i argeitisto secure (5000 kan kinuliten MAIN 240) k

FORM NUMBER

CLASSROOM CONTACT PROGRAMME (ACADEMIC SESSION 2012-2013)

LEADER & ENTHUSIAST COURSE JEE-MAIN 2013

MAJOR TEST # 05

DATE: 21 - 03 - 2013

FULL SYLLABUS

IMPORTANT INSTRUCTIONS

- 1. Immediately fill in the particulars on this page of the Test Booklet with *Blue/Black Ball Point Pen*. Use of pencil is strictly prohibited.
- 2. The candidates should not write their Form Number anywhere else (except in the specified space) on the Test Booklet/Answer Sheet.
- The test is of 3 hours duration.
 The Test Booklet consists of 90 questions. The maximum marks are 360.
- There are *three* parts in the question paper.
 The distribution of marks subjectwise in each part is

The distribution of marks subjectwise in each part is as under for each correct response.

Part A – Mathematics (120 marks) – 30 Questions.

Questions No. 1 to 30 carry 4 marks each = 120 Marks

Part B – Physics (120 marks) – 30 Questions.

Questions No. 31 to 60 carry 4 marks each = 120 Marks

Part C – Chemistry (120 marks) – 30 Questions.

- Questions No. 61 to 90 carry 4 marks each = 120 Marks
 6. One Fourth mark will be deducted for indicated incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the Answer Sheet.
- 7. Use *Blue/Black Ball Point Pen* only for writting particulars/marking responses on *Side-1* and *Side-2* of the Answer Sheet. *Use of pencil is strictly prohibited*.
- No candidate is allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone any electronic device etc, except the Identity Card inside the examination hall/room.
- 9. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 10. On completion of the test, the candidate must hand over the Answer Sheet to the invigilator on duty in the Room/Hall. However, the candidate are allowed to take away this Test Booklet with them.
- Do not fold or make any stray marks on the Answer Sheet.

महत्वपूर्ण सूचनाएँ

- परीक्षा पुस्तिका के इस पृष्ठ पर आवश्यक विवरण नीले/काले बॉल पाइंट पेन से तत्काल भरें। पेन्सिल का प्रयोग बिल्कुल वर्जित हैं।
- परीक्षार्थी अपना फार्म नं. (निर्धारित जगह के अतिरिक्त) परीक्षा पुस्तिका/ उत्तर पत्र पर कहीं और न लिखें।
- परीक्षा की अवधि 3 घंटे है।
- 4. इस परीक्षा पुस्तिका में 90 प्रश्न हैं। अधिकतम अंक 360 हैं।
- प्रश्न पत्र में तीन भाग हैं।
 प्रत्येक भाग में प्रत्येक सही उत्तर के लिये अंकों का विषयवार वितरण नीचे दिए अनुसार होगा।

भाग **A** – गणित (**120** अंक) – **30** प्रश्न प्रश्न संख्या 1 से 30 तक प्रत्येक 4 अंक का है = 120 अंक भाग **B –** भौतिक विज्ञान (**120** अंक) – **30** प्रश्न

प्रश्न संख्या 31 से 60 तक प्रत्येक 4 अंक का है = 120 अंक भाग **C –** रसायनिक विज्ञान (**120** अंक) **– 30** प्रश्न प्रश्न संख्या 61 से 90 तक प्रत्येक 4 अंक का है = 120 अंक

- प्रत्येक गलत उत्तर के लिए उस प्रश्न के कुल अंक का एक चौथाई अंक काटा जायेगा। उत्तर पुस्तिका में कोई भी उत्तर नहीं भरने पर कुल प्राप्तांक में से ऋणात्मक अंकन नहीं होगा।
- उत्तर पत्र के पृष्ठ-1 एवं पृष्ठ-2 पर वांछित विवरण एवं उत्तर अंकित करने हेतु केवल नीले/काले बॉल पाइंट पेन का ही प्रयोग करें। पेन्सिल का प्रयोग बिल्कुल वर्जित है।
- 8. परीक्षार्थी द्वारा परीक्षाकक्ष/हॉल में परिचय पत्र के अलावा किसी भी प्रकार की पाठ्य सामग्री मुद्रित या हस्तलिखित कागज की पर्चियों, पेजर, मोबाइल फोन या किसी भी प्रकार के इलेक्ट्रानिक उपकरणों या किसी अन्य प्रकार की सामग्री को ले जाने या उपयोग करने की अनुमति नहीं हैं।
- 9. रफ कार्य परीक्षा पुस्तिका में केवल निर्धारित जगह पर ही कीजिये।
- 10. परीक्षा समाप्त होने पर, परीक्षार्थी कक्ष/हॉल छोड़ने से पूर्व उत्तर पत्र कक्ष निरीक्षक को अवश्य सौंप दें। परीक्षार्थी अपने साथ इस परीक्षा पुस्तिका को ले जा सकते हैं।
- 11. उत्तर पत्र को न मोड़ें एवं न ही उस पर अन्य निशान लगाऐं।

Do not open this Test Booklet until you are asked to do so / इस परीक्षा पुस्तिका को जब तक ना खोलें जब तक कहा न जाऐ।

Corporate Office "SANKALP", CP-6, Indra Vihar, Kota (Rajasthan)-324005 Trin : +91 - 744 - 2436001 Fax : +91-744-2435003 E-Mail: info@allen.ac.in Website: www.allen.ac.in

						MAJOR	ГЕЅТ
Path is Su		JEE-MA	AIN 2	2013		21-03-2	2013
HA	$\overline{VE} \ CONTROL \longrightarrow HAV$	E PATIENCE —	→ HA	VE CONFIDENCE	⇒ 100	% SUCC	ESS
	В	EWARE OF NEG	GATIV	E MARKING			
		PART A - MA	THE	MATICS			
1.	4 points out of 8 points in a	plane are collinear.	1.	एक समतल में 8 बिन्दु है,	जिनमें 4 सं	रेखीय हो तो इ	नसे बनने
	Number of different quadrilateral that can be			वाले चतर्भजों की संख्या व	होगी-		
	formed by joining them is	:-		(1) (0			
	(1) 69 (2)	53		(1) 69	(2):	55	
	(3) 17 (4)	None of these		(3) 17	(4) इ	नमें से कोई न	नहीं
2.	The number of real solution	n of equation	2.	समीकरण $1 + e^x - 1 $:	$= e^{x}(e^{x} -$	2) के वास्तवि	त्रक हलों
	$1 + e^{x} - 1 = e^{x}(e^{x} - 2)$ is:-			की संख्या होगी -			
	(1) 1 (2)	2		(1) 1	(2) 2	2	
	(3) 3 (4)	No solution		(3) 3	(4) ح	होई हल नहीं 	
3.	A natural number is selecte	d at random from	3.	समुच्चय 1≤x≤100 (जहॉॅं x∈N) में से एक प्राकृत संख्य			त संख्या
	the set $1 \le x \le 100$. The pr	robability that the		चयन करने पर उसके असमिका x^2 – $13\mathrm{x}$ \leq 30 को सन्तुष्ट			ो सन्तुष्ट
	number satisfy the inequation	$x^2 - 13x \le 30$ is:-		करने की प्रायिकता होगी-			
	9	3		9		3	
	(1) $\frac{1}{50}$ (2)	20		(1) $\frac{1}{50}$	(2)	20	
	2			2			
	(3) $\frac{2}{11}$ (4)	None of these		(3) $\frac{2}{11}$	(4) इ	नमें से कोई न	नहीं
	11						
4	$\sqrt{3}+i$	4 1 1 1 1 1 1 1 1 1 1	4	यदि $7 = \frac{\sqrt{3+i}}{m}$ हो (ज	ắti= √_	_ 1) तो (7 ¹⁰¹ -	+ i ¹⁰³) ¹⁰⁵
4.	If $Z \equiv \frac{1}{2}$ (where $I \equiv \sqrt{-1}$), then $(Z^{101} + 1^{105})^{105}$		2	et 1 – V	1), (2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	is equal to :			का मान होगा –			
	(1) Z (2) Z^2 (3)	Z^{3} (4) Z^{4}		(1) Z (2) Z^2	(3) 2	Z^3 (4)	Z^4
_	$(Z-2)$ π	a	_	$(Z-2) \pi$	>	•	<u> </u>
5.	It arg $\left(\frac{1}{Z+2}\right)^{=} = \frac{1}{3}$ then le	ocus of complex	5.	$\operatorname{alg}\left(\frac{1}{Z+2}\right) = \frac{1}{3} \operatorname{cl} \overline{d}$	१। साम्मश्र	सख्या Z का	ाबन्दुपथ
	number Z is :-			दोगा_			
	(1) A circle (2)	Major arc of circle		्या (1) वत्त	(2) ह	ान का दीर्घ च	ग्राप
	(3) Minor arc of circle (4)	Straight line		(3) वृत्त का लघुचाप	(2) ५ (4) र	गरल रेखा	
		SDACE FOD D	OUCU				

