर कन्द्र
	🙂 हमेशा मु	स्कराते	रहें।	

SPACE FOR ROUGH WORK

E/H

							MAJ	JOR TEST
Path in Suc	CAREER INSTITUTE		JEE-MA	IN 2	013		31-(03–2013
18.	The relation R	in R of real numb	ers; defined	18.	एक सम्बन्ध 🛛	१, वास्तविक सं	ख्याओं के समु	च्चय R में इस
	as $R = \{(a, b)\}$	$(a \le b^3)$; then	R is		प्रकार परिभाषि	त्रेत है R = {(a	$(a, b) : a \le b^3$	³ } तो R है।
	(1) Reflexive				(1) स्वतुल्य			
	(2) Symmetric				(2) सममित			
	(3) Transitive				(3) संक्रामक			
	(4) neither reflex	xive nor symmetric i	nor transitive		(4) न स्वतुल्य	म, न सममित त	ाथा न संक्रामक	<u>,</u>
19.	Total number	of solutions of the	ne equation	19.	समीकरण co	s x cos 2x	$\cos 3x = 1/4$	4 के अन्तराल
	$\cos x \cos 2x \cos to$	3x = 1/4 in interval [$[0, \pi]$ is equal		[0, π] के हल	गें की संख्या है	<u>6</u> -	
	(1) 4 (2)	6 (3) 8	(4) None		(1) 4	(2) 6	(3) 8	(4) कोई नहीं
20.	If A, B and C and	re the angle of plane	triangle and	20.	यदि A, B	तथा C किर्स	ो त्रिभुज के	कोण है तथा
	$\tan A/2 = 1/3$, ta	an $B/2 = 2/3$ then tan	C/2 is equal		$\tan A/2 = 1$	/3, tan B/2	= 2/3 तब tan	n C/2 का मान
	to :-				है-			
	(1) 7/9 (2)	2/9 (3) 1/3	(4) 2/3		(1) 7/9	(2) 2/9	(3) 1/3	(4) 2/3
21.	The graphs $y = 2x^3$	$x^{3}-4x+2$ and $y=x^{3}+2x^$	x-1 intersect	21.	वक्र $y = 2x^3$	- 4x + 2 ए	$\dot{a} y = x^3 + 2$	x – 1 ठीक 3
	in exactly 3 di	stinct points. The	slope of the		भिन्न बिन्दुओं प	गर प्रतिच्छेद करते	तें हों तो इनमें से वि	केन्हीं 2 बिन्दुओं
	line passing th	rough two of these	e points is :-		से जाने वाली	रेखा की प्रवण	ाता होगी : -	
	(1) 4	(2) 6			(1) 4		(2) 6	•
	(3) 8	$(4) \text{ Not } \mathbf{u}$	nique		(3) 8		(4) अद्वितीय	नही
22.	If $f(x) = x^3 + e^x$	f^{2} and $g(x) = f^{-1}(x)$ the	ien the value	22.	योद $f(x) = x$	³ + e ^{x/2} एव g($f(x) = f^{-1}(x)$ तो	í g'(1) का मान
	of $g'(1)$ is : -				हागा : -			
	(1) 1	(2) 2 (4) Data i	4 4		(1) 1		(2) 2	
	(3) 3	(4) Data 1	s not correct		(3) 3		(4) आकड ·	अपयाप्त
23.	$\lim_{x \to \infty} \frac{\cot^{-1}(\sqrt{x})}{\sec^{-1}\left\{\left(\frac{2}{x}\right)\right\}}$	$\frac{\overline{x+1} - \sqrt{x}}{2x+1}$ is equal $\frac{1}{x-1}$	to : -	23.	$\lim_{x\to\infty} \frac{\cot^{-1}}{\sec^{-1}}$	$\frac{(\sqrt{x+1} - \sqrt{x})}{\left\{\left(\frac{2x+1}{x-1}\right)^{x}\right\}}$	$\frac{\overline{x}}{1}$ is equal to	0:-
	(1) 1	(2) 0			(1) 1		(2) 0	
	(3) π/2	(4) Non e	xistent		(3) π/2		(4) विद्यमान	नहीं

SPACE FOR ROUGH WORK

27. Statement-1: If $A_r = \begin{bmatrix} r & r-1 \\ r-1 & r \end{bmatrix}$, where r is **27. कथन-1**: यदि $A_r = \begin{bmatrix} r & r-1 \\ r-1 & r \end{bmatrix}$, जहां r एक प्राकृत

28.

कथन-2, $\vec{c} + \lambda \vec{d}$ हो, तब थन-1 का कथन-2, अपनी क्षमता को पूरा वसूलने का प्रयास करें । SPACE FOR ROUGH WORK

a natural number, then
$$|A_1| + |A_2| + + |A_{2013}| =$$

(2013)².
Statement-2: If A is a matrix of order 3 and $|A|$
= 2 then $|Adj |A| = 2^2$.
(1) Statement-1 is true, Statement-2 is true;
Statement-1 is false, Statement-2 is true;
Statement-1 is true, Statement-2 is false.
(4) Statement-1 is true, Statement-2 is true;
Statement-1 is files $\vec{r} = \vec{a} + \lambda \vec{b}$ and $\vec{r} = \vec{c} + \lambda \vec{d}$
intersect then $\begin{bmatrix} \vec{a} - \vec{c} & \vec{b} & \vec{d} \end{bmatrix} = 0$
Statement-2: If vectors $\vec{A}, \vec{B}, \vec{C}$ are coplanar then
 $\begin{bmatrix} \vec{A} & \vec{B} & \vec{C} \end{bmatrix} = 0$
(1) Statement-1 is true, Statement-2 is true;
Statement-2 is not the correct explanation of
Statement-1.
(2) Statement-1 is true, Statement-2 is true;
Statement-1.
(3) Statement-1 is true, Statement-2 is true;
Statement-2: If vectors $\vec{A}, \vec{B}, \vec{C}$ are coplanar then
 $\begin{bmatrix} \vec{A} & \vec{B} & \vec{C} \end{bmatrix} = 0$
(1) Statement-1 is true, Statement-2 is true;
Statement-1.
(2) Statement-1 is false, Statement-2 is true;
Statement-2 is not the correct explanation
of Statement-1.
(2) Statement-1 is true, Statement-2 is true;
Statement-1 is tru

E / H

29. Statement-1 : Let $F(x) = \int_{x^2}^{x^3} \log_e t \, dt \, (x > 0)$ then $F'(x) = (9x^2 - 4x) \log_e x$

Statement-2 : If $F(x) = \int_{u(x)}^{v(x)} g(t) dt$, then

 $F'(x) = g(\upsilon(x)).\upsilon'(x) - g(u(x)).u'(x)$

- Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1
- (2) Statement-1 is false, Statement-2 is true
- (3) Statement-1 is true, Statement-2 is false
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation of Statement-1
- 30. Let $g : R \to R$ defined by $g(x) = \{e^x\}$. where $\{x\}$ denotes functional part function : -

Statement–1: g(x) is periodic function

Statement-2: {x} is periodic function

- (1) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1.
- (2) Statement–1 is false, Statement–2 is true.
- (3) Statement–1 is true, Statement–2 is false.
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation of Statement-1.

