LEADER & ENTHUSIAST COURSE

JEE-MAIN 2013

DATE: 25 - 03 - 2013

ТΜ

FULL SYLLABUS

		ANSWER KEY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 1 3 1 1 2 3 1 2 3 1 13 14 15 16 17 18 19 1 3 1 1 2 3 1 3 2 1 3 1 2 2 3 2 4 1 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 4 4 4 3 1 3 1 4 1 2 3 3 3 1 3 1 2 1 4 4 4 3 1 3 1 1 4 1 2 3 3 3 1 3 1 2																		
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	1	3	1	1	2	1	2	3	1	3	2	1	3	1	2	2	3	2	4	4
Que.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	4	4	4	3	1	3	1	1	4	1	2	3	3	3	1	3	1	2	1	3
Que.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	3	3	2	2	1	1	2	3	1	4	3	1	4	1	3	3	3	1	4	3
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans.	3	3	3	4	4	1	3	1	2	4	4	4	2	3	2	3	3	1	4	1
Que.	81	82	83	84	85	86	87	88	89	90										
Ans.	2	3	3	3	2	4	4	1	2	1										

HINT - SHEET

1.	Orbital angular momentum = $\sqrt{\ell(\ell+1)} \frac{h}{2\pi}$
2.	$(\Lambda_{\rm m}^{\infty})$ of ${\rm CaCl}_2 = (\Lambda_{\rm m}^{\infty})_{{\rm Ca}^{+2}} + 2(\Lambda_{\rm m}^{\infty})_{{\rm Cl}^{-}}$
	$= 119 + 2 \times 76$
	-119 ± 152
	= 119 + 132
	$= 271 \text{ s cm}^2 \text{ mol}^{-1}$
	$\left(\Lambda_{\mathrm{m}}^{\infty}\right)_{\mathrm{MgSO}_{4}} = \left(\Lambda_{\mathrm{m}}^{\infty}\right)_{\mathrm{Mg}^{+2}} + \left(\Lambda_{\mathrm{m}}^{\infty}\right)_{\mathrm{SO}_{4}^{-2}}$
	$= 106 + 160 = 266 \text{ s cm}^2 \text{ mol}^{-1}$
4.	2.303 $\log_{10} K = 2.303 \log_{10} A = \frac{E_a}{RT}$

 $\therefore \quad \frac{E_a}{2.303R} = 1.25 \times 10^4$ $\therefore \quad E_a = 1.25 \times 10^4 \times 2.303 \times 8.314$ $= 239.34 \times 10^3 J$ $\log A = 14 \therefore A = 1 \times 10^{14}$ 5. $\operatorname{NH}_{4}\operatorname{HS}(s) \rightleftharpoons \operatorname{NH}_{3}(g) + \operatorname{H}_{2}\operatorname{S}(g)$ x + x = 1.12 atm $\operatorname{K}_{p} = \frac{\left(\frac{x}{2x} \times 1.12\right)\left(\frac{x}{2x} \times 1.12\right)}{1}$

 $K_p = 0.3136 \text{ atm}^2$

6. For hydrolysis of WAWB type salt

$$h = \sqrt{\frac{K_w}{K_a.K_b}} = 0.2$$

7.
$$\Delta E = q_v = -321.3 \text{ kJ/mol}$$

 $\Delta H = q_p = \Delta E + (\Delta ng)RT$

C₆H₅COOH(l) +
$$\frac{15}{2}$$
 O₂(g) → 7CO₂(g) + 3H₂O(l)
Δng = 7 - $\frac{15}{2}$ = $\frac{-1}{2}$
ΔH = -321.3 + $\left(\frac{-1}{2}\right)$ (8.314) (300) × 10⁻³
= -322.54 kJ

LEADER & ENTHUSIAST COURSE

~

23.
$$O_{CHO}^{CHO} \xrightarrow{OH^{\Theta}} O_{CH_2-OH}^{COO^{\Theta}} \xrightarrow{H^{\Theta}} O_{CH_2}^{U} O_{CH_2}^$$

- **24.** -Cl is o/p directing due to +M & weak deactivating group deu to -I.
- **25.** Acidic strength $\uparrow \propto \text{Ka} \uparrow \propto \frac{1}{\text{pk}_a \downarrow}$
- **26.** Stability of alkene $\propto \frac{1}{\text{H.O.H.}}$.
- **27.** is aromatic in nature (highly stable).