								MAJO	R TEST
Path to Succ			LEADER & ENT	HUSI	AST COU	JRSE		21–0	3–2013
6.	If for an $a_1 + a_3 + a_5 =$ then the value (1) -12 (3) -18	AP a_1 , a_2 -12 and a_3 ie of a_2 +	$a_2, a_3, \dots, a_n, \dots, a_n, \dots, a_1, a_2, a_3 = 8$ $a_4 + a_6$ equals :- (2) -16 (4) -21	6.	यदि किसी स के लिए a_1 + तो $a_2 + a_4 +$ (1) -12 (3) -18	ामान्तर श्रेणी $a_3 + a_5 = -12$ • a_6 का मान हे	a ₁ , a ₂ , 2 एवं a ोगा- (2) - (4) -	a_3 ,a $a_1 a_2 a_3 =$ -16 -21	
7.	If in a GP of the first n term of n terms ar then S ₁ , S ₂ , S (1) AP (3) HP	³ 3n terms, ns, S ₂ the s nd S ₃ the s S ₃ are in :-	S ₁ denotes the sum of sum of the second block um of the last n terms, (2) GP (3) None of these p^2	7.	यदि 3n पदी व S ₁ , अगले n ¹ S ₃ हो तो S ₁ , (1) समान्तर 9 (3) हरात्मक 9	ाली किसी गुणो पदों का योग S S ₂ , S ₃ होंगे – प्रेढ़ी में श्रेढ़ी में	तर श्रेढ़ी ₂ तथा 3 (2) गु (3) इ	मे प्रथम n नन्तिम n पुणोत्तर श्रे नमें से क 2	्पदो का योग पदों का योग ड़ी में ोई नहीं
8.	If $\begin{vmatrix} 2bc - a \\ c^2 \\ b^2 \end{vmatrix}$ = (a ³ + b ³ + (1) 2 (3) 3	$\frac{2ca - b^2}{a^2}$ $c^3 + kabc)$	$\begin{vmatrix} b \\ a^2 \\ 2ab - c^2 \end{vmatrix}$ ² then k is equal to :- (2) -2 (4) -3	8.	$\frac{26c - 2}{c^2}$ $= (a^3 + b^3 + (1) 2$ $(3) 3$	$2ca - b^{2}$ a^{2} $+ c^{3} + kabc)^{3}$	a ² 2ab - ² तो k (2) - (4) -	2 -c ² बराबर है -2 -3	-
9.	If $(-2, 6)$ is the respect to the function $(1) 3x - 2y = (3) 2x + 3y$	he image e line L = + 5 - 5	of the point (4, 2) with = 0, then L = (2) $3x - 2y + 10$ (4) $6x - 4y - 7$	9.	यदि रेखा L = (-2, 6) हो, (1) 3x - 2 (3) 2x + 3	= 0 के सापेक्ष तो L = y + 5 y – 5	बिन्दु (2) 3 (4) ((4, 2) - 3x - 2y 5x - 4y	हा प्रतिबिम्ब 7 + 10 7 − 7
10.	The line $\frac{x}{x}$ curve $xy = c$ (1) ±1 ($\frac{-2}{3} = \frac{y+1}{2}$ $z^{2}, z = 0$ $z^{2} \pm \frac{1}{3}$	$= \frac{z-1}{1}$ intersects the if c is equal to (3) $\pm \sqrt{5}$ (4) None	10.	यदि रेखा z = 0 को ! (1) ±1	$\frac{x-2}{3} = \frac{y+2}{2}$ प्रतिच्छेद करती (2) $\pm \frac{1}{3}$	1 = z − 1 है तो (3) ±	¹ वक्र ⇒ cकामा = √5	xy = c ² , न होगा (4) कोई नहीं
			😳 हमेशा र	् मुस्कराते	रहें।)				
	SPACE FOR BOUCH WORK								

JEE-MAIN 2013

11.	The tangent and normal at the point P (18, 12) of the parabola $y^2 = 8x$ intersects the x-axis at the points A and B respectively. The equation of the circle through P, A and B is given by:- (1) $x^2 + y^2 + 4x - 540 = 0$ (2) $x^2 + y^2 - 6x - 360 = 0$ (3) $x^2 + y^2 - 4x - 396 = 0$ (4) $x^2 + y^2 - 2x - 444 = 0$	11.	परवलय y ² = 8x के बिन्दु P (18, 12) पर स्पर्श रेखा एवं अभिलम्ब x-अक्ष को A व B पर मिलते है, तो उस वृत्त का समीकरण जो P, A व B से गुजरता है :- (1) x ² + y ² + 4x - 540 = 0 (2) x ² + y ² - 6x - 360 = 0 (3) x ² + y ² - 4x - 396 = 0 (4) x ² + y ² - 2x - 444 = 0
12.	If $\vec{r} = \lambda(\vec{a} \times \vec{b}) + \mu(\vec{b} \times \vec{c}) + \nu(\vec{c} \times \vec{a}), [\vec{a} \vec{b} \vec{c}] = \frac{1}{8}$	12.	$\overline{\mathbf{u}}[\vec{\mathbf{c}} \ \vec{\mathbf{r}} = \lambda(\vec{\mathbf{a}} \times \vec{\mathbf{b}}) + \mu(\vec{\mathbf{b}} \times \vec{\mathbf{c}}) + \nu(\vec{\mathbf{c}} \times \vec{\mathbf{a}}), \left[\vec{\mathbf{a}} \ \vec{\mathbf{b}} \ \vec{\mathbf{c}}\right] = \frac{1}{8}$
	and $\vec{r} \cdot (\vec{a} + \vec{b} + \vec{c}) = 8$ then $\lambda + \mu + \nu$ is equal to (1) 8 (2) 16 (3) 24 (4) 64		एवं $\vec{r}.(\vec{a}+\vec{b}+\vec{c}) = 8$ तो $\lambda + \mu + \nu$ बराबर है (1) 8 (2) 16 (3) 24 (4) 64
13.	If the eccentricity of the hyperbola $x^2 - y^2 \sec^2\theta = 4$ is $\sqrt{3}$ times the eccentricity of the ellipse $x^2 \sec^2\theta$	13.	यदि अतिपरवलय x ² – y ² sec ² θ = 4 को उत्केन्द्रता, एक
14.	18 $\sqrt{3}$ times the eccentricity of the ellipse x-sec ² 0 + y ² = 16, then the value of θ equals to :- (1) $\pi/6$ (2) $3\pi/4$ (3) $\pi/3$ (4) $\pi/2$ If the line $3x - 4y - k = 0$ (k > 0) touches the circle $x^2 + y^2 - 4x - 8y - 5 = 0$ at (a, b) then k + a + b is equal to :- (1) 20 (2) 22 (3) -30 (4) -28	14.	c) a q q π x^{2} sec ² θ + y^{2} = 16, and 3 can- g (1 and $\sqrt{3}$ - $\sqrt{3}$ - $\sqrt{3}$ c) $\pi/3$ (2) $3\pi/4$ (3) $\pi/3$ (4) $\pi/2$ a d $\pi/2$ b d $\pi/2$ a d $\pi/2$ a d $\pi/2$ a d $\pi/2$ b d $\pi/2$ a d $\pi/2$ b d $\pi/2$ b d $\pi/2$ a d $\pi/2$ b d $\pi/2$ b d $\pi/2$ b d $\pi/2$ b d $\pi/2$ b d $\pi/2$ c d
15.	$\int_{0}^{\pi} \sin x - \frac{2x}{\pi} dx \text{ is equal to}$	15.	$\int_{0}^{\pi} \sin x - \frac{2x}{\pi} dx \text{ बराबर है}$
	(1) $2 - \frac{\pi}{2}$ (2) $\frac{3\pi}{2} - 2$ (3) $2 - \pi$ (4) $\frac{\pi}{2}$		(1) $2 - \frac{\pi}{2}$ (2) $\frac{3\pi}{2} - 2$ (3) $2 - \pi$ (4) $\frac{\pi}{2}$

