our larget is to secure Good Rank in JataMAIN 2016

FORM NUMBER

CLASSROOM CONTACT PROGRAMME (ACADEMIC SESSION 2012-2013)

LEADER & ENTHUSIAST COURSE JEE-MAIN 2013

MAJOR TEST # 07

DATE: 28 - 03 - 2013

FULL SYLLABUS

IMPORTANT INSTRUCTIONS

- 1. Immediately fill in the particulars on this page of the Test Booklet with *Blue/Black Ball Point Pen. Use of pencil is strictly prohibited.*
- The candidates should not write their Form Number anywhere else (except in the specified space) on the TestBooklet/Answer Sheet.
- The test is of 3 hours duration.
 The Test Booklet consists of 90 questions. The maximum marks are 432.
- There are *three* parts in the question paper. The distribution of marks subjectwise in each part is as under for each correct response.
 Part A – Physics (144 marks) – 30 Questions.
 - Questions No. 1 to 24 carry 4 marks each = 96 Marks Questions No. 25 to 30 carry 8 marks each = 48 Marks **Part B – Chemistry (144 marks) – 30 Questions.** Questions No. 31 to 54 carry 4 marks each = 96 Marks Questions No. 55 to 60 carry 8 marks each = 48 Marks **Part C – Mathematics (144 marks) – 30 Questions.** Questions No. 61 to 84 carry 4 marks each = 96 Marks Questions No. 61 to 84 carry 4 marks each = 96 Marks
- Questions No. 85 to 90 carry 8 marks each = 48 Marks
 One Fourth mark will be deducted for indicated incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the Answer Sheet.
- Use *Blue/Black Ball Point Pen* only for writting particulars/marking responses on *Side-1* and *Side-2* of the Answer Sheet. *Use of pencil is strictly prohibited.* No candidate is allowed to carry any textual material,
- No candidate is allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone any electronic device etc, except the Identity Card inside the examination hall/room.
- 9. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 10. On completion of the test, the candidate must hand over the Answer Sheet to the invigilator on duty in the Room/Hall. However, the candidate are allowed to take away this Test Booklet with them.
- 11. Do not fold or make any stray marks on the Answer Sheet.

Note: In case of any correction in the test paper please mail to **dlpcorrections@allen.ac.in** within 2 days.

महत्वपूर्ण सूचनाएँ

- परीक्षा पुस्तिका के इस पृष्ठ पर आवश्यक विवरण नीले/काले बॉल पाइंट पेन से तत्काल भरें। पेन्सिल का प्रयोग बिल्कुल वर्जित हैं।
- परीक्षार्थी अपना फार्म नं. (निर्धारित जगह के अतिरिक्त) परीक्षा पुस्तिका / उत्तर पत्र पर कहीं और न लिखें।
- 3. परीक्षा की अवधि 3 घंटे है।
- इस परीक्षा पुस्तिका में 90 प्रश्न हैं। अधिकतम अंक 432 हैं।
 प्रश्न पत्र में तीन भाग हैं।
- 5. प्रश्न पत्र में तीन भाग हैं। प्रत्येक भाग में प्रत्येक सही उत्तर के लिये अंकों का विषयवार वितरण नीचे दिए अनुसार होगा।

भाग A – भौतिक विज्ञान (144 अंक) – 30 प्रश्न प्रश्न संख्या 1 से 24 तक प्रत्येक 4 अंक का है = 96 अंक प्रश्न संख्या 25 से 30 तक प्रत्येक 8 अंक का है = 48 अंक भाग B – रसायनिक विज्ञान (144 अंक) – 30 प्रश्न प्रश्न संख्या 31 से 54 तक प्रत्येक 4 अंक का है = 96 अंक प्रश्न संख्या 55 से 60 तक प्रत्येक 8 अंक का है = 48 अंक भाग C – गणित (144 अंक) – 30 प्रश्न

भाग **C –** गाणत (144 अक) **– 30** प्रश्न प्रश्न संख्या 61 से 84 तक प्रत्येक 4 अंक का है = 96 अंक प्रश्न संख्या 85 से 90 तक प्रत्येक 8 अंक का है = 48 अंक

- प्रत्येक गलत उत्तर के लिए उस प्रश्न के कुल अंक का हू = 48 अक
 प्रत्येक गलत उत्तर के लिए उस प्रश्न के कुल अंक का एक चौथाई अंक काटा जायेगा। उत्तर पुस्तिका में कोई भी उत्तर नहीं भरने पर कुल प्राप्तांक में से ऋणात्मक अंकन नहीं होगा।
- उत्तर पत्र के पृष्ठ–1 एवं पृष्ठ–2 पर वांछित विवरण एवं उत्तर अंकित करने हेतु केवल नीले/काले बॉल पाइंट पेन का ही प्रयोग करें। पेन्सिल का प्रयोग बिल्कुल वर्जित है।
- 8. परीक्षार्थी द्वारा परीक्षाकक्ष/हॉल में परिचय पत्र के अलावा किसी भी प्रकार की पाठ्य सामग्री मुद्रित या हस्तलिखित कागज की पर्चियों, पेजर, मोबाइल फोन या किसी भी प्रकार के इलेक्ट्रानिक उपकरणों या किसी अन्य प्रकार की सामग्री को ले जाने या उपयोग करने की अनुमति नहीं हैं।
- 9. रफ कार्य परीक्षा पुस्तिका में केवल निर्धारित जगह पर ही कीजिये।
- 10. परीक्षा समाप्त होने पर, परीक्षार्थी कक्ष/हॉल छोड़ने से पूर्व उत्तर पत्र कक्ष निरीक्षक को अवश्य सौंप दें। परीक्षार्थी अपने साथ इस परीक्षा पुस्तिका को ले जा सकते हैं।
- 11. उत्तर पत्र को न मोड़ें एवं न ही उस पर अन्य निशान लगाएें।

नोट : यदि इस प्रश्न पत्र में कोई Correction हो तो कृपया 2 दिन के अन्दर dlpcorrections@allen.ac.in पर mail करें।

Do not open this Test Booklet until you are asked to do so / इस परीक्षा पुस्तिका को जब तक ना खोलें जब तक कहा न जाऐ।

Corporate Office "SANKALP", CP-6, Indra Vihar, Kota (Rajasthan)-324005 Trin : +91 - 744 - 2436001 Fax : +91-744-2435003 E-Mail: info@allen.ac.in Website: www.allen.ac.in

							MAJOR TEST
Path is Success			JEE-MA	IN 2	013		28-03-2013
HAV	E CONTROL	$. \longrightarrow H$	AVE PATIENCE —	→ HA	VE CONFIDENCE ⇒	100	% SUCCESS
	(BEWARE OF NE			GATIVI			
	PART A				SICS		
1.	Two spherical ves by a narrow tube gas at one atmosp is immersed in a K and the other 300 K. Then the	essel of equ e. The app phere and 2 a bath of c in a bath e commor	al volume, are connected baratus contains an ideal 300 K. Now if one vessle constant temperature 600 of constant temperature a pressure will be :-	1.	समान आयतन वाले दो गोत नलिका द्वारा जुड़े हैं इस व्य एक वायुमण्डलीय दाब पर ए यदि एक पात्र को 600 K ता एवं दूसरे पात्र को 300 K त तब उभयनिष्ठ दाब होगा :-	तीय ' वस्था क आ प वाग ाप वा B	पात्र चित्रानुसार एक में 300 K ताप एवं दर्श गैस भरी हुई है। ले जल में डुबो दिया ले पात्र में रखा जाये
	(1) 1 atm		(2) $\frac{4}{5}$ atm		(1) 1 atm	(2)	$\frac{4}{5}$ atm
	(3) $\frac{4}{3}$ atm		(4) $\frac{3}{4}$ atm		(3) $\frac{4}{3}$ atm	(4)	$\frac{3}{4}$ atm
2.	Suppose ideal constant. Initial gas are T and V 27V then its te (1) T	l gas eq temperat V respecti emperatur	uation follows VP ³ ture and volume of the ively if gas expands to re will become :- (2) 9T	2.	मान लीजिए आदर्श गैस समीकर गैस का प्रारम्भिक ताप एवं आय गैस का आयतन बढ़कर 27V होगा:- (1) T	.ण का तन क्र हो जा (2) 9	रूप VP ³ = नियत है। मश: T एवं V है। यदि ता है, तब इसका ताप OT
	(3) 27 T		(4) T/9		(3) 27 T	(4)	Г/9 х
3.	For which comb	bination of Carnot	f working temperatures	3.	ानम्न में से किस ताप युग्म के अधिकतम है :-	लिए	कानो इजन को दक्षता
	(1) 80 K, 60 K (3) 60 K, 40 K		(2) 100 K, 80 K (4) 40 K, 20 K		(1) 80 K, 60 K (3) 60 K, 40 K	(2) 1 (4) 4	100 K, 80 K 10 K, 20 K

SPACE FOR ROUGH WORK

-

4. A motorcylist is going on an overbridge of radius r maintaining a constant speed v. As the motorcyclist goes up on the overbridge, the normal force :-

- (1) Increases $(N_B > N_A)$
- (2) Decreases $(N_B < N_A)$
- (3) Remains same $(N_B = N_A)$
- (4) Nothing can be said
- 5. A man of mass 60 kg is standing on a platform of mass 40 kg as shown in figure then what force man should apply on rope so that he accelerate up with the platform with acceleration of 2 m/s^2 :-
 - (1) 300 N
 - (2) 400 N
 - (3) 500 N
 - (4) 600 N

 एक साईकिल सवार, r त्रिज्या के पुल पर नियत चाल v से जा रहा है। जैसे जैसे साईकिल सवार पुल पर ऊपर की ओर आगे बढ़ता है उस पर लग रहा अभिलम्ब प्रतिक्रिया बल :-