28. Et Et Et Et Et
OH OH OH OH
Et C - C - Et
$$\xrightarrow{H^{\oplus}}_{-H_2O}$$
 Et C - C - C - Et $\xrightarrow{H^{\oplus}}_{-H_2O}$ Et C - C - C - Et $\xrightarrow{H^{\oplus}}_{-H_2O}$ Et Et $\xrightarrow{H^{\oplus}}_{-H_2O}$ Et $\xrightarrow{H^{\oplus}}_{-H_2O}$ Et $\xrightarrow{H^{\oplus}}_{-H_2O}$ Et $\xrightarrow{H^{\oplus}}_{-H_2O}$ Et $\xrightarrow{H^{\oplus}}_{-H_2O}$ Et $\xrightarrow{H^{\oplus}}_{-H_2O}$ Et $\xrightarrow{H^{\oplus}}_{-H_2O}$

32.
$${}^{2n}C_2 - n = \frac{2n(2n-1)}{2} - n = 2n(n-1)$$

33. P(A) = 0.59, P(B) = 0.30 $P(A \cap B) = 0.21$

$$P(\overline{A} \cap \overline{B}) = 1 - P(A \cup B)$$

= 1 - {P(A) + P(B) - P(A \cap B)}
= 1 - {0.59 + 0.30 - 0.21}
= 0.32

34. $\alpha + \beta + \gamma = 2$ $\alpha\beta + \beta\gamma + \gamma\alpha = 3$ $\alpha\beta\gamma = 2$ $\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha} = \frac{\gamma + \alpha + \beta}{\alpha\beta\gamma} = \frac{2}{2} = 1$

$$35. \quad \left(\frac{\underline{|4|}}{\underline{|1||2|2}} \times \underline{|3|}\right) \times \left(^{2+3-1}C_{3-1}\right)$$

 $36\times 6=216$

36. Let the first instalment be a and common difference of AP be d.Given, 3600 = sum of 40 terms

$$= \frac{40}{2} [2a + (40 - 1)d]$$

$$\Rightarrow 2a + 39d = 180 \qquad \dots (i)$$

After 30 instalments one-third of the loan is unpaid.

Now
$$\frac{3600}{3} = 1200$$
 is unpaid and 2400 is paid

So,
$$2400 = \frac{30}{2} [2a + (30 - 1)d]$$

 $\Rightarrow 2a + 29d = 160$ (ii)

Solving eq. (i) & (ii) a = 51, d = 2So 8th instalment = a + (8 - 1) d = 65

37.
$$(1 - x)^5 (1 + x)^4 (1 + x^2)^4$$

⇒ $(1 - x^2)^4 (1 + x^2)^4 (1 - x) = (1 - x^4)^4 (1 - x)$
∴ Coefficient of x^{13} in
 $\{(1 - x) (1 - 4x^4 + 6x^8 - 4x^{12}...)\} = 4$

38. A.(Adj. A) =
$$|A| I$$

 $|A| = xyz - 8x - 3(z - 8) + 2(2 - 2y)$
 $= xyz - (8x + 3z + 4y) + 28$
 $= 50 - 30 + 28 = 48$

$$\therefore A.(Adj A) = 48 I = \begin{pmatrix} 48 & 0 & 0 \\ 0 & 48 & 0 \\ 0 & 0 & 48 \end{pmatrix}$$

39. Radius of the circle = Perpendicular distance of (1, 1) from y - 3x = 0

$$=\frac{2}{\sqrt{10}}$$

Let the other tangent be y - kx = 0 \Rightarrow Perpendicular distance from (1, 1) = radius

$$\Rightarrow \frac{1-k}{\sqrt{1+k^2}} = \frac{2}{\sqrt{10}} \qquad \Rightarrow \quad k = 3, \frac{1}{3}$$

Therefore other tangent is $y = \frac{1}{3}x$

JEE-MAIN 2013

AD and AE meet at A therefore intersection of these two lines will give the coordinates of A which is (-3, 2).

Let coordinates of B is (h, k)

 \Rightarrow Slope of BC × Slope of AD = -1

$$\Rightarrow \quad \frac{k+1}{h-4} = \frac{-3}{2}$$
$$\Rightarrow \quad 3h+2k = 10 \qquad \dots(i)$$

Also mid point of BC lies on AE

$$\Rightarrow \quad \left(\frac{4+h}{2}, \frac{-1+k}{2}\right) \text{ satisfies } 2x + 3y = 0$$
$$\Rightarrow \quad 2h + 3k = -5 \qquad \dots \text{(ii)}$$

Solving (i) and (ii) we get h = 8 and k = -7Therefore, A = (-3, 2), B = (8, -7) and C = (4, -1)