29. कथन-1 : माना $F(x) = \int_{x^2}^{x^3} \log_e t \, dt \, (x > 0)$ तब

 $F'(x) = (9x^2 - 4x) \log_e x$

कथन-2 : यदि $F(x) = \int_{u(x)}^{v(x)} g(t) dt$, तब

 $F'(x) = g(\upsilon(x)).\upsilon'(x) - g(u(x)).u'(x)$

- (1) कथन-1 सही है और कथन-2 सही है।कथन-2, कथन-1 का सही स्पष्टीकरण नहीं है।
- (2) कथन-1 गलत है और कथन-2 सही है।
- (3) कथन-1 सही और कथन-2 गलत है।
- (4) कथन-1 सही है और कथन-2 सही है। कथन-2, कथन-1 का सही स्पष्टीकरण है।
- **30.** माना $g : R \to R$ व $g(x) = \{e^x\}$ जहाँ $\{x\}$ दशमलवांश भाग को प्रदर्शित करता है : -
 - कथन-1: g(x) एक आवर्ती फलन है।
 - कथन-2: {x} एक आवर्ती फलन है।
 - (1) कथन-1 सही है और कथन-2 सही है।कथन-2, कथन-1 का सही स्पष्टीकरण नहीं है।
 - (2) कथन-1 गलत है और कथन-2 सही है।
 - (3) कथन-1 सही और कथन-2 गलत है।
 - (4) कथन-1 सही है और कथन-2 सही है। कथन-2, कथन-1 का सही स्पष्टीकरण है।

SPACE FOR ROUGH WORK

PART B - PHYSICS

31. Pressure versus temperature graphs of an ideal gas are as shown in figure. Choose the wrong statement:-

- (1) Density of gas is increasing in graph (i)
- (2) Density of gas is decreasing in graph (ii)
- (3) Density of gas is constant in graph (iii)
- (4) None of these
- **32.** If pressure of CO_2 (real gas) in a container is

a given by P =
$$\frac{RT}{2V-b} - \frac{a}{4V^2}$$
 then mass of the

gas in container is :-

- (1) 11 g (2) 22 g (3) 33 g (4) 44 g
- **33.** One mole of a monoatomic ideal gas is mixed with one mole of diatomic ideal gas. The molar specific
 - heat of the mixture at constant volume is :-
 - (1) 8 (2) 3/2 R (3) 2R (4) 2.5 R
- 34. How many times a diatomic gas should be expanded adiabaticallyso as to reduce the root mean square velocity to half :(1) 64 (2) 32 (3) 16 (4) 8

 एक आदर्श गैस के लिए दाब-ताप ग्राफों को चित्र में दिखाया गया है :-

गलत कथन चुनें

- (1) ग्राफ (i) में गैस का घनत्व बढ़ रहा है
- (2) ग्राफ (ii) में गैस का घनत्व घट रहा है
- (3) ग्राफ (iii) में गैस का घनत्व नियत है
- (4) इनमें से कोई नहीं
- 32. एक पात्र में भरी CO_2 (वास्तविक गैस) का दाब सूत्र

$$P = \frac{RT}{2V - b} - \frac{a}{4V^2}$$
 द्वारा दिया जाता है। तब पात्र में गैस का

- (3) 33 g (4) 44 g
- 33. एकपरमाणुक आदर्श गैस का एक मोल द्विपरमाणुक आदर्श गैस के एक मोल के साथ मिलाया जाता है। इस मिश्रण की अचर आयतन पर मोलर विशिष्ट ऊष्मा है :-
 - (1) 8 (2) 3/2 R
 - (3) 2R (4) 2.5 R
- 34. एक द्विपरमाण्विक गैस में रूद्धोष्म विधि से कितने गुना प्रसार करें कि उसकी वर्ग माध्यमूल चाल आधी हो जाए :-
 - (1) 64 (2) 32 (3) 16 (4) 8

SPACE FOR ROUGH WORK

Your Target is to secure Good Rank in JEE–MAIN 2013

E / H

LEADER & ENTHUSIAST COURSE

- 35. A cannon fires a shell from one foot of hill at $\frac{\pi}{5}$ radian, to hit other foot of hill. But it just strike top of hill. At what angle it should fire shell to successfully hit other foot of hill :-
 - (1) $\frac{3\pi}{10}$ (2) $\frac{7\pi}{6}$ (3) $\frac{2\pi}{3}$ (4) $\frac{\pi}{4}$
- **36.** A particle travel under constant angular acceleration on circle of radius r. Which of the following equation with usual notations is invalid for given condition :
 - (1) $\vec{\theta} = \vec{\omega}_1 t + \frac{1}{2}\vec{\alpha}t^2$ (2) $\vec{\omega}_2 = \vec{\omega}_1 + \vec{\alpha}t$
 - (3) $|\vec{v}|^2 |\vec{u}|^2 = 2|\vec{a}_t|r\theta$ (4) None of above
- **37.** Position- time curves for two students A and B is shown for their walk between school and their houses on same straight road. Find correct sentences :-

- (a) Both leave school at same time
- (b) A reach house late
- (c) B travel longer distance
- (d) B haults at a shop for purchasing
- (1) a, b, d (2) b, c, d
- (3) a, c, d (4) a, b, c

- **35.** एक तोप से किसी पहाड़ी के एक पाद से $\frac{\pi}{5}$ radian पर गोला दागा गया कि यह पहाड़ी के दूसरे पाद पर गिर सके। किन्तु यह ठीक पहाड़ी के शीर्ष पर टकराया। किस कोण पर गोला दागा जाए की सफलता पूर्वक गोला दूसरे पाद पर टकराए:-
 - (1) $\frac{3\pi}{10}$ (2) $\frac{7\pi}{6}$ (3) $\frac{2\pi}{3}$ (4) $\frac{\pi}{4}$
- 36. एक कण की नियत कोणीय त्वरण के अन्तर्गत r त्रिज्या के वृत्तीय पथ पर गतिमान है। निम्न में से कौनसा समीकरण सामान्य संकेतों के साथ दी गई परिस्थिति में लागू नहीं होता-

(1)
$$\vec{\theta} = \vec{\omega}_1 t + \frac{1}{2}\vec{\alpha}t^2$$
 (2) $\vec{\omega}_2 = \vec{\omega}_1 + \vec{\alpha}t$

(3) $|\vec{v}|^2 - |\vec{u}|^2 = 2|\vec{a}_t|r\theta$ (4) उपरोक्त में कोई नहीं

37. दो विद्यार्थियों A तथा B के एक सरल रेखीय मार्ग पर स्कूल से घर के मार्ग पर स्कूल से घर पहुँचने का स्थिति-समय आरेख प्रदर्शित है। सही कथन ज्ञात करें :-

SPACE FOR ROUGH WORK

MAJOR TEST

31-03-2013

(1) 2V

JEE-MAIN 2013

MAJOR TEST 31-03-2013

Three particles A, B & C of equal mass move 38. with speed V as shown to strike at centroid of equilateral triangle after collision. A comes to rest & B retraces its path with speed V. speed of C after collision is :-

(2) V (3) V/3

(4) None

- 39. A block is attached to a spring as shown and very-very gradually lowered so that finally spring expands by "d". If same block is attached to spring & released suddenly then maximum expansion in spring will be :-(2) 2d (3) 3d (1) d (4) 4d
- **40.** An inclined plane makes an angle of 30° with the horizontal. A solid sphere rolling down this inclined plane from rest without slipping has a linear acceleration equal to :-