- (1) बढ़ता है $(N_{B} > N_{A})$
- (2) घटता है $(N_{B} < N_{A})$
- (3) वही बना रहता है ($N_{\rm B} = N_{\rm A}$)
- (4) कुछ भी कहा नहीं जा सकता
- 5. 60 kg द्रव्यमान का एक व्यक्ति 40 kg द्रव्यमान के तख्ते पर चित्रानुसार खड़ा है तो व्यक्ति द्वारा रस्सी पर कितना बल लगाया जाना चाहिए जिससे व्यक्ति तथा तख्ता 2 m/s²:त्वरण से ऊपर की ओर गति करे -

- (3) 500 N
- (4) 600 N

(प्रत्येक प्रश्न को अर्जुन बनकर करो।

SPACE FOR ROUGH WORK

E / H

MAJOR TEST 28-03-2013

6. A block of mass 2 kg is suspended from a string, is released from a height of 5m as shown in figure then what will be the impulse when string. Just becomes tight :-

- (4) 200 N-s
- 7. A car starts from rest and travels with uniform acceleration α for some time and then with uniform retardation β and comes to rest. If the total travel time of the car is 't', the maximum velocity attained by it is given by :-

(1)
$$\frac{\alpha\beta}{(\alpha+\beta)}$$
 t (2) $\frac{1}{2}\frac{\alpha\beta}{(\alpha+\beta)}$ t^2

(3)
$$\frac{\alpha\beta}{(\alpha-\beta)}$$
.t (4) $\frac{1}{2}\frac{\alpha\beta}{(\alpha-\beta)}$.t²

- 8. A man is standing at the edge of a circular plate which is rotating with a constant angular speed about a perpendicular axis passing through the centre. If the man walks towards the axis along the radius, its angular velocity :-
 - (1) Decreases
 - (2) Remains constant
 - (3) Increases
 - (4) Information is incomplete

6. एक 2 kg द्रव्यमान का ब्लॉक एक रस्सी की सहायता से लटका हुआ है, इसे 5m की ऊँचाई से चित्रानुसार छोड़ा जाता है, तो रस्सी में तनाव आने पर आवेग का मान होगा :-

 एक कार विरामावस्था से शुरू होकर कुछ समय तक एक समान त्वरण α से फिर एक समान मंदन β से गति करके रूक जाता है। यदि कुल यात्रा का समय t है तो कार द्वारा प्राप्त अधिकतम चाल क्या होगी :-

(1)
$$\frac{\alpha\beta}{(\alpha+\beta)}$$
 t (2) $\frac{1}{2}\frac{\alpha\beta}{(\alpha+\beta)}$ t^2

(3)
$$\frac{\alpha\beta}{(\alpha-\beta)}$$
.t (4) $\frac{1}{2}\frac{\alpha\beta}{(\alpha-\beta)}$.t²

- एक व्यक्ति किसी वृत्तीय प्लेट के सिरे पर खड़ा हुआ है, जो कि इसके केंद्र से जाने वाली लम्बवत् अक्ष के परित: नियत कोणीय चाल से घूर्णन कर रही है। यदि व्यक्ति त्रिज्या के अनुदिश अक्ष की ओर चलना प्रारंभ कर दे तो इसका कोणीय वेग :-
 - (1) घटेगा
 - (2) नियत रहेगा
 - (3) बढ़ेगा
 - (4) दिया गया विवरण अपूर्ण है

SPACE F	OR ROU	GH WORK
---------	--------	----------------

8.

- 9. The M.I. of a body about the given axis is $1.2 \text{ kg} \times \text{m}^2$ initially the body is at rest. In order to produce a rotational kinetic energy of 1500 J, an angular acceleration of 25 rad/sec² must be applied about that axis for duration of
 - (1) 4 sec (2) 2 sec
 - (3) 8 sec (4) 10 sec
- 10. A satellite with kinetic energy E_k is revolving round the earth in a circular orbit. How much more kinetic energy should be given to it so that it may just escape into outer space : -
 - (1) E_k (2) $2E_k$
 - (3) $\frac{1}{2}E_{k}$ (4) $3E_{k}$
- A large open tank has two holes in the wall. One is a square hole of side L at a depth y from the top and the other is a circular hole of radius R at a depth 4y from the top. When the tank is completely filled with water the quantities of water flowing out per second from both the holes are the same. Then R is equal to : -

(4) $\frac{L}{2\pi}$

(1) $2\pi L$ (2) $\frac{L}{\sqrt{2\pi}}$

(3) L

- दी गयी अक्ष के परित: किसी पिण्ड का जड़त्व आघूर्ण
 1.2 kg × m² है तथा प्रारम्भ में पिण्ड स्थिर है।
 1500 जूल की घूर्णी गतिज ऊर्जा उत्पन्न करने के लिए
 25 रेडियन/सै² के त्वरण को पिण्ड पर निम्न समय के लिए आरोपित करना होगा : -
 - (1) 4 sec (2) 2 sec (3) 8 sec (4) 10 sec
- 10. पृथ्वी के चारों ओर घूम रहे एक उपग्रह की गतिज ऊर्जा E_k है। इसे कम से कम कितनी ऊर्जा और प्रदान की जाए जिससे यह अन्तरिक्ष में पलायन कर सके : -

(1) E_k (2) $2E_k$

(3)
$$\frac{1}{2}E_k$$
 (4) $3E_k$

 किसी बड़े खुले पात्र की दीवार पर दो छिद्र है। एक छिद्र वर्गाकार (भुजा L) तथा द्रव की मुक्त सतह से y गहराई पर है एवं दूसरा छिद्र वृत्ताकार तथा (त्रिज्या R) द्रव की मुक्त सतह से 4y गहराई पर है। यदि छिद्रों से प्रति सैकण्ड समान मात्रा में जल प्रवाहित हो तो R का मान होगा : -

(1)
$$2\pi L$$
 (2) $\frac{L}{\sqrt{2\pi}}$

(3) L

(4) $\frac{L}{2\pi}$

SPACE FOR ROUGH WORK

E / H

MAJOR TEST

28-03-2013

Ratio of equivalent resistance between A and 12. B in two cases will be :-

(2) 2 : 1(3) 1 : 1(1) 1 : 2(4) 3 : 2

Passage : (Q.13 & 14)

For spherical symmetrical charge distribution, variation of electrical potential with distance from center is given in dig. Given that

दी गई दो स्थितियों में A व B के मध्य तुल्य प्रतिरोधों का अनुपात 12. होगा :-

(2) 2 : 1(3) 1 : 1(1) 1 : 2(4) 3 : 2

Passage : (Q.13 & 14)

एक गोलाकार सममित आवेश वितरण के लिये वैद्युत विभव में केन्द्र से दूरी के साथ परिवर्तन चित्रानुसार प्रदर्शित है।

$$V = \frac{q}{4\pi \,\epsilon_0 \, R_0} \qquad r \leq R_0^{-} \bar{a} \, \bar{b} \, \bar{b} \, \bar{c} \bar{c} \bar{c} \bar{c}$$

$$V = \frac{q}{4\pi \,\epsilon_0 \, r} \qquad r > R_0 \,\overline{a} \, \overline{b} \, \overline{b} \, \overline{c}$$

SPACE FOR ROUGH WORK

MAJOR TEST

LEADER & ENTHUSIAST COURSE

13. Total charge within $2R_0$ is :-

(1) q (2) 2q (3)
$$\frac{q}{2}$$
 (4) 4q

14. There will be no charge anywhere except :-(1) $r > R_0$ (2) $r \ge R_0$

(3)
$$r = R_0$$
 (4) $r \le R_0$

- 15. A conducting circular loop of radius a and resistance R is kept on a horizontal plane. A vertical time varying magnetic field B = 2t is switched on at time t = 0. Then :-
 - (1) Power generated in the coil at any time t is constant
 - (2) Flow of charge per unit time from any section of the coil is constant
 - (3) Total charge passed through any section

between time t = 0 to t = 2 is $\left(\frac{4\pi a^2}{R}\right)$

- (4) All of the above
- 16. A bulb is rated of 100 V, 100W, it can be treated as a resistor. Find out the inductance of an inductor (called choke coil) that should be connected in series with the bulb to operate the bulb at its rated power with the help of an ac source of 200V and 50 Hz
 - (1) $\frac{\pi}{\sqrt{3}}$ H (2) 100H

(4) $\frac{\sqrt{3}}{\pi}$ H

(3) $\frac{\sqrt{2}}{\pi}$ H

(1) q (2) 2q (3)
$$\frac{q}{2}$$
 (4) 4q

14. निम्न को छोड़कर आवेश कहीं पर भी उपस्थित नहीं होगा :-

$$(1) r > R_0 \qquad (2) r \ge R_0$$

(3)
$$r = R_0$$
 (4) $r \le R_0$

- 15. एक a त्रिज्या तथा R प्रतिरोध की वृत्तीय चालक लूप क्षैतिज तल में स्थित है। एक ऊर्ध्वाधर समय के साथ परिवर्तित चुम्बकीय क्षैत्र B = 2t को t = 0 पर आरोपित किया जाता है तो :-
 - (1) किसी भी समय t पर लूप में उत्पन्न शक्ति नियत होगी
 - (2) एकांक समय में कुण्डली के किसी भाग से प्रवाहित आवेश नियत होगा
 - (3) t = 0 से $t = 2 \sec \pi$ किसी भी भाग से प्रवाहित आवेश $\left(\frac{4\pi a^2}{r}\right)_{\vec{E}}$ होगा

$$\left(\frac{4\pi a}{R}\right)$$
 होग

(4) उपरोक्त सभी

(3) $\frac{\sqrt{2}}{\pi}$ H

16. एक बल्ब पर 100 V, 100W, अंकित है, इसे प्रतिरोध की तरह उपयोग करते है बल्ब को इसके अंकित मान पर उपयोग करने के लिए इसे 200V तथा 50 Hz के प्रत्यावर्ती धारा स्त्रोत से जोड़ा जाता है। इस बल्ब के साथ श्रेणी में प्रेरक चोक कृण्डली जुडी है तो इसका प्रेरकत्व क्या होगा-

(1)
$$\frac{\pi}{\sqrt{3}}$$
 H (2) 100H

(4)
$$\frac{\sqrt{3}}{\pi}$$
 H

कोई भी प्रश्न Key Filling से गलत नहीं होना चाहिए।

SPACE FOR ROUGH WORK

E / H

17. A particle having charge q enters a region of uniform magnetic field \vec{B} (directed inwards) and is deflected a distance x after travelling a distance y. The magnitude of the momentum of the particle is

LEN.