:. Slope
$$AB = \frac{-7-2}{8+3} = \frac{-9}{11}$$

41. Let the equation of the hyperbola be

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
where $b^2 = a^2(e^2 - 1)$
Then from the given facts
 $2ae = 2 \times 10 \Rightarrow ae = 10$
Also $\frac{2a}{e} = 2a'e'$
 $\Rightarrow \quad \frac{2a}{e} = 2 \times 10 \times \frac{3}{5} \Rightarrow \frac{a}{e} = 6$
 $(\frac{3}{5} \text{ is the eccentricity of the ellipse})$
We easily get $a^2 = 60$, $e^2 = \frac{100}{60}$
Hence $b^2 = a^2(e^2 - 1)$

$$= 60\left(\frac{100}{60} - 1\right) = 40$$

$$\Rightarrow \qquad \text{Equation of hyperbola is} \\ \frac{x^2}{60} - \frac{y^2}{40} = 1$$

43. Required equation is $(\overline{r} - \overline{a}) \cdot \overline{b} \times \overline{c} = 0$

(Passing through $A(\overline{a}), B(\overline{b}), C(\overline{c})$)

45.
$$f''(x) = \sec^{2} x - 1$$

Integrating $f'(x) = \tan x - x + c_{1}$
But $f'(0) = 0 - 0 + c_{1} \Rightarrow c_{1} = 0$
 $\Rightarrow f'(x) = \tan x - x$
Again Integrating
 $f(x) = \log \sec x - \frac{x^{2}}{2} + c_{2}$ but $f'(0) = 0$
 $\Rightarrow c_{2} = 0$
 $\Rightarrow f(x) = \log \sec x - \frac{x^{2}}{2}$.
1

46. Putting
$$t = \frac{1}{y}$$

$$= \int_{1/e}^{\tan x} \frac{t}{1+t^{2}} dt + \int_{e}^{\tan x} \frac{y}{\left(1+\frac{1}{y^{2}}\right)} \times \frac{-1}{y^{2}} dy$$
$$= \int_{1/e}^{\tan x} \frac{t}{1+t^{2}} dt + \int_{\tan x}^{e} \frac{y}{1+y^{2}} dy$$
$$= \int_{1/e}^{\tan x} \frac{t}{1+t^{2}} dt + \int_{\tan x}^{e} \frac{t}{1+t^{2}} dt (By \text{ prop } (1))$$

$$= \int_{1/e}^{e} \frac{t}{1+t^2} dt = \frac{1}{2} \left[\ell n(1+t^2) \right]_{1/e}^{e} = 1.$$

∴ y = 1

LEADER & ENTHUSIAST COURSE

MAJOR TEST 25-03-2013

47. For
$$x \in [-2, 2]$$
; $-\frac{1}{2} \le \frac{x}{4} \le \frac{1}{2}$
 $\cos \frac{x}{4} \ge \cos^2 \frac{x}{4}$
i.e. $\left(\sin^2 \frac{x}{4} + \cos \frac{x}{4}\right) \ge 1$
Also, $\left(\sin^2 \frac{x}{4} + \cos \frac{x}{4}\right) < 2$
 $\therefore \left[\sin^2 \frac{x}{4} + \cos \frac{x}{4}\right] = 1$

Required Area = $2(\text{Area of sector}) + \text{Area of } \Delta$

$$= 2\left(\frac{1}{2}r^{2}\theta\right) + \frac{1}{2} \times 2\sqrt{3} \times 1$$
$$= 4\frac{\pi}{6} + \sqrt{3}$$
$$= \left(\frac{2\pi}{3} + \sqrt{3}\right) \text{ square unit.}$$
$$\text{coty cosecy } \frac{dy}{dx} + \text{cosecy } \frac{1}{x} = \frac{1}{x^{2}}$$
$$\text{Put cosecy} = z$$

$$-\operatorname{cosecy \ coty \ } \frac{dy}{dx} = \frac{dz}{dx}$$

$$-\frac{dz}{dx} + z \cdot \frac{1}{x} = \frac{1}{x^2}$$

$$\Rightarrow \frac{dz}{dx} - \frac{z}{x} = -\frac{1}{x^2} \quad \therefore \text{ I.F.} = e^{\int -\frac{1}{x} \frac{dx}{dx}} = \frac{1}{x}$$

$$\therefore \text{ Solution is } z \cdot \frac{1}{x} = -\int \frac{1}{x^3} dx + K$$
or $\frac{1}{x} \operatorname{cosec \ } y = \frac{1}{2x^2} + K.$

57. Statement-1 : The inverse of adiagonal matrix is always a diagonal matrix.Statement-2 :

$$|AB^{-1}| = |A| \cdot |B^{-1}| = |A| |B^{-1}| = (-6)\left(\frac{1}{2}\right) = -3$$

So statement-1 is true & statement-2 is false.