(4) $\frac{5g}{14}$

(2) $\frac{2g}{3}$ (1) $\frac{g}{3}$

(3)
$$\frac{5g}{7}$$

समबाह त्रिभुज पर चित्रानुसार तीन कण A, B तथा C समान 38. द्रव्यमान के चाल V से गतिमान है, जो केन्द्रक पर टकराते है। टक्कर के पश्चात A रूक जाता है व B उसी मार्ग पर लौटता है V चाल से तो C की टक्कर के पश्चात चाल क्या होगी :-

(4)कोई नहीं (1) 2V(2) V (3) V/3 एक गट्टे को चित्र में प्रदर्शित स्प्रिंग से जोडकर 39. अत्यंत धीरे-धीरे नीचे आने दिया गया। अंतत: स्प्रिंग में "d" प्रसार प्राप्त हआ। यदि उसी गट्टे को स्प्रिंग से जोडकर अचानक छोड दिया जाए तो स्प्रिंग में अधिकतम प्रसार होगा :-

<u>.....</u>

(1) d (2) 2d(3) 3d (4) 4d एक नत तल क्षैतिज से 30° का कोण बनाता है। इस पर एक 40. ठोस गोला विरामावस्था से बिना फिसले लुढ्कना प्रारम्भ करता है, तो इसका रेखीय त्वरण होगा :-

(1) $\frac{g}{3}$	(2) $\frac{2g}{3}$
(3) $\frac{5g}{7}$	(4) $\frac{5g}{14}$

(4) $\frac{5g}{14}$

SPACE FOR ROUGH WORK

प्रत्येक प्रश्न को अर्जुन बनकर करो।

41. Periodic time of a satellite revolving above Earth's surface at a height equal to R, [R-Radius of Earth, g-acceleration due to gravity at Earth's surface] :-

(1)
$$2\pi\sqrt{\frac{2R}{g}}$$
 (2) $4\sqrt{2}\pi\sqrt{\frac{R}{g}}$
(3) $2\pi\sqrt{\frac{R}{g}}$ (4) $8\pi\sqrt{\frac{R}{g}}$

- **42.** A cylindrical vessel of 90 cm height is kept filled upto the brim. It has four holes 1, 2, 3, 4 which are respectively at heights of 20 cm, 30 cm, 45 cm and 50 cm from the horizontal floor PQ. The water falling at the maximum horizontal distance from the vessel comes from : -
 - (1) Hole number 4
 - (2) Hole number 3
 - (3) Hole number 2
 - (4) Hole number 1 P
- 43. Two soap bubbles of radii r_1 and r_2 equal to 4 cm and 5 cm respectively are in contact with each other externally. Then the radius of curvature of a common surface S_1S_2 (shown in figure). Will be : -

4cm

- (1) 4 cm
- (2) 20 cm
- (3) 5 cm
- (4) 4.5 cm

 पृथ्वी कि सतह से R ऊँचाई पर घूम रहे उपग्रह का परिक्रमण काल है,

(R-पृथ्वी को त्रिज्या g-पृथ्वी तल पर गुरूत्वजनित त्वरण है)

(1)
$$2\pi\sqrt{\frac{2R}{g}}$$
 (2) $4\sqrt{2}\pi\sqrt{\frac{R}{g}}$
(3) $2\pi\sqrt{\frac{R}{g}}$ (4) $8\pi\sqrt{\frac{R}{g}}$

42. 90 cm ऊँचा बेलनाकार पात्र ऊपर तक भरा है। इसकी दीवार पर चार छिद्र 1, 2, 3, 4 क्षैतिज तल PQ से क्रमश: 20 cm, 30 cm, 45 cm व 50 cm ऊँचाई पर है, किस छिद्र से निकली धारा का क्षैतिज परास अधिकतम होगा : -

- 43. साबुन के दो बुलबुले, जिनकी त्रिज्यायें r₁ व r₂ क्रमश: 4 cm व 5 cm हैं, उभयनिष्ठ पृष्ठ S₁S₂ पर एक-दूसरे बाहरी सम्पर्क में हैं (चित्रानुसार) इनकी उभयनिष्ट सतह कि वक्रता त्रिज्या होगी : -
 - (1) 4 cm
 (2) 20 cm
 (3) 5 cm
 (4) 4.5 cm

SPACE FOR ROUGH WORK

5cm

- **44.** A particle executes S.H.M. with a period of 6 second and amplitude of 3 cm. Its maximum speed in cm/s is : -
 - (1) $\pi/2$ (2) π
 - (3) 2π (4) 3π
- 45. An infinite ladder network of resistance is constructed with 1Ω and 2Ω resistances then what is the current that passes through the resistance 2Ω connected between A and B.

- (1) 1A (2) 1.5 A
- (3) 2 A (4) 3A
- 46. In the circuit below, each battery is of 5V and has an internal resistance of 0.2Ω , then reading in the ideal voltmeter V is :-

(1) 0 V (2) 12 V (3) 13.4 V (4) 15 V

- 44. सरल आवर्त गति करते कण का आवर्तकाल 6 सैकण्ड तथा
 आयाम 3 सेमी है। इसका अधिकतम वेग सेमी/सैकण्ड में होगा-
 - (1) $\pi/2$ (2) π
 - (3) 2π (4) 3π
- 45. एक अनंत प्रतिरोधों का नेटवर्क चित्रानुसार 1Ω व 2Ω प्रतिरोधों से बना है तो A व B के मध्य लगे प्रतिरोध 2Ω से प्रवाहित धारा होगी।

(1) 1A

46. नीचे दिये गये परिपथ में प्रत्येक बैटरी 5V तथा आंतरिक प्रतिरोध 0.2Ω की है, तो आदर्श वोल्टमीटर V का पाठ्यांक है :-

(2) 1.5 A

(1) 0 V (2) 12 V (3) 13.4 V (4) 15 V

SPACE FOR ROUGH WORK

14 / 28

LEADER & ENTHUSIAST COURSE

47. Consider a system of six charges q, -q, q, -q, q, -q, q, -q are placed at points A, B, C, D, E and F in given order as shown in figure then which statement is wrong :-

- (1) Force on the charge q_0 placed at the centre O is towards the point B.
- (2) Potential energy of the charge q_0 at the centre O is zero
- (3) Potential at the center O is zero
- (4) None of the above
- **48.** In the given dig. Find work done by the electric field in moving a point charge q a distance r(r < d) from large metallic A to B

making an angle
$$\frac{\pi}{4}$$
 from x-direction :-

$$A \xleftarrow{d} B \xrightarrow{y} x$$

$$\downarrow^{+2\sigma} \qquad \downarrow^{+\sigma} \qquad \downarrow^{+\sigma} \qquad \downarrow^{+\sigma} \qquad \downarrow^{+\sigma} \qquad \downarrow^{+2\sigma} \qquad \downarrow^{+\sigma} \qquad$$

47. चित्रानुसार छह आवेश q, -q, q, -q, q, -q बिन्दुओं A, B, C, D, E व F पर क्रमानुसार रखे जाते हैं तो निम्न में से कौनसा कथन असत्य है :-