MAJOR TEST 21-03-2013

LEADER & ENTHUSIAST COURSE

16.	$\int \frac{\cos^2 x}{\cos^2 x + 9\sin^2 x} dx$ is equal to	16.	$\int \frac{\cos^2 x}{\cos^2 x + 9\sin^2 x} dx बराबर है$						
	(1) $\frac{1}{8}(3 \tan^{-1}(3 \tan x) - x) + k$		(1) $\frac{1}{8}(3 \tan^{-1}(3 \tan x) - x) + k$						
	(2) $\frac{1}{8}(3 \tan^{-1}(3 \tan x) + x) + k$		(2) $\frac{1}{8}(3 \tan^{-1}(3 \tan x) + x) + k$						
	(3) 8 (3 $\tan^{-1}(3 \tan x) - x) + k$		(3) 8 (3 $\tan^{-1}(3 \tan x) - x) + k$						
	(4) 8 (3 $\tan^{-1}(3 \tan x) + x) + k$		(4) 8 (3 $\tan^{-1}(3 \tan x) + x) + k$						
17.	Area common to the curves $5x^2 - y = 0$ and $2x^2 - y + 9 = 0$ is equal to	17.	वक्र 5x² – y = 0 और 2x² – y + 9 = 0 के लिए उभयनिष्ठ क्षेत्रफल होगा						
	(1) $12\sqrt{3}$ (2) $6\sqrt{3}$		(1) $12\sqrt{3}$ (2) $6\sqrt{3}$						
	(3) 36 (4) 18		(3) 36 (4) 18						
18.	The relation R defined on the set $A = \{1, 2, 3, 4, 5\}$	18.	$R = \{x, y\} : x^2 - y^2 < 16\}$ द्वारा समुच्चय						
	by R = {x, y) : $ x^2 - y^2 < 16$ } is given by		A = {1, 2, 3, 4, 5} पर परिभाषित सम्बन्ध R है						
	$(1) \{(1, 1), (2, 1), (3, 1), (4, 1), (2, 3)\}$		$(1) \{(1, 1), (2, 1), (3, 1), (4, 1), (2, 3)\}$						
	$(2) \{ (2, 2), (3, 2), (4, 2), (2, 4) \}$		$(2) \{ (2, 2), (3, 2), (4, 2), (2, 4) \}$						
	$(3) \{(3, 3), (3, 4), (5, 4), (4, 3) (3, 1)\}$		$(3) \{ (3, 3), (3, 4), (5, 4), (4, 3) (3, 1) \}$						
	$(4) \ \{(1, 1), (1, 2), (1, 3), (1, 4) \ (2, 1) \ (2, 2)$		$(4) \ \{(1, 1), (1, 2), (1, 3), (1, 4) \ (2, 1) \ (2, 2)$						
	(2, 3) (2, 4) (3, 1) (3, 2) (3, 3) (3, 4) (4, 1)		(2, 3) (2, 4) (3, 1) (3, 2) (3, 3) (3, 4) (4, 1)						
	$(4, 2) (4, 3) (4, 4) (4, 5) (5, 4) (5, 5) \}$		$(4, 2) (4, 3) (4, 4) (4, 5) (5, 4) (5, 5) \}$						
19.	$\sin^{-1} \left[\sin \left(\frac{\tan^{-1} 1 + \tan^{-1} 2 + \tan^{-1} 3}{\cot^{-1} 1 + \cot^{-1} 2 + \cot^{-1} 3} \right) \right] \text{ is equal}$	19.	$\sin^{-1} \left[\sin \left(\frac{\tan^{-1} 1 + \tan^{-1} 2 + \tan^{-1} 3}{\cot^{-1} 1 + \cot^{-1} 2 + \cot^{-1} 3} \right) \right]$ बराबर है:						
	to :		(1) 2 (2) $\pi/2$						
	(1) 2 (2) $\pi/2$								
	(3) $\pi - 2$ (4) $2 - \pi$		$(3) \pi - 2$ $(4) 2 - \pi$						
	अपनी क्षमता को पूरा व	सूलने	का प्रयास करें ।						
	SPACE FOR ROUGH WORK								

Path in Suc		JEE-MA	AIN 2	2013		21-03-2	2013
20.	Number of val	lues of ' θ ' such that	20.	अन्तराल [–2π, 2π] में 'θ'	के मानों	की संख्या, र	जो समी.
	$2\left(\sqrt{2\cos\theta-1}\right)$	$^{2} + \cos 2\theta \ge 3$ where		$2\left(\sqrt{2\cos\theta}-1\right)^2+\cos2\theta$	9≥3 ₹	को संतुष्ट कर	ते हों, है
	$\theta \in [-2\pi, 2\pi]$ (1) 1 (3) 3	(2) 2 (4) 4		(1) 1(3) 3	(2) 2 (4) 4	2 4	
21.	If $f(x) = -\sqrt{2}$ function then	$\frac{x}{x+1} - \sqrt{x}$ be a real-valued	21.	यदि f(x) = $\frac{x}{\sqrt{x+1} - \sqrt{x}}$	एक व	ास्तविक मान प	कलन है ।
	(1) f(x) is cont(2) f(x) is different	tinuous, but f'(0) does not exist erentiable at $x = 0$		तो :- (1) f(x) संतत् है, लेकिन f (2) f(x) : x = 0 पर अवव	'(0) वि ज्लनीय	द्यमान नहीं है।	
	(3) $f(x)$ is not	continous at $x = 0$		(3) $f(x)$; $x = 0$ पर संतत्	नहीं है	्. । नर्ना के।	
22.	(4) I(x) is not If $\int_{\pi/2}^{x} \sqrt{(3-2\sin \theta)}$	$\overline{u^2 t} + \int_0^y \cos t dt = 0, \text{then}$	22.	(4) $f(x)$; $x = 0$ 47 3444 $agg = \frac{1}{\pi^{2}} \sqrt{(3 - 2\sin^2 t)} + \frac{1}{\pi^{2}}$	$\int_{0}^{y} \cos t$	नहा ह। dt = 0, तो	
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{(\pi,\pi)}$ is equivalent	qual to :-		$\left(rac{\mathrm{d} y}{\mathrm{d} x} ight)_{(\pi, \pi)}$ बराबर है :-			
	(1) $\sqrt{3}$	(2) 0		(1) $\sqrt{3}$	(2)	0	
	(3) – 3	(4) $\frac{1}{\sqrt{3}}$		(3) – 3	(4)	$\frac{1}{\sqrt{3}}$	
23.	The function		23.	फलन			
	$f(\mathbf{x}) = \int_{1}^{\mathbf{x}} \{2(\mathbf{t} -$	$(t-1) (t-2)^3 + 3(t-1)^2 (t-2)^2 dt$		$f(\mathbf{x}) = \int_{1}^{2} \{2(t-1) (t-1) (t-1) \}$	$(2)^3 + 3$	$B(t-1)^2 (t-1)^2 (t-$	$(2)^2$
	attains its maxi (1) 1 (2)	imum at x is equal to :- 2 (3) 3 (4) 4		अच्चष्ठ ह जब x बराबर ह :- (1) 1 (2) 2	(3) 3	(4)	4

MAJOR TEST

MAJOR TEST 21-03-2013

LEADER & ENTHUSIAST COURSE

24. If $f'(x) = |x| - \{x\}$, where $\{x\}$ denotes the fractional part of x, then f(x) is decreasing in :-

$(1)\left(-\frac{1}{2},0\right)$	$(2)\left(-\frac{1}{2},\ 2\right)$
$(3)\left(-\frac{1}{2},2\right]$	(4) $\left(\frac{1}{2},\infty\right)$

25. Equivalent statement of the statement "If

- $\frac{3}{2} > \sqrt{2} \text{ then } (\sqrt{2})^5 = 3" \text{ will be}$ (1) $\frac{3}{2} \le \sqrt{2} \text{ or } (\sqrt{2})^5 = 3$ (2) If $(\sqrt{3})^5 \ne 3$ then $\frac{3}{2} \le \sqrt{2}$
- (3) (1) and (2) both
- (4) None of these
- **26.** Two numbers from first 31 natural numbers are selected at random.

Statement -1 : The probability that the sum of

the numbers is even is $\frac{15}{31}$.

Statement -2 : The sum of two numbers is even if both are even or both are odd.

- Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1.
- (2) Statement-1 is false, Statement-2 is true.
- (3) Statement-1 is true, Statement-2 is false.
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation of Statement-1.