- **58.** Lines are inter secting.
- **61.** PV = μ RT

$$\Rightarrow V \propto \frac{T}{P}$$
 (:: μ and R are fixed)

₽

Since, T increases rapidly and P increases slowly thus volume of the gas increases.

62. From ideal gas equation PV = RT(i) or $P\Delta V = R\Delta T$ Dividing equation (ii) by (i) we get

$$\frac{\Delta V}{V} = \frac{\Delta T}{T} \Rightarrow \frac{\Delta V}{V\Delta T} = \frac{1}{T} = \delta$$
 (given)

 $\therefore \delta = \frac{1}{T}$. So the graph between δ and T will

be rectangular hyperbola

63.
$$h = \frac{T_1 - T_2}{T_1} = \frac{W}{Q} \implies W = \frac{Q(T_1 - T_2)}{T_1}$$
$$= \frac{6 \times 10^4 [(227 + 273) - (273 + 127)]}{(227 + 273)}$$
$$= \frac{6 \times 10^4 \times 100}{500} = 1.2 \times 10^4$$

64.
$$W_{BCOB} = - \text{ Area of triangle BCO} = \frac{-P_0 V_0}{2}$$

$$W_{AODA} = +$$
 Area of triangle AOD = $+\frac{+r_0v_0}{2}$

Parallel beam comes from infinity i.e. source is at infinity hence it is a plane wavefront.

48.

...(i)

JEE-MAIN 2013

81. $\mu(I) = \mu_0 + \mu_2 I$ $r \uparrow I \downarrow \mu \downarrow$

$$v = \frac{c}{\mu}$$
 $v\uparrow$ (minimum at the axis)

- 82. Converging
- 83. $E = W_0 + eV_0 \implies 4 eV = 2 eV + eV_0$ $\implies V_0 = 2 \text{ volt}$

$$\Rightarrow \quad \lambda = \sqrt{\frac{150}{2}} = \sqrt{75} \text{ Å} = 5\sqrt{3} \text{ Å}$$

84. Let us assume that the initial total number of radioactive substances are the same. Smaple-1 : Half life $T_{1/2} = 1$ year Smaple-1 : Half life $T_{1/2} = 2$ year

		1Yr	2Yr	3Yr	4Yr	5Yr	6Yr
Sample-1	Ν	N ₀ /2	N ₀ /4	N ₀ /8	N ₀ /16	N ₀ /32	N ₀ /64
Sample-2	Ν		N ₀ /2		N ₀ /4		N ₀ /8

$$\frac{\mathrm{dN}_{1}}{\mathrm{dt}} = -\lambda_{1} \cdot \frac{\mathrm{N}_{0}}{64} \implies \frac{\mathrm{dN}_{1}}{\mathrm{dt}} = -\frac{0.694}{1 \mathrm{yr}} \cdot \frac{\mathrm{N}_{0}}{64}$$
$$\frac{\mathrm{dN}_{2}}{\mathrm{dt}} = -\lambda_{2} \cdot \frac{\mathrm{N}_{0}}{8} \implies \frac{\mathrm{dN}_{2}}{\mathrm{dt}} = -\frac{0.694}{2 \mathrm{yr}} \cdot \frac{\mathrm{N}_{0}}{8}$$

85. Let ground state energy (in eV) be E_1 . Then from the given condition

$$E_{2n} - E_{1} = 204 \text{ eV} \text{ or } \frac{E_{1}}{4n^{2}} - E_{1} = 204 \text{ eV}$$

$$\Rightarrow E_{1} \left(\frac{1}{4n^{2}} - 1 \right) = 204 \text{ eV} \qquad \dots (i)$$
and $E_{2n} - E_{n} = 40.8 \text{ eV}$

$$\Rightarrow \frac{E_{1}}{4n^{2}} - \frac{E_{1}}{n^{2}} = E_{1} \left(-\frac{3}{4n^{2}} \right) = 40.8 \text{ eV}$$
From equation (i) and (ii)

From equation (i) and (ii),

$$\frac{1 - \frac{1}{4n^2}}{\frac{3}{4n^2}} = 5 \implies n = 2$$

- **86.** In irreversible process there always occurs some loss of energy. This is because energy spent in working against the dissipative force is not recovered back. Some irreversible process occurs in nature such as friction where extra work is done to cancel the effect of friction. Salt dissolves in water but a salt does not separate by itself into pure salt and pure water.
- **90.** The energy gap between valence band and conduction band in germanium is 0.76 eV and the energy gap between valence band and conduction band in silicond is 1.1 eV. Also it is true that thermal energy produces fewer minority carriers in silicon that in germanium.