- (1) केन्द्र O पर रखे आवेश ${f q}_0$ पर बल की दिशा बिन्दु B की ओर होगी।
- (2) केन्द्र O पर रखे आवेश ${f q}_0$ की स्थितिज ऊर्जा शून्य होगी।
- (3) केन्द्र O पर वैद्युत विभव शून्य होगा।
- (4) उपरोक्त में से कोई नहीं

A से B तक x-दिशा से $\frac{\pi}{4}$ कोण बनाते हुए r(r < d) दुरी तक ले जाने में विद्युत क्षेत्र द्वारा किया गया कार्य होगा :-

SPACE FOR ROUGH WORK

E / H

MAJOR TEST 31-03-2013

MAJOR TEST

31-03-2013

49. The resistance per unit length of the wire is λ, and magnetic field is increasing at constant rate K. What is value of induced in smaller loop

50. Infinite number of straight wires each carrying current I are equally placed as shown in the figure. Adjacent wires have current in opposite direction. Net magnetic field at point P is

49. तार का एकांक लम्बाई का प्रतिरोध λ है तथा चुम्बकीय क्षेत्र एक नियत दर K से बढ़ रहा है। छोटे लूप में प्रेरित धारा होगी :-

50. प्रत्येक I धारा ले जा रहे अन्नत संख्या वाले सीधे तारों को चित्रानुसार समान रूप से रखा गया है। संलग्न तारों में धारा की दिशा विपरीत है। बिन्दु P पर कुल चुम्बकीय क्षेत्र होगा-

SPACE FOR ROUGH WORK

31-03-2013

51. A ray of light is incident on thin film of thickness t and refractive index n_2 . Two of the reflected rays are shown and two of the transmitted rays are shown in the figure

Assume that rays p and q undergo a phase change because of difference in refractive index. Which of these is correct

(1)
$$n_3 > n_2 > n_1$$
 (2) $n_1 > n_2 > n_3$
(3) $n_2 > n_3 > n_1$ (4) $n_3 > n_1 > n_2$

52. If n₁ = 1 for constructive interference of reflected rays p and q (λ = wavelength of incident rays both p and q undergo phase change because of difference in refractive indecxs) [where n = 0,1,2...] :- (1) 2n₂ t cos r = n λ

(2)
$$2n_2 t \cos r = (2n - 1) \frac{\lambda}{2}$$

(3) $n_2 t \cos r = n\lambda$

(4)
$$n_2 t \cos r = (2n - 1) \frac{\lambda}{2}$$

 51. t मोटाई तथा n₂ अपवर्तनांक की पतली फिल्म पर एक प्रकाश किरण आपतित होती है। दो परावर्तित किरणे चित्र में दर्शाई गई है तथा दो पारगमित किरणे भी प्रदर्शित है :-

माना कि किरण p तथा q की कला परिवर्तित होती है क्योंकि अपवर्तनांक के मान में अंतर है तो निम्न में से कौनसा विकल्प सही है

(1)
$$n_3 > n_2 > n_1$$
 (2) $n_1 > n_2 > n_3$
(3) $n_2 > n_3 > n_1$ (4) $n_3 > n_1 > n_2$

52. z = 1 ch v z =

(2)
$$2n_2 t \cos r = (2n - 1) \frac{\lambda}{2}$$

(3) $n_2 t \cos r = n\lambda$

(4)
$$n_2 t \cos r = (2n - 1) \frac{\lambda}{2}$$

SPACE FOR ROUGH WORK

Path is Suit	CAREER INSTITUTE KOTA (RAJASTHAN)		JEE-MA	IN 2	2013		31-03-20	013
53.	Considering constructive r and s :-	assumption interference	n problem 51, for of transmitted rays	53.	प्रश्न 51 में दी गई परिक r तथा s के संपोषी व्यति	ल्पना को मान् ाकरण के लि		किरणे
	(1) $2n_2 t \cos t$	$r = n\lambda$ (2) 2n	h_2 t cos r = $(2n-1)\frac{\lambda}{2}$		(1) $2n_2 t \cos r = n\lambda$	(2) 2n ₂	t cos r = $(2n-$	$-1)\frac{\lambda}{2}$
	(3) $n_2 t \cos r$	$= n\lambda$ (4) n_2	$tcosr = (2n - 1) \frac{\lambda}{2}$		(3) $n_2 t \cos r = n\lambda$	(4) n ₂ tc	osr = (2n - 1)	1) $\frac{\lambda}{2}$
54.	Light of way surface of a with maximu wavelength energy of ph function of t (1) 1.4 eV (3) 3.1 eV	velength 1824 metal, produc um energy 5.3 1216 Å is us otoelectrons is he metal surfa (2 (4	Å, incident on the ces photo-electrons eV. When light of sed, the maximum s 8.7 eV. The work ace is :-) 4.9 eV) 1.6 eV	54.	किसी धात्विक पृष्ठ पर 1 होता है, और 5.3 eV अधि होते हैं। यदि 1216 Å त जाये तो उत्सर्जित इलेक 8.7 eV है। धात्विक पृ (1) 1.4 eV (3) 3.1 eV	824 Å तरंगं कतम ऊर्जा वे रंगदैर्ध्य का प् ट्रॉनों की अ ष्ठ का कार्य (2) 4 (4) 1	दैर्ध्य का प्रकाश अ हे प्रकाश इलेक्ट्रॉन प्रकाश उपयोग में धिकतम गजित फलन होगा :- 4.9 eV 1.6 eV	भपतित उत्पन्न ं लाया ऊर्जा
55.	A radioactive through a pro- 10^9 years. The to U^{238} after $2^{1/3} = 1.26$) (1) 0.12 (1)	ve sample of ocess for which he ratio of num a time of 1.5 (2) 0.26 (3)	U^{238} dacays to Pb ch half life is 4.5 × ober of nuclei of Pb × 10 ⁹ years (given) 1.2 (4) 0.37	55.	U ²³⁸ का एक रेडियोसड़ि विघटित हो जाता है, 4.5 × 10 ⁹ वर्ष बाद Pt नाभिकों की संख्या का 3 (1) 0.12 (2) 0.2	कय नमूना ए इस प्रक्रिया जनाभियों व ननुपात होगा (२६ (३)	क प्रक्रिया द्वारा के लिए अर्द्ध जी संख्या एवं U (दिया है2 ^{1/3} = 1.2 (4) (Pb में -आयु ^{[238} के 1.26) 0.37
56.	The truth-tab (Where A & A 0 0 B 0 1 C 1 1	ble given belov B are input a 1 1 0 1 1 0	w is for which gate and C is output)	56.	नीचे दी गई सत्य सारणी (जहाँ A व B निवेशी हैं A 0 0 1 1 B 0 1 0 1 C 1 1 1 0	किस गेट व तथा C निग)	हे लिये है ति है)	
	 (1) NOR (3) AND 	(2 (4) OR) NAND		(1) NOR(3) AND	(2) ((4)]	OR NAND	

17 / 28

MAJOR TEST

- **57.** In case of NPN-transistors the collector current is always less than the emitter current because
 - (1) Collector side is reverse biased and emitter side is forward biased
 - (2) After electrons are lost in the base, only remaining ones reach the collector
 - (3) Collector side is forward biased and emitter side is reverse biased
 - (4) Collector being reverse biased attracts less electrons
- **58.** Statement-1 : We can not change the temperature of a body without giving (or taking) heat to (or from) it

Statement-2 : According to principle of conservation of energy, total energy of a system should remain conserved.