 24. यदि f'(x) = |x| - {x}, जहाँ {x} दशमलव भाग फलन है तो f(x) किस अन्तराल में ह्वासमान होगा :-

(1)
$$\left(-\frac{1}{2}, 0\right)$$
 (2) $\left(-\frac{1}{2}, 2\right)$
(3) $\left(-\frac{1}{2}, 2\right]$ (4) $\left(\frac{1}{2}, \infty\right)$

25. कथन "यदि
$$\frac{3}{2} > \sqrt{2}$$
 तो $(\sqrt{2})^5 = 3$ " का तुल्य कथन होगा

(1)
$$\frac{3}{2} \le \sqrt{2}$$
 या $(\sqrt{2})^5 = 3$

(2) यदि
$$(\sqrt{3})^5 \neq 3$$
 तो $\frac{3}{2} \le \sqrt{2}$
(3) (1) व (2) दोनों

(4) इनमें से कोई नहीं

26. प्रथम 31 प्राकृत संख्याओं में से दो संख्या का चयन करने पर
 कथन-1: चयनित संख्याओं का योग सम संख्या होने की

कथन–2 : दो प्राकृत संख्याओं का योग सम संख्या होगा, यदि दोनों संख्या सम हो या दोनों विषम हो।

- (1) कथन-1 सही है और कथन-2 सही है।कथन-2, कथन-1 का सही स्पष्टीकरण नहीं है।
- (2) कथन-1 गलत है और कथन-2 सही है।
- (3) कथन-1 सही और कथन-2 गलत है।
- (4) कथन-1 सही है और कथन-2 सही है। कथन-2, कथन-1 का सही स्पष्टीकरण है।

JEE-MAIN 2013

27. Statement–1 : The greatest value of

 ${}^{40}C_0.{}^{60}C_r + {}^{40}C_1.{}^{60}C_{r-1} + \dots + {}^{40}C_{40}.{}^{60}C_{r-40}$ is ${}^{100}C_{50}$.

Statement–2: The greatest value of ${}^{2n}C_r$ occurs at r = n.

- (1) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1.
- (2) Statement-1 is false, Statement-2 is true.
- (3) Statement-1 is true, Statement-2 is false.
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation of Statement-1.
- **28.** Statement-1 : Tangents drawn at end points of focal chord PQ of parabola $y^2 = 4$ ax meets at R (x₁, y₁) and normals drawn at P and Q meet at S (x₂, y₂). then y₁ = y₂

Statement-2 : PRQS is always a parallelogram.

- Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1.
- (2) Statement-1 is false, Statement-2 is true.
- (3) Statement-1 is true, Statement-2 is false.
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation of Statement-1.

27. कथन–1 : ⁴⁰C₀.⁶⁰C_r + ⁴⁰C₁.⁶⁰C_{r-1}+....+⁴⁰C₄₀.⁶⁰C_{r-40} का अधिकतम मान ¹⁰⁰C₅₀ होगा।

कथन–2 : ²ⁿC_r का अधिकतम मान r = n पर प्राप्त होगा।

- (1) कथन-1 सही है और कथन-2 सही है।कथन-2, कथन-1 का सही स्पष्टीकरण नहीं है।
- (2) कथन-1 गलत है और कथन-2 सही है।
- (3) कथन-1 सही और कथन-2 गलत है।
- (4) कथन-1 सही है और कथन-2 सही है। कथन-2,
 कथन-1 का सही स्पष्टीकरण है।
- **कथन-1**: परवलय y² = 4 ax की नाभीय जीवा PQ के सिरो पर खीचीं गई स्पर्श रेखाए बिन्दु R (x₁, y₁) पर मिलती हैं तथा P व Q खीचें गए अभिलम्ब बिन्दु S (x₂, y₂) पर मिलते है तो y₁ = y₂

कथन-2 : चतुर्भुज PRQS सदैव एक समान्तर चतुर्भुज होगा

- (1) कथन-1 सही है और कथन-2 सही है।कथन-2, कथन-1 का सही स्पष्टीकरण नहीं है।
- (2) कथन-1 गलत है और कथन-2 सही है।
- (3) कथन-1 सही और कथन-2 गलत है।
- (4) कथन-1 सही है और कथन-2 सही है। कथन-2, कथन-1 का सही स्पष्टीकरण है।

LEADER & ENTHUSIAST COURSE

29. Statement-1:
$$\int \frac{(3-2x)}{\sqrt{(4+2x-x^2)}} dx = 2\sqrt{(4+2x-x^2)} + \sin^{-1}\left(\frac{x-1}{\sqrt{5}}\right) + c$$

Statement-2:
$$\int \frac{dx}{\sqrt{(a^2-x^2)}} = \frac{x}{2}\sqrt{(a^2-x^2)} + \frac{a^2}{2}\sin^{-1}\left(\frac{x}{a}\right) + c$$

. .

- (1) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1.
- (2) Statement-1 is false, Statement-2 is true.
- (3) Statement-1 is true, Statement-2 is false.
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation of Statement-1.

30. Statement-1 : Derivative of
$$\sin^{-1}\left(\frac{2x}{1+x^2}\right)$$
 with

respect to
$$\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$
 is 1 for $0 < x < 1$.

Statement-2:
$$\sin^{-1}\left(\frac{2x}{1+x^2}\right) = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$

for $-1 \leq x \leq 1$.

- (1) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1.
- (2) Statement-1 is false, Statement-2 is true.
- (3) Statement-1 is true, Statement-2 is false.
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation of Statement-1.

29. कथन-1 :
$$\int \frac{(3-2x)}{\sqrt{(4+2x-x^2)}} dx =$$
$$2\sqrt{(4+2x-x^2)} + \sin^{-1}\left(\frac{x-1}{\sqrt{5}}\right) + c$$
कारण-2 :
$$\int \frac{dx}{\sqrt{(a^2-x^2)}} = \frac{x}{2}\sqrt{(a^2-x^2)} + \frac{a^2}{2}\sin^{-1}\left(\frac{x}{a}\right) + c$$

- (1) कथन-1 सही है और कथन-2 सही है।कथन-2, कथन-1
 का सही स्पष्टीकरण नहीं है।
- (2) कथन-1 गलत है और कथन-2 सही है।
- (3) कथन-1 सही और कथन-2 गलत है।
- (4) कथन-1 सही है और कथन-2 सही है। कथन-2, कथन-1 का सही स्पष्टीकरण है।

30. कथन-1 :
$$\sin^{-1}\left(\frac{2x}{1+x^2}\right)$$
 का अवकलज
 $\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ के सापेक्ष 1 है यदि $0 < x < 1$.

कथन-2:
$$\sin^{-1}\left(\frac{2x}{1+x^2}\right) = \cos^{-1}\left(\frac{1-x}{1+x^2}\right)$$
 के लिए
-1 < x < 1.

- (1) कथन-1 सही है और कथन-2 सही है।कथन-2, कथन-1का सही स्पष्टीकरण नहीं है।
- (2) कथन-1 गलत है और कथन-2 सही है।
- (3) कथन-1 सही और कथन-2 गलत है।
- (4) कथन-1 सही है और कथन-2 सही है। कथन-2, कथन-1 का सही स्पष्टीकरण है।

SPACE FOR ROUGH WORK

JEE-MAIN 2013

21-03-2013

PART B - PHYSICS

31. In the adjoining figure various isothermals are shown for a real gas. Then :-

- (1) EF represents liquification
- (2) CB represents liquification
- (3) HI represents the critical temperature
- (4) AB represents gas at a high temperature
- **32.** At what temperature, the mean kinetic energy O_2 will be the same for H_2 molecules at $-73^{\circ}C$:-
 - (1) 127°C (2) 527°C (3) –73°C (4) –173°C
- **33.** An ideal heat engine working between temperature T_1 and T_2 has an efficiency η , the new effciency if both the source and sink temperature are doubled, will be :-

(1)
$$\frac{\eta}{2}$$
 (2) η (3) 2η (4) 3η

- **34.** Two samples A and B of a gas initially at the same pressure and temperature are compressed from volume V to V/2 (A isothermally and adiabatically). The final pressure of A is :-
 - (1) Greater than the final pressure of B
 - (2) Equal to the final pressure of B
 - (3) Less than the final pressure of B
 - (4) Twice the final pressure of B