18. In YDSE, both slits are covered by transparent slabs. Upper slits is covered by slab of $\mu = 1.5$ and thickness t and lower is covered by $\mu = 4/3$ and thickness 2t, then central maxima

- (1) Shifts in +ve y axis direction
- (2) Shifts in -ve y axis direction
- (3) Remains at same position
- (4) May shift in upward or downward depending upon wavelength of light

 q आवेश का एक कण समरूप चुम्बकीय क्षेत्र B (अन्दर की दिशा में) में प्रवेश करता है तथा y दूरी चलने के पश्चात् x दूरी तक विक्षेपित होता है। कण के संवेग का परिमाण होगा:-

18. यंग के द्वि-स्लिट प्रयोग में दोनों स्लिटों को पारदर्शी पट्टिका से ढका गया है। यदि ऊपरी स्लिट के सामने μ = 1.5 तथा मोटाई t और निचली स्लिट के सामने μ = 4/3 तथा मोटाई 2t वाली पटिट्का को रखा जाए तो केन्द्रीय उच्चिष्ठ -

- (1) у अक्ष की धनात्मक दिशा में विस्थापित होगा
- (2) y अक्ष की ऋणात्मक दिशा में विस्थापित होगा
- (3) उसी स्थित पर यथावत रहेगा
- (4) प्रकाश की तरंगदैर्ध्य के आधार पर ऊपर तथा नीचे विस्थापित होगा

SPACE FOR ROUGH WORK

7 / 28

SPACE FOR ROUGH WORK

Path is Suit	ALLEN JEE-M	AIN 2	2013	28-03-2013
23.	 Statement-1 : Air quickly leaking out of a balloon becomes cooler. Statement-2 : The leaking air undergoes adiabatic expansion. (1) Statement-1 is true, Statement-2 is true Statement-2 is not the correct explanation of Statement-1. 	23.	कथन–1 : एक गुब्बारे से तेजी से नि जाती है। कथन–2 : तेजी से निकलने वाली ह होता है । (1) कथन-1 सही है और कथन-2 सह का सही स्पष्टीकरण नहीं है।	कल रही हवा ठंडी हो वा का रूद्धोष्म प्रसार ही है।कथन-2, कथन-1
	 of Statement-1. (2) Statement-1 is false, Statement-2 is true (3) Statement-1 is true, Statement-2 is false (4) Statement-1 is true, Statement-2 is true Statement-2 is the correct explanation of Statement-1. 		 (2) कथन-1 गलत है और कथन-2 (3) कथन-1 सही और कथन-2 गल (4) कथन-1 सही है और कथन- कथन-1 का सही स्पष्टीकरण है 	सही है। ात है। 2 सही है।कथन-2, ई।
24.	 Statement-1: Workdone by conservative forces depends on the path followed. Statement-2: Gravitational force is conservative force. (1) Statement-1 is true, Statement-2 is true Statement-2 is not the correct explanation of Statement-1. (2) Statement-1 is false, Statement-2 is true (3) Statement-1 is true, Statement-2 is false (4) Statement-1 is true, Statement-2 is true Statement-2 is the correct explanation of Statement-1. 	24.	 कथन–1: संरक्षी बलों द्वारा किया ग करता है। कथन–2: गुरूत्वाकर्षण बल संरक्षी (1) कथन-1 सही है और कथन-2 सही है सही स्पष्टीकरण नहीं है। (2) कथन-1 गलत है और कथन-2 स् (3) कथन-1 सही और कथन-2 गलत (4) कथन-1 सही है और कथन- कथन-1 का सही स्पष्टीकरण है 	या कार्य पथ पर निर्भर बल है। हे।कथन-2, कथन-1 का ही है। है। 2 सही है। कथन-2, 1
25.	In pressure volume diagram given below, the isochoric isothermal, and isobaric parts respectively, are :- (1) BA, AD, DC (2) DC, CB, BA (3) AB, BC, CD (4) CD, DA, AB	25.	 नीचे दिये गये दाब-आयतन ग्राफ में सम् एवं समदाबीय भाग क्रमश: है :- (1) BA, AD, DC (2) DC, CB, BA (3) AB, BC, CD (4) CD, DA, AB 	।आयतनिक, समतापीय

SPACE FOR ROUGH WORK

26.

MAJOR TEST

28-03-2013

प्रदर्शित चित्र के अनुसार किसी a भुजा की वर्गाकार प्लेट में

E.		ΤN
I A A A A A A A A A A A A A A A A A A A		
Petto to Success	KOTA (RAJASTHAN)	

- 29. The principal axis of a convex lens is along x axis. The coordinates of an object and image are (-20cm, 2cm) and (25cm, -1cm). Lens is located at :-
 - (1) x = +10 cm
 - (2) x = -2.5 cm
 - (3) x = 2 cm
 - (4) x = -3 cm
- **30.** Two metallic plates A and B, each of area 5×10^{-4} m² are placed parallel to each other at a separation of 1 cm. Plate B carries a positive charge of 33.7 pC. A monochromatic beam of light, with photons of energy 5 eV each, starts falling on plate A at t = 0, so that 10^{16} photons falls on it per square meter per second. Assume that one photoelectron is emitted for every 10^{6} incident photons. Also assume that all the emitted photoelectrons are collected by plate B and the work function of plate A remains constant at the value of 2eV. Electric field between the plates at the end of 10 seconds is-

(1) 2×10^3 N/C	(2)	103	N/C
-------------------------	-----	-----	-----

(3) 5×10^3 N/C (4) Zero

- 29. किसी उत्तल लेंस का मुख्य अक्ष x अक्ष के अनुदिश है। यदि वस्तु तथा प्रतिबिंब के निर्देशांक (–20cm, 2cm) तथा (25cm, –1cm) है तो लेंस की स्थिति क्या होगी-
 - (1) x = +10 cm
 - (2) x = -2.5 cm
 - (3) x = 2 cm
 - (4) x = -3 cm
- 30. दो धात्विक प्लेटें A और B एक दूसरे के समान्तर 1 cm की दूरी पर स्थित हैं एवं प्रत्येक प्लेट का क्षेत्रफल 5 × 10⁻⁴m² है। प्लेट B पर 33.7 pC का धनावेश उपस्थित है। एकवर्णी प्रकाश पुंज, जिसके प्रत्येक फोटॉन की ऊर्जा 5 eV है, प्लेट A पर t = 0 समय से गिरना प्रारम्भ करता है, एवं प्रति वर्ग मीटर क्षेत्रफल पर प्रति सैकण्ड 10¹⁶ फोटॉन गिरते हैं। यह माना जाता है कि प्रत्येक 10⁶ फोटोनो से एक फोटो इलेक्ट्रॉन का उत्सर्जन होता है। यह भी माना जाता है कि उत्सर्जित सभी प्रकाश इलेक्ट्रॉन प्लेट B पर पहुँच जाते हैं एवं प्लेट A का कार्यफलन 2 eV नियत रहता है। प्रारम्भ से 10 सैकण्ड पश्चात् प्लेटों के मध्य विद्युत क्षेत्र होगा -