- (1) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1.
- (2) Statement-1 is false, Statement-2 is true.
- (3) Statement-1 is true, Statement-2 is false.
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation of Statement-1.

- 57. NPN-ट्रान्जिस्टर के लिये संग्राहक धारा का मान हमेशा उर्त्सजक धारा से कम होता है, क्योंकि
 - (1) संग्राहक भाग पश्च अभिनित में एवं उत्सर्जक भाग अग्र अभिनति में होता है
 - (2) आधार भाग में इलेक्ट्रॉनों के खत्म होने के बाद शेष भाग संग्राहक क्षेत्र में पहुँचता है
 - (3) संग्राहक भाग अग्र अभिनति में एवं उत्सर्जक भाग पश्च अभिनति में होता है
 - (4) संग्राहक पश्च अभिनति में होने के कारण कम इलेक्टॉनों को आकर्षित करता है
- 58. कथन-1: किसी वस्तु को या वस्तु से ऊष्मा के आदान प्रदान के बगैर उसका ताप परिवर्तित नहीं कर सकते हैं ।

कथन-2 : ऊर्जा संरक्षण के सिद्धांत से एक निकाय की कुल ऊर्जा संरक्षित रहती है।

- (1) कथन-1 सही है और कथन-2 सही है।कथन-2, कथन-1
 का सही स्पष्टीकरण नहीं है।
- (2) कथन-1 गलत है और कथन-2 सही है।
- (3) कथन-1 सही और कथन-2 गलत है।
- (4) कथन-1 सही है और कथन-2 सही है। कथन-2,
 कथन-1 का सही स्पष्टीकरण है।

Use stop, look and go method in reading the question

SPACE FOR ROUGH WORK

59. Statement-1 : If thread B is pulled by sudden jerk it will break and mass M will remain suspended by A

Statement-2: Insufficient time is given so inertia of rest of mass M can not be overcome

- (1) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1.
- (2) Statement-1 is false, Statement-2 is true.
- (3) Statement-1 is true, Statement-2 is false.
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation of Statement-1.
- 60. Statement-1 : Two long neutral hollow conducting cylinder's are kept coaxially and charge density is given to inner cylinder then potential difference appears between cylinder. Statement-2 : Potential on inner cylinder will only be due to inner cylinder.
 - (1) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1.
 - (2) Statement-1 is false, Statement-2 is true.
 - (3) Statement-1 is true, Statement-2 is false.
 - (4) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation of Statement-1.

59. कथन–1 : यदि डोरी B झटके से खींची जाए तो टूट जाएगी और द्रव्यमान M, धागे A से लटका रह जाएगा।

A M B

कथन–2 : अपर्याप्त समय दिया जा रहा है अत: द्रव्यमान M के स्थिरता का जड़त्व समाप्त नहीं किया जा सकेगा।

- (1) कथन-1 सही है और कथन-2 सही है।कथन-2, कथन-1 का सही स्पष्टीकरण नहीं है।
- (2) कथन-1 गलत है और कथन-2 सही है।
- (3) कथन-1 सही और कथन-2 गलत है।
- (4) कथन-1 सही है और कथन-2 सही है। कथन-2, कथन-1 का सही स्पष्टीकरण है।
- 60. कथन–1: दो लम्बे उदासीन खोखले बेलन समाक्षीय रखे जाते है तथा आंतरिक बेलन को आवेश घनत्व प्रदान किया जाता है तो बेलनों के मध्य विभवान्तर उत्पन्न होगा।
 कथन–2: आंतरिक बेलन पर विभव सिर्फ आंतरिक बेलन के कारण होगा।
 - (1) कथन-1 सही है और कथन-2 सही है।कथन-2, कथन-1 का
 सही स्पष्टीकरण नहीं है।
 - (2) कथन-1 गलत है और कथन-2 सही है।
 - (3) कथन-1 सही और कथन-2 गलत है।
 - (4) कथन-1 सही है और कथन-2 सही है। कथन-2,
 कथन-1 का सही स्पष्टीकरण है।

SPACE FOR ROUGH WORK

31-03-2013

PART C - CHEMISTRY

61. An electron is not allowed in that orbit for which the angular momentum is equal to :-

(1)
$$\frac{h}{\pi}$$
 (2) $1.5\frac{h}{\pi}$ (3) $1.7\frac{h}{\pi}$ (4) $2.5\frac{h}{\pi}$

62. Calculate emf of the cell in which the following reaction takes place :-

Ni_(s) + 2Ag⁺(0.002 M)→Ni⁺²(0.16 M)+2Ag(s) Given : $E_{cell}^{\circ} = 1.05$ V (1) 1.05 V (2) 0.912 V

- (3) 1.19 V (4) 2.05 V
- **63.** The resistance of 0.1 N solution of formic acid is 200 ohm and cell constant is 2.0 cm⁻¹. The equivalent conductivity (in S cm² eq⁻¹) of 0.1N formic acid is :-
 - (1) 100 (2) 10
 - (3) 1 (4) None of these
- 64. For the reaction : $4KClO_3 \longrightarrow 3KClO_4 + KCl$

If
$$\frac{-d[KClO_3]}{dt} = K_1[KClO_3]^4$$
$$\frac{d[KClO_4]}{dt} = K_2[KClO_3]^4$$
$$\frac{d[KCl]}{dt} = K_3[KClO_3]^4$$

then correct relations among K_1 , K_2 and K_3 are (1) $K_1 = K_2 = K_3$ (2) $4K_1 = 3K_2 = K_3$ (3) $3K_1 = 4K_2 = 12K_3$ (4) none 61. निम्न में वह कोणीय संवेग कौनसा है जिसके लिये इलेक्ट्रॉन उस कक्षा (orbit) में उपस्थित नहीं रह सकता :-

(1)
$$\frac{h}{\pi}$$
 (2) $1.5\frac{h}{\pi}$ (3) $1.7\frac{h}{\pi}$ (4) $2.5\frac{h}{\pi}$

- 62. निम्न सेल अभिक्रिया के विद्युत वाहक बल (E_{cell}) का मान ज्ञात कीजिये :-Ni_(s) + 2Ag⁺(0.002 M)→Ni⁺²(0.16 M)+2Ag(s) दिया है : E_{cell}° = 1.05 V (1) 1.05 V (2) 0.912 V
 - (3) 1.19 V (4) 2.05 V
- 63. 0.1 N फार्मिक अम्ल (HCOOH) विलयन का प्रतिरोध 200 ओम है एवं सेल नियतांक 2.0 cm⁻¹ है। तो 0.1 N फार्मिक अम्ल की तुल्यांक चालकता (S cm² eq⁻¹) है :- (1) 100 (2) 10
 - (3) 1 (4) None of these
- **64.** अभिक्रिया : 4KClO $_3$ \longrightarrow 3KClO $_4$ + KCl के लिए

यदि
$$\frac{-d[KClO_3]}{dt} = K_1[KClO_3]^4$$
$$\frac{d[KClO_4]}{dt} = K_2[KClO_3]^4$$
$$\frac{d[KCl]}{dt} = K_3[KClO_3]^4$$