 सलंग्न चित्र में एक वास्तविक गैस के लिए समतापीय वक्रों को दर्शाया गया है, तब :-

- (1) EF द्रवीकरण को दर्शाता है
- (2) CB द्रवीकरण को दर्शाता है
- (3) HI क्रांन्तिक ताप को दर्शाता है
- (4) AB गैस की उच्च ताप पर अवस्था को प्रदर्शित करता है
- 32. किस तापक्रम पर ऑक्सीजन ताप एवं दाब वाले किसी गैस के दो नमूने A और B –73°C पर H₂ के अणुओं की औसत गतिज ऊर्जा के बराबर होगी :-

(1) $127^{\circ}C$ (2) $527^{\circ}C$ (3) $-73^{\circ}C$ (4) $-173^{\circ}C$

33. ताप $T_1 = T_2$ के बीच कार्यरत एक आदर्श ऊष्मा इंजन की दक्षता η है। यदि स्त्रोत व सिंक दोनों के ताप दोगुने कर दिये जाये, तब नयी दक्षता होगी :-

(1)
$$\frac{\eta}{2}$$
 (2) η (3) 2η (4) 3η

- 34. समान प्रारम्भिक ताप एवं दाब वाले किसी गैस के दो नमूने A और B, आयतन V से V/2 तक संपीडित किए जाते हैं (A समतापीय और B रूद्धोष्म रूप में)। A का अन्तिम दाब :-
 - (1) B के अन्तिम दाब से अधिक होगा
 - (2) B के अन्तिम दाब के बराबर होगा
 - (3) B के अन्तिम दाब से कम होगा
 - (4) B के अन्तिम दाब का दो गुना होगा

SPACE FOR ROUGH WORK

Path is Succ		LEADER & ENTH	IUSI	AST COURSE	21-03-2013
35.	$P = \frac{\alpha}{\beta} \exp\left(-\frac{\alpha Z}{K_{\rm B}\theta}\right)$		35.	$P = \frac{\alpha}{\beta} \exp\left(-\frac{\alpha Z}{K_{\rm B}\theta}\right)$	
	$\theta \rightarrow$ Temperature,	$P \rightarrow Pressure$		$\theta \rightarrow \pi \eta, P \rightarrow \pi \eta$	<u>,</u>
	$K_{B} \rightarrow Baltzman constant$	nt, $Z \rightarrow Distance$		${ m K}_{ m B} ightarrow$ बोल्ट्जमान नियतांक, Z \cdot	→ दूरी
	Dimension of β is :-			β की विमा है :-	
	(1) $M^0 L^0 T^0$	(2) $M^{-1}L^{1}T^{2}$		(1) $M^0 L^0 T^0$ (2)) $\mathbf{M}^{-1}\mathbf{L}^{1}\mathbf{T}^{2}$
	(3) $M^0 L^2 T^0$	(4) $ML^{-1}T^{-2}$		(3) $M^0 L^2 T^0$ (4)) $ML^{-1}T^{-2}$
36.	A bullet of mass 0.01 kg	and travelling at a speed	36.	एक गोली जिसका द्रव्यमान 0.01	kg है क्षैतिज दिशा में गति
	of 500 ms ⁻¹ strikes a b	block of 2 kg, which is		करती हुई 2 kg के ब्लॉक से टक	राती है जो कि 5 m की
	suspended by a string of	f length 5 m. The centre		लम्बाई की डोरी से निलंबित है यदि	ब्लॉक का गुरूत्वीय केन्द्र
	of gravity of the block	is found to rise through		0 1 m की ऊँचाई तक उठ जाता है :	े नो ब्लॉक से बाहर निकलने
	a vertical height of 0.1 m	a. The speed of the bullet			
	after it emerges from th	e block is :-		पर गाला का वग ह :-	2 40 /
	(1) 200 m/s	(2) 240 m/s		(1) 200 m/s (2) 240 m/s
	(3) 220 m/s	(4) 280 m/s		(3) 220 m/s (4) 280 m/s
37.	Force acting on the part	ticle is $(2\hat{i}+3\hat{j})$ N work	37.	किसी कण पर कार्यरत बल (2	î+3ĵ)N है। जब कण
	done by this force is z	ero. When a particle is		रेखा 3y + kx = 5 के अनुदिश	गति करता है। तब बल
	moved on the line 3y +	kx = 5. Here value of K		द्वारा किया गया कार्य शून्य होत	। है। इस प्रकार K का
	is :-			मान होगा :-	
	(1) 2 (2) 4	(3) 6 (4) 8		(1) 2 (2) 4 (3)) 6 (4) 8
38.	V-t graph of an object		38.	1kg द्रव्यमान को एक वस्तु	20
	of mass 1 kg is	$(m/s)_{10}$		का v-t ग्राफ नाच प्रदाशत V(m/s) 10
	shown. Select the			ह। निम्न म स गलत कथन चन्त्रिय	
	wrong statement :-	10 20 30		યુણપર	$10 \begin{array}{c} 20 \\ t(S) \end{array} \rightarrow 30$
	(1) Work done on the	$t(S) \rightarrow$		(1) वस्तु पर 30 से. में किया गय	॥(3) → । कार्य शुन्य है
	(1) Work done on the (2) The average acceler	ration of object is zero		(2) वस्तु का औसत त्वरण शून्य है	
	(3) The average velocit	ty of the object is zero		(3) वस्तु का औसत वेग शून्य है	
	(4) The average force	on the object is zero		(4) वस्तु का औसत बल शून्य है	
		प्रित्येक प्रश्न को अ	नर्जुन ब	नकर करो।	

SPACE FOR ROUGH WORK

MAJOR TEST

JEE-MAIN 2013

39. A particle of mass m moving with velocity u makes an elastic one dimensional collision with a stationary particle of mass m. They are in contact for a very brief time T. Their force of interaction increases from zero to F_0 linearly in time T/2 and decreases linearly to zero in further time T/2. The magnitude of F_0 is :-

(3) mu/2T

(4) None of these

- **40.** A body is rolling without slipping on a stationary horizontal surface and its rotational kinetic energy is equal to the translational kinetic energy. The body is : -
 - (1) Disc (2) Sphere
 - (3) Cylinder (4) Ring
- **41.** If the angular momentum of any rotating body increases by 200%, then the increase in its kinetic energy : -
 - (1) 400% (2) 800%
 - (3) 200% (4) 100%
- 42. A simple pendulum has a time period T_1 when on the earth's surface and T_2 when taken to a height R above the earth's surface, where R is the radius of the earth. The value of T_2/T_1 is : -

(1) 1 (2) $\sqrt{2}$ (3) 4

39. u वेग से गतिशील m द्रव्यमान का एक कण m द्रव्यमान के एक अन्य स्थिर कण से एक विमीय प्रत्यास्थ टक्कर करता है। वे बहुत कम समय T के लिए सम्पर्क में रहते हैं। T/2 समय में उनका अन्तक्रिया बल शून्य से F₀ तक रेखीय रूप से बढ़ता है तथा अगले T/2 समय में रेखीय रूप से शून्य तक घटता है। F₀ का परिमाण है :-

(1) mu/T(3) mu/2T

(4) इनमें से कोई नहीं

(2) 2 mu/T

- 40. एक वस्तु स्थिर क्षैतिज तल पर बिना फिसले लुढ़क रही है। यदि इसकी घूर्णी गतिज ऊर्जा तथा स्थानांतरीय गतिज ऊर्जायें बराबर हैं, तो वस्तु होगी : -
 - (1) चकती (2) गोला
 - (3) बेलन (4) वलय
- 41. यदि घूर्णन कर रही किसी वस्तु का कोणीय संवेग 200% बढ़ा दिया जाए, तो इसकी गतिज ऊर्जा में वृद्धि होगी : (1) 400% (2) 800%
 (3) 200% (4) 100%
- 42.पृथ्वी की सतह पर एक सरल लोलक का आवर्तकाल T_1 है
तथा पृथ्वी कि सतह से R ऊँचाई पर इसका आवर्तकाल T_2
है, (जहाँ R पृथ्वी की त्रिज्या है) T_2/T_1 का मान है : -
 - (1) 1 (2) $\sqrt{2}$ (3) 4 (4) 2

SPACE FOR ROUGH WORK

(4) 2

SPACE FOR ROUGH WORK

(4) - 1V

दिये गये परिपथ में $E_1 = E_2 = 4V$ तथा $E_3 = 2V$

एवं $\mathbf{R} = \mathbf{r}_1 = \mathbf{r}_2 = \mathbf{r}_3 = 1\Omega$ तो A व B के मध्य

प्रतिरोध 4Ω से प्रवाहित धारा ज्ञात करें यदि वोल्टमीटर का

ww

 4Ω

ww

 1Ω

(3) - 3V

 \sim

 2Ω

JEE-MAIN 2013

47.