(1) 2×10^3 N/C	(2) 10^3 N/C
(3) 5×10^3 N/C	(4) शून्य

Use stop, look and go method in reading the question

SPACE FOR ROUGH WORK

11/28

MAJOR TEST

28-03-2013

PART B - CHEMISTRY

31.	In hydrogen spectrum, If $n = 4$ then ratio of	31.	हाइड्रोजन स्पेक्ट्रम में, यदि n = 4 हो तो उत्सर्जन स्पेक्ट्रम में
	number of lines in emission spectrum, in the		पराबेंगनी एवं दृश्य क्षेत्र में उपस्थित लाइनों की संख्याओं का
	ultra violet and visible regions is :-		अनुपात क्या होगा :-
	(1) 2 : 3 (2) 3 : 1		(1) 2 : 3 (2) 3 : 1
	(3) 3 : 2 (4) None of these		(3) 3 : 2(4) इनमें से कोई नहीं
32.	Which of the following statement is incorrect	32.	निम्नलिखित में से अर्द्ध-आयु काल के लिए असत्य कथन
	about half-life period :		हे :
	(1) It is proportional to initial concentration for		(1) शून्य कोटि अभिक्रिया के लिए यह प्रारम्भिक सांद्रता के
	zero order reaction		समानुपाती होता है।
	(2) Average life = 1.44 times the $t_{1/2}$ for 1st order		(2) औसत आयु = प्रथम कोटि की अभिक्रिया के लिए
	reaction		अर्द्ध-आयु t _{1/2} , 1.44 गुना होता है।
	(3) $t_{75\%} = 2t_{50\%}$ for 1st order reaction		(3) प्रथम कोटि की अभिक्रिया के लिए $t_{75\%}^{}$ = $2t_{50\%}^{}$
	(4) Time for 99.9% completion of a reaction is		(4) अभिक्रिया के 99.9% पूर्ण होने में लगा समय, प्रथम कोटि
	approximately 100 times the half-life period		अभिक्रिया के अर्द्ध-आयु काल का लगभग 100 गुना होता
	for a first order reaction		है।
33.	A gas X (mol. wt. = 100 g) decomposes into	33.	एक गैस X (अणु भार = 100 g) निम्न अभिक्रिया अनुसार
	Y according to the following equation :		Y में विघटित होती है :
	$X(g) \implies 2Y(g)$		$X(g) \rightleftharpoons 2Y(g)$
	At equillibrium, vapour density and total		साम्य पर यदि वाष्प घनत्व तथा कुल दाब क्रमश: 37.5
	pressure is found 37.5 and 2 atm respectively.		तथा 2 atm हो तो अभिक्रिया के लिए K _p का मान
	The K_{p} for the reaction is :		होगा :
	(1) 4 (2) 2 (3) 3 (4) 1		(1) 4 (2) 2 (3) 3 (4) 1
34.	The solubility of solid silver chromate, Ag_2CrO_4	34.	ठोस सिल्वर क्रोमेट Ag_2CrO_4 की विलेयता का निर्धारण तीन
	is determined in three solvents. ($K_{sp} = 9 \times 10^{-12}$)		विलायको में किया गया। ($K_{sp} = 9 \times 10^{-12}$) :
	(1) Pure water (11) 0.1 M AgNO ₃		(i) যুদ্ধ जल (ii) 0.1 M AgNO ₃
	(111) 0.1 M Na ₂ CrO ₄ Dradiet the relative solubility of $A = CrO_{4}$ in the		(iii) 0.1 M Na_2CrO_4
	The relative solution $Ag_2 CIO_4$ in the three solutions		तीनों विलयनों में ${ m Ag}_2{ m CrO}_4$ की सापेक्ष विलेयता होगी।
	$(1) s - s - s \qquad (2) s < s < s$		(1) $s_1 = s_2 = s_3$ (2) $s_1 < s_2 < s_3$
	(1) $s_1 = s_2 = s_3$ (2) $s_1 = s_2 < s_3$ (3) $s_2 = s_2 < s_3$ (4) $s_2 < s_2 < s_3$		(3) $s_2 = s_3 < s_1$ (4) $s_2 < s_3 < s_1$
	SPACE FOR R	L OUGF	HWORK

E / H

				MAJOR TEST
Path is Suc		AIN 2	2013	28-03-2013
35.	Calculate the N–N bond energy in N ₂ H ₄ from given data. $\varepsilon_{N-H} = 393 \text{ kJ/mole}$ $\varepsilon_{H-H} = 436 \text{ kJ/mole}$ $\Delta H = [N H (l)] = 18 \text{ kJ / mole}$	35.	दिये गये ऑकड़ों से N_2H_4 में N–N कीजिए। $\varepsilon_{N-H} = 393 \text{ kJ/mole}$ $\varepsilon_{H-H} = 436 \text{ kJ/mole}$ $\Delta H = [N H (l)] = 18 \text{ kJ / mole}$	। √ बंध ऊर्जा की गणना
N_2H_4	$(\ell) + H_2(g) \longrightarrow 2NH_3(g) : \Delta H = -142 \text{ kJ/mole}$	N ₂ H ₄	$(\ell) + H_2(g) \longrightarrow 2NH_3(g) : \Delta H_3(g)$	H = -142 kJ/mole
	(1) 210 kJ/mole (2) 190 kJ/mole		(1) 210 kJ/mole (2)	190 kJ/mole
36.	(3) 180 kJ/mole (4) 150 kJ/mole BaO has rock salt type structure. When subjected to high pressure, the ratio of coordination number of Ba^{+2} ion and O^{-2} changes to :-	36.	(3) 180 kJ/mole (4) BaO रॉक सॉल्ट संरचना रखता है जब स जाता है, तो Ba ⁺² आयन तथा O ⁻² आ का अनुपात बदल कर हो जाता है-	150 kJ/mole इस पर उच्च दाब लगाया ायन की समन्वय संख्या
	(1) 4:8 (2) 8:4 (4) 4:4 (4) 1:4 ((1) 4 : 8 (2) 8 (4)	8:4
37.	(3) 8 : 8 (4) 4 : 4 The maximum amount of $BaSO_4$ that can be obtained on mixing 0.5 mol of $BaCl_2$ with 1 mol of H_2SO_4 is :-	37.	(3) 8 : 8 (4) 2 0.5 मोल $BaCl_2$ को 1 मोल $H_{2^{5}}$ पर $BaSO_4$ की अधिकतम मात्रा है :-	+ : 4 SO ₄ के साथ मिलाने प्राप्त की जा सकती
38.	(1) 0.5 mol (2) 0.1 mol (3) 0.15 mol (4) 0.2 mol Mole fraction of the Toluene in the vapour phase in equilibrium with a solution of benzene ($P^\circ = 120$ Torr) and toluene ($P^\circ = 80$ Torr)	38.	 (1) 0.5 mol (2) 0 (3) 0.15 mol (4) 0 एक विलयन जिसमें बेन्जीन (P° = 1 (P° = 80 टॉर) प्रत्येक के 2 मोल हैं विल में वाष्प प्रावस्था में टॉलइन का मोल 	0.1 mol 0.2 mol 120 टॉर) तथा टॉलूइन 1यन के साथ साम्यावस्था प्रभाज है–
39.	having 2.0 moles of each, is – (1) 0.50 (2) 0.25 (3) 0.60 (4) 0.40 A salt gives violet vapours when treated with conc. H.SO., it contains : –	39.	(1) 0.50 (2) (3) 0.60 (4) एक लवण को जब सान्द्र H_2SO_4 के तो बैंगनी वाष्प देता है। इसमें उपस्थि	0·25 0·40 साथ उपचारित करते है, त है : -
40.	(1) CI^{-} (2) I^{-} (3) Br^{-} (4) NO_{3}^{-} 'e' configuration of element with minimum size will be :- (1) $1s^{2}2s^{1}$ (2) $1s^{2}2s^{2}2p^{3}$	40.	 (1) Cl⁻ (2) l⁻ (3) 1 लघुतम त्रिज्या वाले तत्व का विन्यास (1) 1s²2s¹ (2) (3) 1s²2s²2p⁴ (4) 	Br (4) NO ₃ 1 है:- 1s ² 2s ² 2p ³ 1s ² 2s ² 2p ⁵
	(3) $1s^22s^22p^4$ (4) $1s^22s^22p^5$			L

SPACE FOR	ROUGH	WORK
-----------	-------	------

13/28

Path to Suc	CAREER INSTITUTE	LEAD	ER & ENT	HUSI	AST	COURSE		28-03-2013
41.	Cross link	in silicone can	be induced	41.	सिलि	कोन में त्रियक बंध (Cr	oss link) प्रेरित हो सकते हैं यदि
	with :-				निम्न	में से लिया जाये :-		
	$(1)R_2SiCl_2$	(2) RSiC	Cl ₃		(1)R	² SiCl ₂	(2) I	RSiCl ₃
	$(3)R_4Si$	(4) R_3Si	Cl		(3)R	⁴ Si	(4) I	R ₃ SiCl
42.	Orbitals used i	n hybridisation of anio	on of CsBr ₃ is:-	42.	CsB	r ₃ के ऋणायन के सक	रण में क	क्षिक उपस्थित है :-
	(1) s, p_x, p_y, p_y	p_z, d_{xy}			(1) s	s, p_x, p_y, p_z, d_{xy}		
	(2) s, p_x, p_y ,	p_z, d_{yz}			(2) s	$\mathbf{p}_{x}, \mathbf{p}_{y}, \mathbf{p}_{z}, \mathbf{d}_{yz}$		
	(3) s,p_x,p_y,p_z	$, d_{(x^2-y^2)}$			(3) s	$s, p_x, p_y, p_z, d_{(x^2-y^2)}$		
	(4) s, p_x, p_y, p_z	d_{z^2}			(4) s	$\mathbf{p}_{x},\mathbf{p}_{y},\mathbf{p}_{z},\mathbf{d}_{z^{2}}$		
43.	In compound	ls of type ECl ₃ whe	ere $E = B, P$	43.	यौगि	क ECl ₃ के प्रकार	में भिन	न-भिन्न E के लिए
	As or Bi, the	e angles Cl-E-Cl fo	or different R		Cl–F	E Cl को ण का सही ब्र	न्म होगा,	जहाँ E = B, P, As
	in order-				तथा]	Bi-		
	(1) $B > P = A$	As = Bi			(1) I	B > P = As = Bi		
	(2) $B > P > A$	As > Bi			(2) I	B > P > As > Bi		
	(3) $B < P = A$	As = Bi			(3) I	B < P = As = Bi		
	(4) $B < P < A$	As < Bi			(4) I	B < P < As < Bi		
44.	If $\Delta_0 < P.E. t$	he correct electronic	configuration	44.	यदि ∠	$\Delta_0^{}$ < P.E. हो तो d^6 वि	न्यास के	लिए निम्न में से कौनसी
	for d ⁶ system	n will be :-			इलैक्ट्र	ट्रॉनिक व्यवस्था सही ह	ोगी :-	
	(1) $t_2 g^6 e g^0$	(2) $t_2 g^4$,	eg ²		(1) t	$z_2 g^6 e g^0$	(2) 1	t_2g^4, eg^2
	(3) t_2g^3 , eg^3	(4) eg^{6} ,	$t_2 g^0$		(3) t	$g_{2}g^{3}, eg^{3}$	(4)	eg^6, t_2g^0
45.	Oxide of an ele	ement A is used in the	manufacturing	45.	एक त	ात्व A के ऑक्साइड व	ज उपयोग	। अग्निसह ईटें बनाने में
	fire clay bricks	s and this A not react	with water but		किया	जाता है तथा A जल से	किया न	हीं करता है तथा इसका
	its oxides diss	solve in NaOH then	A is :-		ऑक्स	गइड़ NaOH में घुलन	शील होत	ता है तो A है :-
	(1) Mg	(2) Be			(1) I	Mg	(2)]	Be
	(3) Na	(4) Non	e of these		(3)]	Na	(4) হ	हनमें से कोई नही
46.	Which of the	following hydroxide	e is most basic	46.	निम्न	में से कौनसा हाइड्रोव	भ्साइड र	प्रवीधिक क्षारीय होता
	in nature :-				है :-			
	(1) $Lu(OH)_3$	(2) Pm(O	$(H)_3$		(1) I	Lu(OH) ₃	(2) Pi	m(OH) ₃
	(3) $Gd(OH)_3$	(4) Ce(O)	$H)_3$		(3) (Gd(OH) ₃	(4) C	e(OH) ₃
	(Take it Easy and Make it Easy)							