तो $\mathbf{K}_{_1}, \, \mathbf{K}_{_2}$ व $\mathbf{K}_{_3}$ में सही सम्बन्ध होगा :

(1) $K_1 = K_2 = K_3$ (2) $4K_1 = 3K_2 = K_3$ (3) $3K_1 = 4K_2 = 12K_3$ (4) कोई नहीं

SPACE FOR ROUGH WORK

Path is Succ		JEE-MA	AIN 2013 31-03-2013			
65.	The pressure three gases N	of an equilibrium mixture of the IO, Cl_2 and NOCl,	65.	तीन गैसों NO, Cl2 व NOCl के न	साम्य मिश्रण का दाब,	
	2NO(g) +	$\operatorname{Cl}_2(g) \Longrightarrow 2\operatorname{NOCl}(g)$		$2NO(g) + Cl_2(g) \Longrightarrow 2$	2NOCl(g)	
	is suddenly de	ecreased by doubling the volume of		नियत ताप पर पात्र के आयतन को दु	गुना करने पर अचानक	
	the container system return	at constant temperature. When the s to equilibrium :		कम हो जाता है। जब तंत्र साम्य तव	फ पुन : आता है :	
	(1) the concen	tration of NOCl will have increased		(1) NOCl की सान्द्रता बढ़ेगी		
	(2) the value of have increased	of the equilibrium constant K_{c} will eased		(2) साम्य नियतांक K ूका मान बढ़ेगा।		
	(3) the number	er of moles Cl_2 will have increased		(3) $\operatorname{Cl}_{_2}$ के मोलों की संख्या बढ़ेगी		
	(4) the number of moles of NOCl will have increased			(4) NOCl के मोलों की संख्या बढ़ेगी		
66.	When equal v	rolumes of following solutions are	66.	निम्न में से किन विलयनों के समा	न आयतन मिलाने पर	
	mixed, the pre	ecipitation of		$CaSO_4(K_{sp} = 2 \times 10^{-12})$ का अव	क्षेप प्राप्त होगा :	
	$CaSO_4 (K_{sp} = 2)$	2×10^{-12}) will occur with :		(1) 10 ⁻⁵ M Ca ⁺² तथा 10 ⁻⁵ M S	O_4^{-2}	
	(1) $10^{-6} \text{ M Ca}^{-6}$	f^{2} and 10 ⁻⁸ M SO ₄ ⁻²		(2) 10 ⁻⁶ M Ca ⁺² तथा 10 ⁻⁸ M S	O_{4}^{-2}	
	(2) $10^{-6} \text{ M Ca}^{-6}$	$^{+2}$ and 10 ⁻⁶ M SO ₄		(3) 10^{-6} M Ca ⁺² तथा 10^{-6} M SO ₄ ⁻²		
	(4) 10^{-5} M Ca	$^{+2}$ and 10^{-8} M SO ₄ ⁻²		(4) 10 ⁻⁵ M Ca ⁺² तथा 10 ⁻⁸ M S	D_{4}^{-2}	
67.	In a binary so	lution, the degree of dissociation ()	67.	एक द्विअंगी विलयन में, एक दुर्बल	वैद्युत अपघटय $A_x B_y$	
	of a weak elec	trolyte $A_x B_y$ is related to van't Hoff		के वियोजन की मात्रा () तथा वॉण्ट ह	ॉफ कारक (i) के मध्य	
	factor (i) by t	he expression :		सम्बंध निम्न व्यंजक द्वारा दिया जाता	है :	
	(1) $\alpha = \frac{(i-1)^2}{(x+y)^2}$	1) +1) (2) $\alpha = \frac{(x+y-1)}{(i-1)}$		(1) $\alpha = \frac{(i-1)}{(x+y+1)}$ (2)	$\alpha = \frac{(x+y-1)}{(i-1)}$	
	$(3) \ \alpha = \frac{i-1}{x+y}$	(4) $\alpha = \frac{x+y+1}{(i-1)}$		(3) $\alpha = \frac{i-1}{x+y-1}$ (4)	$\alpha = \frac{x + y + 1}{(i - 1)}$	
		(Take it Easy an	d Mal	ke it Easy)		

MAJOR TEST

Path in Succ	CAREER INSTITUTE	LEADER & ENTH	IUSI	AST COURSE	31-03-2013
68.	CsBr has bcc type stru 4.3 pm the shortest i between Cs^+ and Br^- is (1) 3.72 pm	cture with edge length nter ionic distance is ::- (2) 1 86 pm	68.	CsBr की संरचना bcc प्रकार क 4.3 pm है। Cs ⁺ तथा Br ⁻ के दूरी है :- (1) 3 72 pm	ो संरचना है जिसकी छोर लम्बाई मध्य न्यूनतम अन्त: आयनिक (2) 1 86 pm
69.	(1) 3.72 pm (3) 7.44 pm 500 ml of H_2 at 4 atm 10 atm were mixed in a 1 total pressure :- (1) 2.5 atm (3) 7.5 atm	(4) 4.3 pm (4) 4.3 pm and 300 mL of O_2 at Lt. vessel then find out (2) 5 atm (4) 10 atm	69.	 (1) 3.72 pm (3) 7.44 pm 4 atm दाब तथा 500 mL 10 atm दाब तथा 300 mL 1 लीटर के पात्र में मिलाया 5 (1) 2.5 atm (2) 7.5 atm 	 (2) 1.00 pm (4) 4.3 pm आयतन पर हाइड्रोजन तथा आयतन पर आक्सीजन को जाता है तो कुल दाब होगा :- (2) 5 atm (4) 10 etm
70.	KBr has NaCl type st 2.75gcm ⁻³ . Edge leng (Molar mass of KBr = 1 (1) 3.3 × 10 ⁻⁸ cm (3) 9.9 × 10 ⁻⁸ cm	ructure. Its density is th of unit cell will be: (19) :- (2) 6.6×10^{-8} cm (4) 1.6×10^{-8} cm	70.	(3) 7.3 ann KBr , NaCl प्रकार की संर 2.75gcm ⁻³ है। इकाई सेल (KBr का मोलर भार = 119 (1) 3.3 × 10 ⁻⁸ cm (3) 9.9 × 10 ⁻⁸ cm	(+) 10 ann चना रखता है। इसका घनत्व की भुजा लम्बाई होगी) :- (2) 6.6 × 10 ⁻⁸ cm (4) 1.6 × 10 ⁻⁸ cm
71.	The enthalpy of neutral HCl is -51.46 kJm neutralisation of N -55.90 kJmol ⁻¹ . The en NH ₄ OH is :- (1) 107.36 kJ mol ⁻¹ (3) -107.36 kJ mol ⁻¹	isation of NH ₄ OH with ol ⁻¹ and enthalpy of aOH with HCl is nthalpy of ionisation of (2) -4.44 kJ mol ⁻¹ (4) 4.44 kJ mol ⁻¹	71.	NH_4OH के साथ HCl क - 51.46 kJmol ⁻¹ है तथा उदासीकरण की एन्थैल्पी– 55. के आयनन की एन्थैल्पी है :- (1) 107.36 kJ mol ⁻¹ (3) – 107.36 kJ mol ⁻¹	ो उदासीकरण की एन्थैल्पी NaOH के साथ HCl की 90 kJmol ⁻¹ है तो NH ₄ OH (2) –4.44 kJ mol ⁻¹ (4) 4.44 kJ mol ⁻¹
72.	Colour of nickel chlorid (1) Pink (3) Colouress	e solution is : - (2) Black (4) Green	72.	निकल क्लोराइड विलयन का (1) गुलाबी (3) रंगहीन	रंग है। (2) काला (4) हरा
73.	The ion that connot be p HCI is : - (1) Pb ²⁺ (3) Ag ⁺	(2) Cu ²⁺ (4) Ni ²⁺	73.	किस आयन को HCl तथा H ₂ किया जा सकता : - (1) Pb ²⁺ (3) Ag ⁺	S दोनों के द्वारा अवक्षेपित नहीं (2) Cu ²⁺ (4) Ni ²⁺