48.

विभवान्तर होगा :-

(1) 3V

प्रतिरोध 4Ω है।

 1Ω

∿₩∿

 1Ω

ww

R

(2) 1V

In the circuit shown in figure $E_1 = E_2 = 4V$ and 47. $E_3 = 2V$ and $R = r_1 = r_2 = r_3 = 1\Omega$ then potential difference between A and B will be :-

- (1) 3V (2) 1V (3) - 3V(4) - 1V
- **48.** Find current through the resistance 4Ω if resistance of voltmeter is 4Ω .

49. In a series LCR circuit as shown in fig.

SPACE FOR ROUGH WORK

MAJOR TEST 21-03-2013

Pitte to Success

LEADER & ENTHUSIAST COURSE

50. Two infinitely long linear conductors are arranged perpendicular to each other and are in mutually perpendicular planes as shown in figure. If $I_1=2A$ along the y-axis and $I_2 = 3A$ along -ve z-axis and AP = AB= 1 cm. The value of magnetic field strength \vec{B} at P is-

- (1) $(3 \times 10^{-5} \text{ T}) \hat{j} + (-4 \times 10^{-5} \text{ T}) \hat{k}$
- (2) (3 \times 10⁻⁵ T) \hat{j} + (4 \times 10⁻⁵ T) \hat{k}
- (3) $(4 \times 10^{-5} \text{ T}) \hat{j} + (3 \times 10^{-5} \text{ T}) \hat{k}$
- (4) $(-3 \times 10^{-5} \text{ T}) \hat{j} + (4 \times 10^{-5} \text{ T}) \hat{k}$
- **51.** A police car with a siren of frequency 8 kHz is moving with uniform velocity 36 km/hr towards a tall building which reflects the sound waves. The speed of sound in air is 320 m/s. The frequency of the siren heard by the car driver is

(1) 8.50 kHz	(2) 8.25 kHz
(3) 7.75 kHz	(4) 7.50 kHz

52. A hollow pipe of length 0.8 m is closed at one end. At its open end a 0.5 m long uniform string is vibrating in its second harmonic and it resonates with the fundamental frequency of the pipe. If the tension in the wire is 50N and the speed of sound is 320 ms^{-1} , the mass of the string is

(1) 5 grams(3) 20 grams

grams	(4) 40	grams
-------	--------	-------

(2) 10 grams

50. दो अनन्त लम्बाई के रेखीय सुचालक परस्पर एक-दूसरे के लम्बवत् संयोजित हैंतथा चित्र में दिखाये अनुसार परस्पर लम्बवत तल में है। यदि y अक्ष के अनुदिश I₁ = 2A तथा ऋणात्मक z–अक्ष के अनुदिश I₂ = 3A हैं तथा AP = AB = 1 cm । बिन्दु 'P' पर चुम्बकीय क्षेत्र B है :-

- (1) $(3 \times 10^{-5} \text{ T}) \hat{j} + (-4 \times 10^{-5} \text{ T}) \hat{k}$
- (2) (3 × 10⁻⁵ T) \hat{j} + (4 × 10⁻⁵ T) \hat{k}
- (3) $(4 \times 10^{-5} \text{ T}) \hat{j} + (3 \times 10^{-5} \text{ T}) \hat{k}$

(4)
$$(-3 \times 10^{-5} \text{ T}) \hat{j} + (4 \times 10^{-5} \text{ T}) \hat{k}$$

एक पोलीस-कार के सायन की आवृत्ति 8 kHz है और कार 51. एकसमान गति से एक ऊंची बिल्डिंग की तरफ जा रही है। बिल्डिंग ध्वनि को परावर्तित करती है। यदि कार की गति 36 km/hr हो और वायु में ध्वनि की गति 320 m/s हो, तब कार के ड्राईवर के द्वारा सुनी गई सायरन की आवृत्ति होगी (1) 8.50 kHz (2) 8.25 kHz (3) 7.75 kHz (4) 7.50 kHz एक 0.8 m लम्बाई का खोखला पाइप एक सिरे पर 52. बन्द है। इसके खुले सिरे के पास एक 0.5 m लम्बाई का एकसमान तार अपने द्वितीय हारमोनिक पर कंपन कर रहा है और पाइप की मुल आवृत्ति के साथ अनुवाद करता है। यदि तार में तनाव 50N है तथा ध्वनि का वेग 320 ms⁻¹ है, तो तार का द्रव्यमान है (1) 5 grams (2) 10 grams

(1) 5 51	uns	(2)	10	Siamo
(3) 20 g	rams	(4)	40	grams

SPACE FOR ROUGH WORK

Path in Succe			JEE-MA	IN 2	2013	21-03-2013
53.	A 20 cm lon is fixed at be string is 0.5 M using an extent Find the set successive not (1) 2.5 cm (3) 7.5 cm When a metal wavelengths 4 velocities of and 2v respect metal is (h = light in air) (1) 2 hc \times 10 (2) 1.5 hc \times 1 (3) hc \times 10 ⁶ J (4) 0.5 hc \times 1	g string having a oth the ends. The N. The string is se rnal vibrator of fre paration (in cm odes on the string (2) 5 c (4) 10 I surface is illumir 400 nm and 250 nr the photoelectron ctively. The work Planck's constant, ⁶ J 10 ⁶ J	mass of 1.0 g, e tension in the et into vibrations equency 100 Hz.) between the g. cm hated by light of n, the maximum s ejected are v function of the , c = velocity of	53.	20 cm एक लम्बी रस्सी जिसका द्र सिरों को स्थिर किया गया है। रस्सी को 100 Hz आवृत्ति के बाह्य कम्पन द्वारा कम्पित करने के लिये व्यवसि पर क्रमागत निस्पंदो के मध्य अन्तरात (1) 2.5 cm (2) (3) 7.5 cm (4) जब एक धात्विक सतह पर 400 nm के प्रकाश को आपतित करते है, तो के अधिकतम वेग क्रमश: v तथा 2 होगा (h = प्लांक नियतांक, c = (1) 2 hc × 10 ⁶ J (2) 1.5 hc × 10 ⁶ J (3) hc × 10 ⁶ J	व्यमान 1.0 g है। के दोनों में तनाव 0.5 N है। रस्सी क (vibrator) के उपयोग थत किया गया है। रस्सी त (cm में) ज्ञात कीजिये।) 5 cm) 10 cm n तथा 250 nm तरंगदैर्ध्य उत्सर्जित फोटो इलेक्टॉन v हैं। धातु का कार्यफलन वायु में प्रकाश का वेग)
55. 56.	An archaeol prehistoric st life = 5700 year found in the co wood is abou (1) 5700 year (3) 11,400 year Half-life of a r Difference bet	logist analyses tructure and finds ars) to C^{12} is only o ells of buried plant t rs (2) 28 ears (4) 22 radioactive substan tween points of tim	the wood in a s that C^{14} (Half one-fourth of that ts. The age of the 50 years ,800 years ce is 20 minutes. ne when it is 33%	55.	एक पुरातत्ववेत्ता ने इतिहास पूर्व संरक्त किया और पाया कि C ¹⁴ (अर्द्ध-अ का अनुपात गढ़े हुये (buried plan चौथाई है। लकड़ी का आयु लगभ (1) 5700 वर्ष (2) (3) 11,400 वर्ष (4) एक रेडियोधर्मी पदार्थ की अर्द्ध अ बिन्दओं का अन्तर लगभग क्या है	ाना से लकड़ी का अध्ययन ायु = 5700 वर्ष) से C ¹² ts) पौधे की तुलना में एक 1ग है 2850 वर्ष 22,800 वर्ष 1यु 20 मिनट है उन समय जब यह कम्प्रा: 33% व
	disintegrated approximately (1) 10 min (3) 30 min	d and 67% di y (2) 20 (4) 40	sintegrated is min min		67% विषटित है? (1) 10 मिनट (2) (3) 30 मिनट (4)) 20 मिनट) 40 मिनट