SPACE FOR ROUGH WORK

E/<u>H</u>

			MAJOR TEST
	AIN 2	.013	28-03-2013
 47. Which of the following is the correct statement: (a) Boron is diagonally related to silicion (b) Elements of third group are known as bridge elements (c) There are eighteen groups and seven period in extended form of periodic table (d) Fluorine has higher electron affinity than chlorine Correct answer is : (1) Only a, b, d (2) Only b, c, d (3) Only a, b, c (4) Only a, c 48. The IUPAC name of the following is :- CH₃CH=CH—CH₂—CH—CH₂COOH NH₂ (1) 3-aminohept-5-enoic acid (2) 5-aminohept-2-enoic acid (3) 3-amino-5-heptenoic acid (4) 5-aminohept-2-enoic acid (4) 5-aminohept-2-enoic acid 49. (I) Only a, ONH₂ (II) CH₃O—O—NH₂ (IV) OO—NH₂ (IV) NO₂ O—NH₂ 	47. 48. 49.	निम्न में से सत्य कथन कौनसा है : (a) बोरान, सिलिकॉन के साथ विक (b) तीसरे वर्ग के तत्व सेतू तत्व कर (c) आर्वत सारणी के दीर्घ रूप में 1 होते है (d) फ्लोरीन की इलेक्ट्रोन बंधुता का होता है सही उत्तर है : (1) केवल a, b, d (2) (3) केवल a, b, c (4) निम्नलिखित का IUPAC नाम है : CH ₃ CH=CH—CH ₂ —CH—CH ₂ NH ₂ (1) 3-ऐमीनो हैप्ट-5-इनोईक अम्ल (2) 5-ऐमीनो हैक्स-2-ईन-कार्बोकिस (3) 3-ऐमीनो हैप्ट-2-इनोईक अम्ल (1) \bigcirc NH ₂ (II) CH ₃ O—() (II) CH ₃ O—() (II) NO ₂ (III) NO ₂ (IV) NO ₂ NH ₂ (II) I > II > III > III > IV (I) I > I > IV > III (3) III > IV > II	प सम्बन्ध रखता है हलाते है 8 वर्ग तथा सात आवर्त मान क्लोरीन से अधिक केवल b, c, d केवल a, c - COOH लिक अम्ल
		WORK	

SPACE FOR ROUGH WORK

E 28–03–2013 माइड की प्रशेनॉल में सोडिया

50. Neopentyl bromide is allowed to react with sodium ethoxide in ethanol. The major substitution product formed in the reaction is:-

(1)
$$CH_3 - CH_2 - OC_2H_5$$

 $H_3 - C - CH_2 - OC_2H_5$
 $H_3 - CH_3$

(2)
$$CH_3 - CH_2 - C - OC_2H_5$$

 I
 $CH_3 - CH_2 - C - OC_2H_5$

$$(3)CH_3-CH-CH-CH_3\\I\\OC_2H_5$$

- (4) (CH₃)₂CHCH₂CH₂–OC₂H₅
- 51. A hydrocarbon C₅H₈ consumes two moles of hydrogen on catalytic hydrogenation. On ozonolysis, the hydrocarbon produces 2-oxopropanal and methanal (2-moles). The hydrocarbon is(1) (CH₃)₂C=C=CH₂ CH₃
 (2)CH₂ = C - CH = CH₂
 (3) CH₃ - CH₂ - C ≡ C - CH₃

50. नियोपेन्टिल ब्रोमाइड की एथेनॉल में सोड़ियम ऐथॉक्साइड के साथ अभिक्रिया में मुख्य उत्पाद होगा :-

(1)
$$CH_3 - C - CH_2 - OC_2H_5$$

 $H_3 - C - CH_2 - OC_2H_5$
 CH_3

(2)
$$CH_3 - CH_2 - C - OC_2H_5$$

 $I - CH_3 - CH_3 - CH_3$

$$(3)CH_3-CH-CH-CH_3\\I\\OC_2H_5$$

(4) $(CH_3)_2CHCH_2CH_2-OC_2H_5$

51. हाइड्रोकार्बन C_5H_8 उत्प्रेरकी हाइड्रोजनीकरण में दो मोल H_2 उपयोग करता है। ओजोनीकरण द्वारा हाइड्रोकार्बन 2-ऑक्सोप्रोपेनैल तथा मेथेनैल (2-मोल) बनाता है, तो हाइड्रो कार्बन होगा-(1) (CH₂)₂C=C=CH₂

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \end{array}$$

(2)
$$CH_2 = C - CH = CH_2$$

(3) $CH_3 - CH_2 - C = C - CH_3$

$$(5) \operatorname{CH}_3^- \operatorname{CH}_2^- \operatorname{C}_2^- \operatorname{C}_2^- \operatorname{CH}_3^-$$

SPACE FOR ROUGH WORK

(4)

E / H

Path is Suc	CAREER INSTITUTE	JEE-MA	IN 2	.013	28-03-2013
52. 53.	Which does not (1) PhCOCH ₃ (3) CH ₃ CH ₂ OH The linkage bet	t give iodoform reaction :- (2) CH ₃ OH (4) CH ₃ CHO tween the two monosaccharide	52. 53.	$fr= \dot{H}$ \dot{H} \dot{H} \dot{H} \dot{H} (1) $PhCOCH_3$ (1) (3) CH_3CH_2OH (1) \dot{H}	अभिक्रिया नहीं देता है :- 2) CH ₃ OH 4) CH ₃ CHO मध्य उपस्थित लिकेंज होता
54.	units in lactose (1) C_1 of β -D-gl (2) C_1 of β -D-g (3) C_1 of α -D-g (4) C_1 of β -D-ga The polymer in	is :- ucose and C_4 of β -D-galactose galactose and C_4 of β -D-glucose alactose and C_4 of β -D-glucose alactose and C_4 of α -D-glucose which the intermolecular force	54.		β –D-गेलेक्टोस का C_4 $β$ –D-ग्लूकोस का C_4 $β$ -D-ग्लूकोस का C_4 $α$ -D-ग्लूकोस का C_4 आकर्षण सबसे कम होता
	of attraction is (1) Nylo (2) Poly vinyl o (3) Cellulose (4) Natural rub	weakest :- chloride ber		है :- (1) नायलॉन (2) पोली वाइनिल क्लोराइड (3) सेलुलोज (4) प्राकृतिक रबर	
55.	The standard re is +0.34 volt. C at $p^{H} = 14$ for ha is 1.0 × 10 ⁻¹⁹ :- (1) - 0.442 vol (3) +0.442 volt	duction potential for Cu ⁺ / Cu alculate the reduction potential dlf cell Cu ⁺² /Cu. K _{sp} of Cu(OH) ₂ t (2) - 0.221 volt (4) None of these	55.	Cu ⁺ / Cu अर्द्धसेल के लिये +0.34 volt है। इस अर्द्धसेल के विभव ज्ञात करो। Cu(OH) ₂ व $K_{sp} = 1.0 \times 10^{-19}$:- (1) - 0.442 volt ((3) +0.442 volt (मानक अपचयन विभव लिये p ^H = 14 पर अपचयन ज 2) – 0.221 volt 4) इनमें से कोई नहीं
56.	 Which of the freundlich adso (1) It fails at hi (2) It is applicab of the gas (3) It is applicat (4) It is applicat 	following is incorrect about orption isotherm ? igh pressure of the gas le at low and moderate pressure able at constant temperature able at all pressure	56.	निम्न में से कौनसा कथन फ्रेंडलिच असत्य है ? (1) गैस के उच्च दाब पर लागू (2) गैस के निम्न तथा मध्यवर्ती (3) यह स्थिर ताप पर लागू होता (4) सभी दाब पर यह लागू होता	अधिशोषण समपाती के लिए नहीं होता है दाब पर लागू होता है है है
		किसी प्रश्न पर देर	तक र	रुको नहीं ।	

SPACE FOR ROUGH WORK

17 / 28

- 57. In the separation of Cu²⁺ and Cd²⁺ in 2nd group qualitative analysis of cations tetramimine copper (II) sulphate and tetrammine cadmium (II) sulphate react with KCN to form the corresponding cyano complexes. Which one of the following pairs of the complexes and their relative stability enables the separation of Cu²⁺ and Cd²⁺ ?
 - (1) $K_3[Cu(CN)_4]$ more stable and $K_2[Cd(CN)_4]$ less stable
 - (2) $K_2[Cu(CN)_4]$ less stable and $K_2[Cd(CN)_4]$ more stable
 - (3) $K_2[Cu(CN)_4]$ more stable and $K_2[Cd(CN)_4]$ less stable
 - (4) $K_3[Cu(CN)_4]$ less stable and $K_2[Cd(CN)_4]$ more stable
- **58.** Match the following