E / H

MAJOR TEST

					MAJOR TEST
Path is Succ		JEE-MA	IN 2	2013	31-03-2013
74.	The thermal family is in o (1) $H_2Po < H$ (2) $H_2Po < H$ (3) $H_2S < H_2Q$ (4) $H_2O < H_2$ Select the cor	stability of hydrides of oxygen order :- $_{2}Te < H_{2}Se < H_{2}S < H_{2}O$ $_{2}O < H_{2}Te < H_{2}Se < H_{2}S$ $O < H_{2}Te < H_{2}Se < H_{2}PO$ $S < H_{2}Te < H_{2}Se < H_{2}PO$ rect order :-	74. 75.	हाइड्राइड का तापीय स्थायित्व परिवार में :- (1) $H_2Po < H_2Te < H_2Se < H_2$ (2) $H_2Po < H_2O < H_2Te < H_2$ (3) $H_2S < H_2O < H_2Te < H_2S$ (4) $H_2O < H_2S < H_2Te < H_2S$ सही क्रम का चयन करो :-	का क्रम ऑक्सीजन् $I_2S < H_2O$ $_2Se < H_2S$ $Se < H_2S$ $Se < H_2Po$ $Se < H_2Po$
	(1) $[Ni(NH_3)_6$ (2) Be > B > (3) $[MnCl_4]^{-2}$ (4) All of the	$J^{+2} > [Ni(CN)_6]^{-4} > [Ni(NO_2)_6]^{-4}$ Stability $C > F (IP_2)$ $> [CoCl_6]^{-3} > [Fe(CN)_6]^{-3}$ Paramagnetic nature m		(1) $[Ni(NH_3)_6]^{+2} > [Ni(CN)_6]^{+2}$ (2) Be > B > C > F (IP ₂) (3) $[MnCl_4]^{-2} > [CoCl_6]^{-3} >$ (4) \exists vtlm सभी	⁻⁴ > [Ni(NO ₂) ₆] ⁻⁴ स्थायीत्व [Fe(CN) ₆] ⁻³ अनुचुम्बकीय गुण
76.	KCl + Conc. H ₂ (X) is reddisin in NaOH form (1) Cr_2OCl_2 , H (2) $Cr_2O_2Cl_2$, H (3) CrO_2Cl_2 , H (4) CrO_2Cl_2 , H	$SO_4 + K_2Cr_2O_7 \xrightarrow{\Delta} (X) \xrightarrow{\text{NaOH}} (Y).$ sh brown coloured gas soluble ning (Y). (X) and (Y) are :- Na ₂ CrO ₃ Na ₂ CrO ₄ Na ₂ CrO ₄	76.	KCl + Conc. $H_2SO_4 + K_2Cr_2O_7$ उक्त अभिक्रिया में (X) लाल भुरे NaOH में घुलनशील है तथा उसमे है, तो (X) और (Y) है:- (1) Cr_2OCl_2, Na_2CrO_3 (2) Cr_2O_2Cl_2,Na_2CrO_3 (3) CrO_2Cl, Na_2CrO_4 (4) CrO_Cl_Na_CrO_4	े→(X) <u>^{NaOH}</u> (Y). रंग की गैस है, जो कि ों घुलकर (Y) बनाती
77.	Tetraammined represented as (1) [Pt (NH ₃), (2) [Pt (Py) ₂ ((3) [Pt (NH ₃), (4) [Pt (NH ₃)]	dipyridineplatinum (IV) sulphate is s :- $_{2} (Py)_{2}] SO_{4}$ $(NH_{3})_{4}] SO_{4}$ $_{4} (Py)_{2}]_{2} (SO_{4})_{4}$ $_{4} (Py)_{2}] (SO_{4})_{4}$	77.	(4) CIO_2CI_2 , Na_2CIO_4 $\overline{c}z_{\overline{z}}[\overline{v}_{1}+\overline{u}] + \overline{s}[\overline{s}[\overline{v}t]\overline{s}] + \overline{v}\overline{c}[\overline{c}] + \overline{v}\overline{t}[\overline{c}]$ (1) $[Pt (NH_3)_2 (Py)_2] SO_4$ (2) $[Pt (Py)_2 (NH_3)_4] SO_4$ (3) $[Pt (NH_3)_4 (Py)_2]_2 (SO_4)_4$ (4) $[Pt (NH_3)_4 (Py)_2] (SO_4)_4$	सल्फेट का सही निरूपण

						MAJOR TEST
Path is Succes		LEADER & ENTH	IUSI	AST COURSE		31-03-2013
78.	Which metal has t	he highest melting point :-	78.	किस धातु का गलनांक	उच्चतम है ?	
	(1) Pt (2) W	(3) Pd (4) Cu		(1) Pt (2) W	(3) Pd	(4) Cu
79.	Nirtrate of which o	f the following elements can	79.	गर्म करने पर, निम्न में से	किन तत्वों के	नाइट्रेट को ऑक्साइड
	be converted into t	heir oxides on heating?		में बदला जा सकता है	?	
	(i) Na	(ii) Li		(i) Na	(ii) Li	
	(iii) Mg	(iv) Rb		(iii) Mg	(iv) R	b
	(1) (i) and (ii)	(2) ii and (iii)		(1) (i) and (ii)	(2) ii	and (iii)
	(3) (iii) and (iv)	(4) Only (iii)		(3) (iii) and (iv)	(4) Or	nly (iii)
80.	Which of the follow	ing has maximum EA and EN	80.	निम्नलिखित में से किसव	क्री अधिकतम	EA तथा EN क्रमश:
	respectively :			हे :-		
	$A = 1s^2, 2s^2, 2p^6$	a - 5		$A = 1s^2, 2s^2, 2p^6$		
	$B = 1s^2, 2s^2, 2p^6, 3$	s^2 , $3p^5$		$B = 1s^2, 2s^2, 2p^6, 3s^2, 3p^5$		
	$C = 1s^2, 2s^2, 2p^3$	1_1		$C = 1s^2, 2s^2, 2p^5$		
	$D = 1s^2, 2s^2, 2p^3, 3$	C (2) D C (4) A C		$D = 1s^2, 2s^2, 2p^0, 3$	S^{1}	
01	$(1) C, D \qquad (2) D,$	C = (3) D, C = (4) A, C		(1) C, B (2) B,	(3)	(4) A, C
ð1.	List L and find the	List-II with hydridisation	81.	आकृति सारणा-II व चर्ने और सरी चरन	हा सारणा-1 ゞ .	क साथ सुमालत
				कर आर सहा उत्तर चुन	1 I	
				सारणा-1	सारण	-II
	(A) sp^3d	(P) octahedral		(A) $sp^{3}d$	(P) अष्टफ	लकीय
	(B) sp^3d^2	(Q) pentagonal bipyramidal		(B) sp^3d^2	(Q) पंचको	णीय द्विपिरामिडीय
	(C) sp^3d^3	(R) Trigonal Bipyramidal		(C) sp^3d^3	(R) त्रिकोण	ीय द्विपिरामिडीय
	(1) (A)-(P); (B)-(R); (C)-(Q)			(1) (A)-(P); (B)-(R	R); (C)-(Q)	
(2) (A)-(R); (B)-(P); (C)-(Q)				(2) (A)-(R); (B)-(P); (C)-(Q)		
	(3) (A)-(Q); (B)-(P	P); (C)-(R)		(3) (A)-(Q); (B)-(P); (C)-(R)		
	(4) (A)-(P); (B)-(Q); (C)-(R)		(4) (A)-(P); (B)-(Q	Q); (C)-(R)	
		किसी प्रश्न पर देर	<u>तक रू</u>	को नहीं ।		