MAJOR TEST

Path in Suc		HUSI	AST COURSE	21-03-2013
57.	A potential difference of 2V is applied between the opposite faces of a Ge crystal plant of area 1 cm ² and thickness 0.5 mm. If the concentration of electron in Ge is 2 × 10 ¹⁹ /m ² and mobilities of electrons and holes are $0.36 \frac{m^2}{volt - s}$ and $0.14 \frac{m}{volt - s}$ respectively, then the current flowing through the plate will be - (1) 0.25 A (2) 0.45 A (3) 0.56 A (4) 0.64 A Statement-1 : Newton's second law of motion is the main law of motion. Statement-2 : Newton's I and III law are contained in II law. (1) Statement-1 is true, Statement-2 is true; Statement-1 is false, Statement-2 is true. (3) Statement-1 is true, Statement-2 is true. (4) Statement-1 is true, Statement-2 is true. (5) Statement-1 is true, Statement-2 is true.	57. 58.	ADI COURDE एक जमेंनियम की क्रिस्टल प्लेट के वि 2V का विभवान्तर आरोपित किया फलक क्षेत्रफल 1 cm² तथा मोटाई (में स्वतंत्र इलेक्ट्रॉन सान्द्रता 2 × 10 ¹ तथा होल की गतिशीलता क्रमश: $0.14 \frac{m}{volt - s}$ है। तब प्लेट में प्रव (1) 0.25 A (2) 0 (3) 0.56 A (4) 0 कथन-1 : न्यूटन का द्वितीय नियम में नियम का समावेश है। (1) कथन-1 सही है और कथन-2 सही है सही स्पष्टीकरण नहीं है। (2) कथन-1 गलत है और कथन-2 गलत (4) कथन-1 सही है और कथन-2 गलत	21-03-2013 प्रि फलकों के मध्य जाता है। क्रिस्टल का 0.5 mmहै। जर्मेनियम p/m^2 है तथा इलेक्ट्रॉन $0.36 \frac{m^2}{\text{volt} - s}$ तथा $1 = 0.36 \frac{m^2}{\text{volt} - s}$ तथा
	Use stop, look and go met	 hod in r	कथन-1 का सहा स्पष्टाकरण ह	I

E / H

MAJOR TEST

JEE-MAIN 2013

Statement-1 : The stream of water flowing at5high speed from a garden hose pipe tends to spreadlike a fountain when held vertically up, but tends

to narrow down when held vertically down. **Statement-2**: In any stream line flow of an incompressible fluid, the volume flow rate of the fluid remains constant.

59.

- Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1.
- (2) Statement–1 is false, Statement–2 is true.
- (3) Statement–1 is true, Statement–2 is false.
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation of Statement-1.
- **60.** Statement-1 : When two proton's are taken away from each other then potential energy of the system decreases.

Statement–2: Work is done by the system of similar charges in seperating them.

- Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1.
- (2) Statement–1 is false, Statement–2 is true.
- (3) Statement–1 is true, Statement–2 is false.
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation of Statement-1.

59. कथन-1 : बगीचे की हौज नलिका (Hose pipe) से तीव्र वेग से जल प्रवाहित होता है। जब इसकी दिशा ऊर्ध्वाधर ऊपर की ओर रखते हैं, तो धारा फववारे के रूप में फैलती है परन्तु जब प्रवाह की दिशा ऊर्ध्वाधर नीचे करते हैं तो धारा संकरी होती जाती है।

> **कथन–2 :** किसी असम्पीड्य द्रव के धारा रेखा प्रवाह में द्रव के प्रवाहित आयतन की दर सदैव नियत रहती है।

- (1) कथन-1 सही है और कथन-2 सही है।कथन-2, कथन-1 का सही स्पष्टीकरण नहीं है।
- (2) कथन-1 गलत है और कथन-2 सही है।
- (3) कथन-1 सही और कथन-2 गलत है।
- (4) कथन-1 सही है और कथन-2 सही है। कथन-2, कथन-1 का सही स्पष्टीकरण है।
- 60. कथन-1: जब दो प्रोटोनों को दूर ले जाया जाता है तो तंत्र की
 स्थितिज ऊर्जा घटती है।

कथन–2 : समान प्रकृति के आवेशों को दूर करने पर आवेश तंत्र द्वारा कार्य होता है।

- (1) कथन-1 सही है और कथन-2 सही है।कथन-2, कथन-1 का
 सही स्पष्टीकरण नहीं है।
- (2) कथन-1 गलत है और कथन-2 सही है।
- (3) कथन-1 सही और कथन-2 गलत है।
- (4) कथन-1 सही है और कथन-2 सही है। कथन-2, कथन-1
 का सही स्पष्टीकरण है।

LEADER & ENTHUSIAST COURSE

PART C - CHEMISTRY

निम्नलिखित सैल अभिक्रिया का 25°C पर साम्य स्थिरांक 61. Calculate equilibrium constant (approx) at 61. (लगभग में) ज्ञात कीजिय 25°C for the cell reaction $Fe_{(s)} + CuSO_4 \rightleftharpoons FeSO_4 + Cu_{(s)}$ $Fe_{(s)}+CuSO_4 \rightleftharpoons FeSO_4+Cu_{(s)}$ दिया है : $E_{Fe/Fe^{+2}}^{\circ} = +0.453$ वोल्ट ; Given : $E_{Fe/Fe^{+2}}^{\circ} = +0.453$ volt ; $E^{\circ}_{C_{11}/C_{11}+2} = -0.3435$ वोल्ट $E_{Cu/Cu^{+2}}^{\circ} = -0.3435$ volt (1) 1.0×10^{25} (2) 1.0×10^{20} (1) 1.0×10^{25} (2) 1.0×10^{20} (3) 1.0×10^{27} (4) 1.0×10^{22} (3) 1.0×10^{27} (4) 1.0×10^{22} 2.6 ऐम्पियर विद्युत धारा को CuSO, वियलन में 380 sec **62**. A current of 2.6 ampere was passed through 62. CuSO₄ solution for 380 sec. The amount of Cu के लिये प्रवाहित किया जाता है। एकत्रित होने वाले deposited is (at. wt. of Cu = 63.5) :-Cu की मात्रा होगी (Cu का परमाणु भार = 63.5) :-(1) 0.325 gm (2) 0.635 gm (1) 0.325 ग्राम (2) 0.635 ग्राम (3) 6.35 gm (4) None of these (4) इनमें से कोई नहीं (3) 6.35 ग्राम Uncertainty in position and momentum are equal. **63**. यदि स्थिति तथा संवेग में अनिश्चितता बराबर हो, तो वेग 63. Uncertainty in velocity is :-निर्धारण में अनिश्चितता होगी :-(1) $\sqrt{\frac{h}{\pi}}$ (1) $\sqrt{\frac{h}{\pi}}$ (2) $\frac{h}{2\pi}$ (2) $\frac{h}{2\pi}$ (3) $\frac{1}{2m}\sqrt{\frac{h}{\pi}}$ (3) $\frac{1}{2m}\sqrt{\frac{h}{\pi}}$ (4) इनमें से कोई नहीं (4) None of these (Take it Easy and Make it Easy) **SPACE FOR ROUGH WORK**

A and B :

64.

The following data certain to reaction between

JEE-MAIN 2013

64.

होते हैं।

A तथा B के मध्य अभिक्रिया से निम्नलिखित आँकड़े प्राप्त

S.No. [A] **[B]** Rate क्रम [A] **[B]** Rate mol. L^{-1} mol. L^{-1} . t^{-1} mol. L^{-1} संख्या mol. L^{-1} mol. L⁻¹. t⁻¹ mol. L⁻¹ 1×10^{-2} 2×10^{-2} 2×10^{-4} Ι 1×10^{-2} 2×10^{-2} 2×10^{-4} Ι 2×10^{-2} 2×10^{-2} 4×10^{-4} 2×10^{-2} 2×10^{-2} 4×10^{-4} Π Π 4×10^{-2} III 2×10^{-2} 8×10^{-4} III 2×10^{-2} 4×10^{-2} 8×10^{-4} Which of the following inference(s) can be उपरोक्त आँकडों से निम्न कौनसे परिणाम प्राप्त हो सकते है। drawn from the above data [a] अभिक्रिया का दर नियतांक 10-4 है। **[a]** Rate constant of the reaction is 10^{-4} [b] अभिक्रिया का दर नियम k [A] [B] है। **[b]** Rate law of the reaction is k [A] [B] [c] दोनों क्रियाकारकों की सान्द्रता को दुगुना करने पर [c] Rate of reaction increases four times on अभिक्रिया की दर चार गना बढ जाती है। doubling the concentration of both the सही उत्तर का चयन कीजिए। reactants Select the correct answer कोड : **Codes :** (1) a, b तथा c (2) a तथा b (1) a, b and c (2) a and b (3) b तथा c (4) केवल c (3) b and c (4) c alone The equilibrium constant $\boldsymbol{K}_{\boldsymbol{p}_1}$ and $\boldsymbol{K}_{\boldsymbol{p}_2}$ for the 65. अभिक्रियाओं X \Longrightarrow 2Y तथा Z \Longrightarrow P + Q के 65. लिए साम्य नियतांकों क्रमशः K_{p_1} तथा K_{p_2} का अनुपात reactions $X \implies 2Y$ and $Z \implies P + Q$; respectively are in the ratio of 1 : 9. If the degree 1:9 है। यदि X तथा Z के वियोजन की भिन्न (α) समान of dissociation of X and Z be equal then calculate हो तो $\sqrt{\frac{p_2}{p_1}}$ का मान ज्ञात कीजिए। जहाँ p_1 तथा p_2 दी गयी value of $\sqrt{\frac{p_2}{p_1}}$. Where p_1 and p_2 are total pressure दोनों अभिक्रियाओं के लिए साम्य पर कुल दाब है। of given two reactions at their equilibrium. (1) 9(2) 1/9 (3) 6 (4) 1/6 (2) 1/9 (1) 9(3) 6(4) 1/6