	Ore	Chemical Form		
(A)	Limonite	(i)	Fe ₂ O ₃ ·3H ₂ O	
(B)	Cryolite	(ii)	$Cu(OH)_2 \cdot 2CuCO_3$	
(C)	Calamine	(iii)	Na ₃ AlF ₆	
(D)	Azurite	(iv)	FeCO ₃	
		(v)	ZnCO ₃	

- (1) A-i, B-ii, C-iv, D-v
- (2) A-i, B-iii, C-v, D-ii
- (3) A-v, B-iii, C-iv, D-ii
- (4) A-iv, B-iv, C-i, D-iii

- 57. धनायनों के 2nd समूह के मात्रात्मक विश्लेषण में Cu²⁺ एवं Cd²⁺ का पृथक्करण होता है। ट्रेटाएमीन कॉपर (II) सल्फेट एवं ट्रेटाएमीन केडमियम (II) सल्फेट KCN के साथ अभिक्रिया करके संगत सायनो संकुल का निर्माण करते है। निम्न में से संकुल तथा उनके आपेक्षिक दृढ़ता का कौनसा समूह Cu²⁺ एवं Cd²⁺ के पृथक्करण के लिए सामर्थ्य रखाता है : -
 - (1) $K_3[Cu(CN)_4]$ अधिक स्थायी तथा $K_2[Cd(CN)_4]$ कम स्थायी
 - (2) $K_2[Cu(CN)_4]$ कम स्थायी तथा $K_2[Cd(CN)_4]$ अधिक स्थायी
 - (3) $K_2[Cu(CN)_4]$ अधिक स्थायी तथा $K_2[Cd(CN)_4]$ कम स्थायी
 - (4) $K_3[Cu(CN)_4]$ कम स्थायी तथा $K_2[Cd(CN)_4]$ अधिक स्थायी
- 58. सुमेलित कीजिए

	अयस्क	रासायनिक सुत्र		
(A)	लिमोनाइट	(i)	Fe ₂ O ₃ ·3H ₂ O	
(B)	क्रायोलाइट	(ii)	$Cu(OH)_2 \cdot 2CuCO_3$	
(C)	केलामाइन	(iii)	Na ₃ AlF ₆	
(D)	एजूराईट	(iv)	FeCO ₃	
		(v)	ZnCO ₃	

(1) A-i, B-ii, C-iv, D-v
 (2) A-i, B-iii, C-v, D-ii
 (3) A-v, B-iii, C-iv, D-ii

- (4) A-iv, B-iv, C-i, D-iii
- SPACE FOR ROUGH WORK

E / H

59. Match the column

	Column I	Column II		
(A)	$[NiCl_4]^{-2}$	(i)	Trigonal bi pyramidal	
(B)	$[Cu(NH_3)_4)^{2+}$	(ii)	Octahedral	
(C)	$[Cr(NH_3)_6]^{3+}$	(iii)	Square planer	
(D)	[Fe(CO) ₅]	(iv)	Tetrahedral	

- (1) A-iii, B-iv, C-i, D-ii
- (2) A-iii, B-iv, C-ii, D-i
- (3) A-iv, B-ii, C-iii, D-i
- (4) A-iv, B-iii, C-ii, D-i
- 60. Consider the following sequence of reactions-

Ketone
$$A \xrightarrow{1.C_2H_3MgBr}_{2.H_2O} B \xrightarrow{H_2SO_4, Heat}_{-H_2O} C \xrightarrow{1.O_3}_{2.Zn,H_2O}$$

(4) ¥

$$(1) \bigvee_{O} (2) \bigvee_{O} (2)$$

(3)

59. सुमेलित कीजिए :-

	कॉलम I	कॉलम II				
(A)	$[NiCl_4]^{-2}$	(i)	त्रिकोणीय द्वि पिरेमिडीय			
(B)	$[Cu(NH_3)_4)^{2+}$	(ii)	अष्टफलकोय			
(C)	$[Cr(NH_3)_6]^{3+}$	(iii)	समतल वर्गाकार			
(D)	[Fe(CO) ₅]	(iv)	चतुष्फलकीय			
(1)	(1) A-iii, B-iv, C-i, D-ii					

- (2) A-iii, B-iv, C-ii, D-i
- (3) A-iv, B-ii, C-iii, D-i
- (4) A-iv, B-iii, C-ii, D-i
- निम्नलिखित अभिक्रिया में 60.

Ketone
$$A \xrightarrow{1.C_2H_5MgBr} B \xrightarrow{H_2SO_4, Heat} C \xrightarrow{1.O_3} 2.Zn, H_2O$$

$$\bigwedge_{0}^{H} + \bigwedge_{0}^{H}$$
. किटोन (A) है-

$$(1) \bigvee_{O} (2)$$

$$(2) \bigvee_{0} (4) \bigvee_{0} (4)$$

स्वस्थ रहो, मस्त रहो तथा पढा़ई में व्यस्त रहो ।

(3)

SPACE FOR ROUGH WORK

19/28

	ALLEN	
Partle to Succos	CAREER INSTITUTE	

MAJOR TEST

28-03-2013

PART C - MATHEMATICS

63.	Six boy and six girls sit along a line alternatively	63.	6 लड़क आर 6 लड़ाकया का एक पाक्त में तथा एक गाल			
	with probability P_1 and along a circle (again		मेज पर एकान्तर क्रम में बिठाने की प्रायिकताऐं क्रमश: P, P,			
	P ₁		P			
	alternatively) with probability P_2 , then $\overline{P_2}$ is		हो तो $rac{\mathbf{r}_1}{\mathbf{P}_2}$ बराबर होगा-			
	equal to :-		-2			
	(1) 1 (2) $\frac{1}{2}$ (3) 6 (4) None		(1) 1 (2) $\frac{1}{-}$ (3) 6 (4)कोई नहीं			
	(1) (2) (3) (3) (4) None		5 (0) 0 (0) 0 (0)			
64.	If the sum of the series $\sum_{n=1}^{\infty} r^n = S$, for $ \mathbf{r} < 1$ then	64.	यदि श्रेणी $\sum_{n=1}^{\infty} r^n = S$ हो, जहां $ r < 1$ तो			
	r=0		r=0			
	the sum of the series $\sum_{r=0}^{\infty} r^{2n}$ is :-		श्रेणी $\displaystyle{\sum_{\mathrm{r=0}}^{\infty}}r^{2\mathrm{n}}$ का योग होगा-			
	(1) S^2 (2) $\frac{S^2}{2S+1}$ (3) $\frac{2S}{S^2-1}$ (4) $\frac{S^2}{2S-1}$		(1) S^2 (2) $\frac{S^2}{2}$ (3) $\frac{2S}{2}$ (4) $\frac{S^2}{2}$			
65.	25+1 $5-1$ $25-1If A1, A2; G1 G2 and H1, H2 be two AM's; GM's$	65	$2S+1$ S^2-1 $2S-1$ यदि किन्हीं दो संख्याओं के मध्य दो समान्तर माध्य गणोत्तर			
	and HM's between two numbers then the value $H^{1/2}$	0.5.	माध्य, हरात्मक माध्य क्रमश: A ₁ , A ₂ ; G ₁ , G ₂ एवं H ₁ , H ₂			
	G_1G_2		G_1G_2			
	of $\frac{1}{H_1H_2}$ is :-		ह ता $\frac{1}{H_1}$ बराबर होगा -			
	$A_1 + A_2$ $A_1 - A_2$		(1) $\frac{A_1 + A_2}{A_1 - A_2}$ (2) $\frac{A_1 - A_2}{A_1 - A_2}$			
	(1) $\overline{H_1 + H_2}$ (2) $\overline{H_1 + H_2}$		(1) $H_1 + H_2$ (2) $H_1 + H_2$			
	$A_1 + A_2$ $A_1 - A_2$		(2) $\frac{A_1 + A_2}{A_1 - A_2}$ (4) $\frac{A_1 - A_2}{A_1 - A_2}$			
	(3) $\frac{1}{H_1 - H_2}$ (4) $\frac{1}{H_1 - H_2}$		(3) $H_1 - H_2$ (4) $H_1 - H_2$			
	SDACE FOD DOLLCH WODY					