E/H

				MAJOR TEST
Path in Suc		IUSI	AST COURSE	31-03-2013
84.	Which of the following are free radical	84.	निम्न में से मुक्त मूलक अभिक्रिया है	:-
	reactions:-		(a) $CH_{3}CH = CH_{2} + HBr$	peroxide >
	(a) $CH_3CH = CH_2 + HBr \xrightarrow{peroxide}$		CH CH	H ₂ CH ₂ CH ₂ -Br
	CH ₃ CH ₂ CH ₂ -Br			3 2 2 2
	(b) $CH_3CH = CH_2 + HC1 \xrightarrow{\text{peroxide}}$		(b) $CH_3CH = CH_2 + HCI -$	
	CH ₃ CH(Cl)CH ₃		CH	H ₃ CH(Cl)CH ₃
	(c) $CH_3CH = CH_2 + NBS \longrightarrow$		(c) $CH_3CH = CH_2 + NBS$ —	$\xrightarrow{h\nu}$
	Br-CH ₂ CH=CH ₂		Br-	-CH ₂ CH=CH ₂
	(d) $CH_3CH_3 + Cl_2 \xrightarrow{\text{nv}} CH_3CH_2Cl$		(d) CH ₂ CH ₂ + Cl ₂ \xrightarrow{hv} CF	LCH.Cl
	(1) Only d (2) a, c		(1) Only d (2) a	, c
	(3) a, b, d (4) a, c, d		(3) a, b, d (4) a	, c, d
85.	CH ₃ CH ₂ CH ₂ -C=CH $\xrightarrow{BH_3,THF}$ $\xrightarrow{H_2O_2/\overline{OH}}$ Product, Product is :- (1) CH ₃ CH ₂ -CH ₂ CH ₂ CHO (2) CH ₃ CH ₂ CH ₂ -C-CH ₃ $\overset{U}{O}$ (3) CH ₃ CH ₂ CH ₂ CHO (4) CH CH -C-CH CH	85.	CH ₃ CH ₂ CH ₂ -C≡CH $\xrightarrow{\text{BH}_{\text{B}}\text{THF}}$ \exists cruic ξ :- (1) CH ₃ CH ₂ -CH ₂ CH ₂ CHO (2) CH ₃ CH ₂ CH ₂ -C-CH ₃ \bigcup (3) CH ₃ CH ₂ CH ₂ CH ₂ CHO (4) CH CH CH CH CH	_ ^{म,o,॑॑॑॑॑॑॑} → उत्पाद,
	$\overset{(1)}{}$		(4) $CH_3CH_2-C-CH_2CH_3$	
86.	Two gases, P and Q both decolourise aqueous bromine but only one of them gives a white ppt with ammonical silver nitrate solution, P and Q are likely to be :- (1) Ethene & 2–Butyne (2) Ethyne & 1–Butyne	86.	दो गैसें P तथा Q दोनों जलीय Br ₂ व लेकिन कोई एक अमोनियामय सिल्वर अवक्षेप देती है। P तथा Q हो सकती है (1) एथीन तथा 2–ब्यूटाईन (2) एथाइन तथा 1–ब्यूटाईन	हो रंगहीन कर देती है ∶नाइट्रेट के साथ श्वेत है :-
	(3) Ethyne & Propyne		(3) एथाइन तथा प्रोपाईन	
	(4) But-1-yne and But-2-yne		(4) 1–ब्यूटाईन तथा 2–ब्यूटाईन	

SPACE FOR ROUGH WORK

E/H

							MAJOR TEST
Path is Suit					2013	31-03-2013	
87.	Arrange the fe	ollowing in ord	ler of their basic	87.	निम्नलिखित का है:-	क्षारीय सामार्थय	के लिए सही क्रम
	NH ₂ −C−NH ₂ I NH	CH₃–C–NH₂ ■ NH	CH ₃ NHCH ₃		NH ₂ -C-NH ₂ II NH	CH ₃ -C-NH ₂	CH ₃ NHCH ₃
	(I)	(II)	(III)		(I)	(II)	(III)
	ŇH ₂	O Ⅲ CH₃−C−ŇH₂			ŇH ₂	O ■ CH₃−C−ŇH₂	
	(IV)	(V)			(IV)	(V)	
	(1) I > II > III > V > IV				(1) I > II > III > V > IV		
	(2) I > II > IV > III > IV				(2) I > II > IV > III > IV		
	(3) I > II > III > IV > V				(3) I > II > III > IV > V		
	(4) I > II > V > III > IV				(4) I > II > V > III > IV		
88.	$O \longrightarrow COOCH_3 \longrightarrow HO \longrightarrow COOCH_3$ which of the following reagents should be used to carry out the above conversion :-			88.	0 COO	$OCH_3 \longrightarrow HO$	COOCH ₃
					निम्न में से कौनसा अभिकर्मक उपरोक्त अन्तरपरिवर्तन हेतू उपयोगी है :-		
	(1) LiAlH ₄	(2) N	laBH ₄		(1) LiAlH ₄	(2) N	aBH_4
	(3) Na/C ₂ H ₅ Ol	H (4) Z	n-Hg/HCl		(3) Na/C ₂ H ₅ OH	(4) Z	n-Hg/HCl
89.	Heating of rubber with sulphur is known as :-			89.	39. रबर को सल्फर के साथ गर्म करने की विधि को		
	(1) Galvanisat	ion (2) V	ulcanisation		(1) गेल्वेनीकरण	(2) व	ल्कनीकर ण
	(3) Sulphonati	on (4) Is	somerisation		(3) सल्फोनीकरण	(4) र	ामावयवीकरण
90.	The optically inactive amino acid is :-			90.	प्रकाशीय अक्रिय अमीनो अम्ल है :-		
	(1) Lysine	(2) C	ilycine		(1) Lysine	(2) (Blycine
	(3) Arginine	(4) A	lanine		(3) Arginine	(4) <i>A</i>	Manine
Your moral duty is that to prove ALLEN is ALLEN							

MAJOR TEST

31-03-2013

SPACE FOR ROUGH WORK / रफ कार्य के लिये जगह