SPACE FOR ROUGH WORK

E/H

				MAJOR TEST
Pate in Succe		AIN 2	2013	28-03-2013
66. 67.	The remainder when 3^{37} is divided by 80 is:- (1) 78 (2) 3 (3) 2 (4) 35 The value of 'a' for which the system of equation $a^3x + (a + 1)^3y + (a + 2)^3 z = 0$ ax + (a + 1)y + (a + 2) z = 0 x + y + z = 0 has a non-zero solution is :- (1) 1 (2) 0 (3) -1 (4) 2	66. 67.	3^{37} को 80 से भाग देने पर शेषफल ह (1) 78 (2) 3 (3) 2 (4) 3 'a' का वह मान जिसके लिए $a^{3}x + (a + 1)^{3}y + (a + 2)^{3}z =$ ax + (a + 1)y + (a + 2) z = 0 x + y + z = 0 का अशून्य हल विद्यमान हो, होगा- (1) 1 (2) 0 (3) -1 (4) 2	होगा– 5 समीकरण निकाय 0
68.	A vector $\vec{\alpha} = a\hat{i} + b\hat{j} + c\hat{k}$ is said to be rational vector if a, b, c are all rational. If this vector $\vec{\alpha}$ having magnitude as positive integer, makes an angle $\frac{\pi}{4}$ with vector $\vec{\beta} = \sqrt{2}\hat{i} + 3\sqrt{2}\hat{j} + 4\hat{k}$, then $\vec{\alpha}$ always - (1) lies in xy plane (2) lies in xz plane	68.	एक सदिश $\vec{\alpha} = a\hat{i} + b\hat{j} + c\hat{k}$ को परि a, b, c सभी परिमेय हो। यदि सदिश धनात्मक पूर्णांक है, सदिश $\vec{\beta} = \sqrt{2}\hat{i} + \frac{\pi}{4}$ का कोण बनाता है, तो $\vec{\alpha}$ सदैव - (1) xy समतल में स्थित होगा (2) xz समतल में स्थित होगा	मेय सदिश कहेंगे, यदि $_{ec lpha}$, जिसका परिमाण $3\sqrt{2}\hat{j}+4\hat{k}$ के साथ
69.	(3) lies in yz plane (4) lies on x-axis Consider the family of lines $x(a + b) + y = 1$, where a, b and c are the roots of the equation $x^3 - 3x^2 + x + \lambda = 0$ such that $c \in [1,2]$. If the given family of lines makes triangle of area 'A' with coordinate axis, then maximum value of 'A' (in sq. units) will be - (1) $\frac{1}{4}$ (2) 1 (3) $\frac{1}{8}$ (4) $\frac{1}{2}$	69.	(3) yz समतल में स्थित होगा (4) x-अक्ष पर स्थित होगा माना रेखाओं का निकाय $x(a + b) +$ तथा c समीकरण $x^3 - 3x^2 + x + \lambda$ $c \in [1,2]$ है। यदि दिया गया रेखा नि साथ क्षेत्रफल 'A' का त्रिभुज बनाता है, मान (वर्ग इकाई में) होगा - (1) $\frac{1}{4}$ (2) 1 (3) $\frac{1}{8}$	y = 1 है, जहाँ a, b = 0 के मूल है तथा काय निर्देशी अक्षों के तो 'A' का अधिकतम (4) 1/2
	🙂 हमेशा	<u>म</u> ुस्कराते	रहें।	

SPACE FOR ROUGH WORK

21 / 28

Path to Suc		LEADER & ENTH	IUSI	AST COURSE		28-03-20	013
70.	A variable point 'P' i	s moving such that its	70.	एक चर बिन्दु 'P' इस	प्रकार	है कि इसकी	रेखा
	distances from a line	$\frac{x+1}{3} = \frac{y-2}{4} = \frac{z-7}{2}$ and		$\frac{x+1}{3} = \frac{y-2}{4} = \frac{z-7}{2}$	तथा बिन्दु	(4,5,8) से दूरी	समान
	a point (4,5,8) are eq locus of P, is -	ual, then vertex of the		है, तो P के बिन्दुपथ का श्	गीर्ष होगा -		
	$(1)\left(3,\frac{11}{2},\frac{17}{2}\right)$	(2) (6,4,7)		$(1)\left(3,\frac{11}{2},\frac{17}{2}\right)$	(2)	(6,4,7)	
	(3) (2,6,9)	$(4)\left(5,\frac{9}{2},\frac{15}{2}\right)$		(3) (2,6,9)	(4)	$\left(5,\frac{9}{2},\frac{15}{2}\right)$	
71.	Area of the ellipse $(2x + 3y)$ is equal to-	$(-5)^2 + 4(-3x + 2y + 1)^2 = 52$	71.	दीर्घवृत्त (2x + 3y – 5) ² का क्षेत्रफल होगा-	+ 4(-3)	$(x + 2y + 1)^2$	= 52
72.	(1) 8π (2) 4π If two tangents drawn from $y^2 = 4x$ be such that the double of the other, then (1) $9y = 2x^2$	(3) 2π (4) π om a point P to the parabola e slope of one tangent is P lies on the curve. :- (2) $9x = 2y^2$	72.	 (1) 8π (2) 4π यदि एक बिन्दु P से परवल रेखाओं में एक की प्रवणता तो P जिस वक्र पर है, व (1) 9y = 2x² 	(3) ई तय y ² = 4 , अन्य की ह है :- (2) ई	2π (4) a 4x पर खींची गइ 1 प्रवणता की दोन 9x = 2y ²	π ई स्पर्श गुनी है,
73.	(3) $2x = 9y^2$ The value of $\int_{0}^{\pi} \frac{x \tan}{\sec x + \sin x}$	(4) None of these $\frac{1x}{\cos x}$ dx is	73.	(3) $2x = 9y^2$ $\int_{0}^{\pi} \frac{x \tan x}{\sec x + \cos x} dx$ का	(4) इ मान है	इनमें से कोई ना	ही
74.	(1) $\pi^2/4$ (3) $3\pi^2/2$ A curve passes through	(2) $\pi^2/2$ (4) $\pi^2/3$ (2, 0) and the slope of	74.	 π²/4 3π²/2 एक वक्र बिन्दु (2, 0) से गु 	(2) 1 (4) 1 ज़रता है अं	τ ² /2 τ ² /3 गौर स्पर्श बिन्दु P	(x, y)
	tangent at a point $\frac{(x+1)^2 + y - 3}{(x+1)}$. Then	P(x, y) is equal to requation of the curve is		स्पर्शी को ढ़ाल जो $rac{(x+1)}{(x)}$ की समीकरण होगी	$(x^2 + y - x^2)^2 + (y - x^2$	3 – के बराबर है त	াৰ বন্ধ
	(1) $y = x^2 + 2x$ (3) $y = 2x^2 - x$	(2) $y = x^2 - 2x$ (4) None of these		(1) $y = x^2 + 2x$ (3) $y = 2x^2 - x$	(2) y (4) इ	$y = x^2 - 2x$ नमें से कोई नहीं	2

SPACE FOR ROUGH WORK

E/H

_				MAJOR TEST
Path in Succe		NIN 2	2013	28-03-2013
75.	The relation R in the \mathbf{R} of real numbers; defined	75.	एक सम्बन्ध R, वास्तविक संख्याओं	के समुच्चय R में इस
	as $R = \{(a, b) : a \le b^2\}$ then R is		प्रकार परिभाषित है R = {(a, b) :	$a \le b^2$ } तो R है।
	(1) Reflexive		(1) स्वतल्य	
	(2) Symmetric		(?) सममित	
	(3) Transitive			
	(4) neighter reflexive nor symmetric nor			<u> </u>
	transitive	-	(4) न स्वतुल्य, न समामत तथा न स	।क्रामक
76.	If $\cot \theta \cot 7\theta + \cot \theta \cot 4\theta + \cot 4\theta$	76.	4 $cot \theta cot 7\theta + cot \theta cot 70$	$t 4\theta + \cot 4\theta \cot$
	$\cot 7\theta = 1 \text{ then } \theta =$		$\theta = 1 \text{ der} \theta =$	(0
	(1) $n\pi$, $n \in \mathbb{Z}$ (2) $(2n + 1) \pi/2$, $n \in \mathbb{Z}$		(1) $n\pi$, $n \in \mathbb{Z}$ (2)	$(2n + 1) \pi/2, n \in \mathbb{Z}$
	(3) $n\pi + (-1)^n \pi/2$, $n \in \mathbb{Z}$ (4) $\frac{n\pi}{12}$, $n \in \mathbb{Z}$		(3) $n\pi + (-1)^n \pi/2$, $n \in \mathbb{Z}$ (4)	$\frac{n\pi}{12}, n \in \mathbb{Z}$
77.	In $\triangle ABC$, tan C < 0 then	77.	ΔABC में tan C < 0 हो, तब	
	(1) $\tan A \cdot \tan B > 1$		(1) $\tan A \cdot \tan B > 1$	
	(2) $\tan A + \tan B + \tan C < 0$		(2) $\tan A + \tan B + \tan C <$	0
	(3) $\tan A + \tan B + \tan C > 0$		(3) $\tan A + \tan B + \tan C$	> 0
	(4) None		(4) कोई नहीं	
78.	Let $L = \lim_{x \to a} \frac{x^{x} - a^{a}}{x - a}$ and $M = \lim_{x \to a} \frac{x^{x} - a^{a}}{x - a}$ (a > 0)	78.	माना $L = \lim_{x \to a} \frac{x^x - a^a}{x - a}$ एवं $M =$	$\lim_{x \to a} \frac{x^x - a^a}{x - a} (a > 0)$
	If $L = 2M$ then the value of 'a' is equal to		यदि L = 2M तो a का मान होगा	
	(1) e (2) e^2 (3) $1/e$ (4) $1/e^2$		(1) e (2) e^2 (3)	$1/e$ (4) $1/e^2$
79.	$f(x) = \begin{cases} x+1 \ ; \ x < 0 \\ \cos x \ ; \ x \ge 0 \end{cases}; At x = 0 : f(x) is :-$	79.	$f(x) = \begin{cases} x+1 \ ; \ x < 0 \\ \cos x \ ; \ x \ge 0 \end{cases} ; \ x = 0$	पर : f(x) होगा
	(1) Continuous (2) Derivable		(1) सतत (2)	अवकलनीय
	(3) Discontinuous (4) None		(3) असतत (4) न	कोई नहीं
80.	The length of the shortest path that be gives at	80.	बिन्दु (2,5) को वृत्त x ² + y ² + 12	x - 20 y + 120 = 0
	the point (2,5), touches the x-axis and then ends		के किसी बिन्दु से x-अक्ष को स्पर्श	करती हुयी न्यूनतम दूरी
	at a point on the circle $x^2 + y^2 + 12x = 20 x + 120 = 0$		ज्ञात करें	
	$\begin{array}{c} x + y + 12x - 20 \ y + 120 - 0 \end{array}$		(1) 13 (2) $4\sqrt{10}$ (3) 1	$(4) 6 + \sqrt{80}$
			(-, -, -, -, -, 10 (3)	(1) 0 1 109

SPACE FOR ROUGH WORK

				MAJOR TEST		
Path is Succ		IUSI	AST COURSE	28-03-2013		
81.	Let S be a non-empty subset of R.	81.	माना S, R का एक अरिक्त उपसमुच्च	य है।		
	Consider the following statement :		- निम्नलिखित कथन पर विचार कोजिये	:		
	p : There is a rational number $x \in S$ such that $x > 0$.		p : एक परिमेय संख्या x ∈ S इस प्र	हो कि x > 0		
	Which of the following statements is the		कथन p का निम्नलिखित में से कौनस	कथन		
	negation of the statement p?		निषेध (negation) है ?			
	(1) There is a rational number $x \in S$ such that $x \in O$		(1) एक परिमेय संख्या $x \in S$ इस प्र	कार है कि x ≤ 0		
	$X \ge 0$ (2) There is no rational number $y \in S$ such that		(2) ऐसी कोई परिमेय संख्या $x \in S$	नहीं है जिसके लिए		
	(2) There is no rational number $x \in S$ such that $x \leq 0$		$x \leq 0$			
	(3) Every rational number $x \in S$ satisfies $x \le 0$		(3) प्रत्येक परिमेय संख्या $x \in S$ के	लिए x ≤ 0		
	(4) $x \in S$ and $x \le 0 \Rightarrow x$ is not rational		(4) $x \in S$ तथा $x \le 0 \Rightarrow x$ परिमे	य संख्या नहीं है		
82.	For 100 observations following table was prepared:	82.	100 प्रेक्षणों के लिए निम्नलिखित सा	रणी तैयार की गई :		
	Class 0-10 10-20 20-30 30-40 40-50		वर्ग 0-10 10-20 20-30	30-40 40-50		
	f _i 8 30 b c d		f _i 8 30 b	c d		
	If median of the distribution is 23 then the		यदि बंटन की माध्यिका 23 है. तो b	का मान होगा :-		
	value of b will be :-		(1) 30 (2) 2	20		
	(1) 30 (2) 20 (3) 40 (4) Cap't be predicted		(3) 40 (4) য	ात नहीं किया जा सकता		
83.	Consider two lines :	83.	माना दो रेखाऐं :			
	$1 \cdot \frac{x-1}{z} = \frac{y-1}{z} = \frac{z}{z} \cdot 1 \cdot \frac{x-2}{z} = \frac{y+1}{z} = \frac{2z+1}{z}$		$L_1: \frac{x-1}{1} = \frac{y-1}{2} = \frac{z}{2}; L_2: \frac{x-1}{1}$	$\frac{2}{z} = \frac{y+1}{2} = \frac{2z+1}{2}$		
			गा 0 3 गा कथन 1 गा गा गान के	0 0		
	Statement-1 : $L_1 \ll L_2$ are parallel		4)41-1 : L ₁ 4 L ₂ समागारा ह			
	Statement-2 : $L_1 \propto L_2$ are identical (1) Statement-1 is true Statement-2 is true:		कथन-2: $L_1 \circ L_2$ समान ह			
	Statement-2 is not the correct explanation		(1) कथन-1 सही है और कथन-2 सही है	।कथन-2, कथन-1 का		
	of Statement-1.		सही स्पष्टीकरण नहीं है।			
	(2) Statement–1 is false, Statement–2 is true.		(2) कथन-1 गलत है और कथन-2	पही है।		
	(3) Statement-1 is true, Statement-2 is false.		(3) कथन-1 सही और कथन-2 गल	न है।		
	(4) Statement-1 is true, Statement-2 is true;					
	Statement-2 is the correct explanation of		(4) कथन-1 सहा ह आर कथन-	८ सहा हा कथन-2,		
	Statement-1.		कथन-1 का सही स्पष्टीकरण है।			

SPACE FOR ROUGH WORK

E/<u>H</u>

SPACE FOR ROUGH WORK

25/28

MAJOR TEST

28-03-2013

87. In the figure shown, radius of circle C_1 be r and

that of
$$C_2$$
 be $\frac{r}{2}$, where $r = \frac{1}{3}PQ$, then length

of AB is (where P and Q being centres of C₁ & C₂ respectively)

88. Consider four points A, B, C & D with position vectors \vec{a} , \vec{b} , \vec{c} and \vec{d} w.r.t. origin O. Also \vec{a} , \vec{b} , \vec{c} are non-coplanar and line OD intersects plane ABC at some point M such that $\overrightarrow{OM} = \vec{m}$.

Statement-1 : $\vec{m} = \frac{[\vec{a} \ \vec{b} \ \vec{c}]}{[\vec{d} \ \vec{b} \ \vec{c}] + [\vec{d} \ \vec{c} \ \vec{a}] + [\vec{d} \ \vec{a} \ \vec{b}]} \vec{d}$. Statement-2 : Four points A, B, C & M are

coplanar if $[\vec{a} \ \vec{b} \ \vec{c}] = [\vec{m} \ \vec{a} \ \vec{b}] + [\vec{m} \ \vec{b} \ \vec{c}] + [\vec{m} \ \vec{c} \ \vec{a}]$.

- (1) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1.
- (2) Statement-1 is false, Statement-2 is true.
- (3) Statement-1 is true, Statement-2 is false.
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation of Statement-1.

- **87.** दिये गये चित्र में, वृत्त $C_1^{}$ तथा वृत्त $C_2^{}$ की त्रिज्या क्रमश:
 - r तथा $\frac{r}{2}$ है, जहाँ $r = \frac{1}{3}PQ$, तो AB की लम्बाई होगा

(जहाँ P तथा Q क्रमश: C_1 तथा C_2 के केन्द्र है)

88. माना चार बिन्दु A, B, C तथा D जिनके मूल बिन्दु O के सापेक्ष स्थिति सदिश क्रमश: ā, b, c तथा d है तथा ā, b, c असमतलीय हैं और रेखा OD समतल ABC को किसी बिन्दु M पर इस प्रकार प्रतिच्छेद करती है कि OM = m हो।

कथन–1 :
$$\vec{m} = \frac{[\vec{a} \ \vec{b} \ \vec{c}]}{[\vec{d} \ \vec{b} \ \vec{c}] + [\vec{d} \ \vec{c} \ \vec{a}] + [\vec{d} \ \vec{a} \ \vec{b}]} \vec{d}$$

कथन–2: चार बिन्दु A, B, C तथा M समतलीय होंगे यदि $[\vec{a} \ \vec{b} \ \vec{c}] = [\vec{m} \ \vec{a} \ \vec{b}] + [\vec{m} \ \vec{b} \ \vec{c}] + [\vec{m} \ \vec{c} \ \vec{a}] \ \vec{e}$ ।

- (1) कथन-1 सही है और कथन-2 सही है।कथन-2, कथन-1 का सही स्पष्टीकरण नहीं है।
- (2) कथन-1 गलत है और कथन-2 सही है।
- (3) कथन-1 सही और कथन-2 गलत है।
- (4) कथन-1 सही है और कथन-2 सही है। कथन-2, कथन-1 का सही स्पष्टीकरण है।

SPACE FOR ROUGH WORK

Path is Sui		JEE-MA	AIN 2	2013	28-03-2013
89.	The area of the circles $x^2 + \frac{1}{2}$ (1) $(3\pi + \sqrt{3})$ (2) $(3\pi - \sqrt{3})$ (3) $(4\pi - 3\sqrt{3})$ (4) None of the statement of	e region enclosed between the two $y^2 = 1$ and $(x - 1)^2 + y^2 = 1$ is /2 /2 /2 /2 /2 //6 these 1 : The period of the function $\cos \frac{x}{2}$ + $\cos (\sin x)$ is 4π . 2 : Period of the function $\frac{ \cos x }{ \cos x }$ is $\frac{\pi}{2}$. t-1 is true, Statement-2 is true; t-2 is not the correct explanation nent-1. t-1 is false, Statement-2 is true. t-1 is true, Statement-2 is true. t-1 is true, Statement-2 is true; t-1 is true, Statement-2 is true. t-1 is true, Statement-2 is true. t-1 is true, Statement-2 is true; t-2 is the correct explanation of t-1. Your mo	89. 90.	दो वृत्तों $x^2 + y^2 = 1$ और $(x - 1)$ घिरा हुआ भाग का क्षेत्रफल है (1) $(3\pi + \sqrt{3})/2$ (2) $(3\pi - \sqrt{3})/2$ (3) $(4\pi - 3\sqrt{3})/6$ (4) इनमें से कोई नहीं कथन-1 : फलन $f(x)=\sin\left(\cos\frac{x}{2}\right)$ आवर्त 4π है। कथन-2 : फलन $f(x) = \frac{ \sin x + }{ \sin x + 6 ^2}$ है। (1) कथन-1 सही है और कथन-2 सहीई सही स्पष्टीकरण नहीं है। (2) कथन-1 गलत है और कथन-2 गल (3) कथन-1 सही और कथन-2 गल (4) कथन-1 सही है और कथन- कथन-1 का सही स्पष्टीकरण है	$\frac{1}{2}$ + y ² = 1 के बीच $\frac{1}{2}$ + cos (sin x) का $\frac{\cos x}{\cos x}$ का आवर्त $\frac{\pi}{2}$ है।कथन-2, कथन-1 का सही है। त है। 2 सही है।कथन-2,

SPACE FOR ROUGH WORK

27 / 28

MAJOR TEST

28-03-2013

SPACE FOR ROUGH WORK / रफ कार्य के लिये जगह