		MAJOR TEST				
Path is Suc		HUSI	AST COURSE	21-03-2013		
66.	Which of the following mixture of solutions	66.	निम्न में से कौनसे विलयनों के मिश्रण	को pH = 1.0 है ?		
	has $pH = 1.0$?			-		
	(1) 100 mL $\frac{M}{10}$ HCl + 100 mL $\frac{M}{10}$ NaOH		(1) 100 mL $\frac{M}{10}$ HCl + 100 mL	$\frac{M}{10}$ NaOH		
	(2) 55 mL $\frac{M}{10}$ HCl + 45 mL $\frac{M}{10}$ NaOH		(2) 55 mL $\frac{M}{10}$ HCl + 45 mL	M 10 NaOH		
	(3) 10 mL $\frac{M}{10}$ HCl + 90 mL $\frac{M}{10}$ NaOH		(3) 10 mL $\frac{M}{10}$ HCl + 90 mL	$\frac{M}{10}$ NaOH		
	(4) 75 mL $\frac{M}{5}$ HCl + 25 mL $\frac{M}{5}$ NaOH		(4) 75 mL $\frac{M}{5}$ HCl + 25 mL $\frac{1}{5}$	M/5 NaOH		
67.	A complex is prepared by mixing CoCl ₃ and NH ₃ ,	67.	CoCl, तथा NH, को मिलाकर एक संकुल बनार			
	0.1 m solution of this complex was found to		है। इस संकुल का 0.1 m विलयन –0.372 °C पर ज			
	Freeze at -0.372 °C. The formula of complex is		है। संकुल का सूत्र है :-			
	(Molal depression constant of water = 1.86° C/m)		(जल का मोलल अवनमन स्थिरांक = 1.86°C/m)			
	(1) $[Co(NH_{*})_{*}]Cl_{*}$ (2) $[Co(NH_{*})_{*}Cl]Cl_{*}$		(1) $[Co(NH_3)_6]Cl_3$ (2) [Co(NH ₃) ₅ Cl]Cl ₂		
	(3) $[Co(NH_{2}),CL_{2}]Cl$ (4) $[Co(NH_{2}),CL_{2}]$		(3) $[C_0(NH_*), C_{1,1}]C_{1,2}$ (4) [$C_0(NH_1)$, $C_{1,1}$		
68.	Sodium metal adopts bcc structure, the distance		सोडियम धात BCC संरचना प्रदर्शित करता है यदि सोडियम			
	between nearest sodium atom 0.368 nm. The edge		परमाणुओं के मध्य की निकटतम दुरी 0.368 nm. है तो इकाई			
	length of the unit cell is :-		कोशिका के कोर की लम्बाई ज्ञात कीजिए :-			
	(1) 0.368 nm. (2) 0.184 nm.		(1) 0.368 nm. (2) 0).184 nm.		
	(3) 0.575 nm. (4) 0.425 nm.		(3) 0.575 nm. (4) ().425 nm.		
69.	4.6×10^{22} atoms of an element weigh 13.8 g. The	69.	एक तत्व के 4.6×10^{22} परमाणओं का भार 13.8 $ ext{g} \ ext{s}$ ।			
	atomic mass of the element is :-		तत्व का परमाणु भार है :-			
	(1) 290 (2) 180 (3) 34.4 (4) 10.4		(1) 290 (2) 180 (3) 3	34.4 (4) 10.4		

E/H

Path in Succe	CAREER INSTITUTE		JEE-MA	AIN 2	2013	21-03-2013			
70.	The graph be straight line a shown. Hence (1) 2 (2) 4 (3) 8 (4) 1	etween log(x. at angle 45° w e (x/m) at a p $\log \frac{x}{m} \int_{0}^{2} dx$	/m) and log P is a with intercept OA as pressure of 2 atm is 45° 10g 2 $\log P$	70.	log(x/m) तथा log P में ग्राफ सरल कोण 45° तथा अन्तखण्ड OA ग्राप दाब 2 atm है, तो x/m होगा :- (1) 2 (2) 4 (3) 8 $log \frac{x}{m} \int_{0}^{44} \frac{4}{A}$	रेखा आती है। जिसका 5 में दिया गया है यदि , 5° 			
71.	Which of the following reaction represent the bond energy :- (1) $HCl(g) \rightarrow \frac{1}{2}H_2(g) + \frac{1}{2}Cl_2(g)$ (2) $HCl(g) \rightarrow H^+(g) + Cl^-(g)$ (3) $HCl(g) \rightarrow H(g) + Cl(g)$ (4) $2HCl(g) \rightarrow H_2(g) + Cl_2(g)$			71.	निम्न में से कौनसी अभिक्रिया बन्ध ऊर्जा को प्रदर्शित क है :- (1) HCl(g) $\rightarrow \frac{1}{2}$ H ₂ (g) + $\frac{1}{2}$ Cl ₂ (g) (2) HCl(g) \rightarrow H ⁺ (g) + Cl ⁻ (g) (3) HCl(g) \rightarrow H(g) + Cl(g) (4) 2UCl(g) \rightarrow H (g) + Cl (g)				
72.	In the analysis H ₂ S gas is get (1) I and II (3) III and IV	of basic radica nerally used i (2) (4)	als, the group reagent n the group:-) II and III) II andIV	72.	क्षारीय मूलकों के निर्धारण में समूह वर्ग में होता है वह है :- (1) I and II (2) I (3) III and IV (4) I	अभिकर्मक H ₂ S जिस I and III I andIV			
73.	Nessler's reagent is used to detect :- (1) $\operatorname{CrO}_{2^{-}}^{2^{-}}$ (2) $\operatorname{PO}_{2^{-}}^{3^{-}}$ (3) $\operatorname{MnO}_{2^{-}}^{-}$ (4) $\operatorname{NH}_{2^{+}}^{+}$		73.	नेस्लर अभिकर्मक किसे पहचानने के (1) CrO^{2-} (2) PO^{3-} (3) N	5 उपयोग में होता है :- /nO⁻ (4) NH ⁺				
74.	Which of the extraction :- (a) Argentite (c) Azurite (1) a & d (3) b, c & d	following ore (b) (d) (2) (4)	is calcinated during) Calamine) Magnesite) b & c) a, c & d किसी प्रश्न पर देव	74. (तक र	(1) O_{4} (2) IO_{4} (3) I निम्न में से धातु के निष्कर्षण के दौर निस्तापन किया जाता है:- (a) अर्जेन्टाइट (b) द (c) एजुराइट (d) में (1) a व d (2) I (3) b, c व d (4) a	रान कौनसे अयस्क का कैलामाइन नेग्नेसाइट ठ व c a, c व d			

21 / 26

MAJOR TEST

					MAJOR TEST				
Path to 5		LEADER & ENTI	HU	SIAST CO	URSE		21–0	3–2013	
75.	Inionic part of Cl ₂ O ₆	Inionic part of $Cl_2O_6(s)$ will be :-			Cl ₂ O ₆ (s) का ऋणायनी भाग होगा :-				
	(1) sp hybridised	(2) sp ² hybridised		(1) sp संक	रित	(2	2) sp² संका	रेत	
	(3) sp ³ hybridised	(4) dsp ² hybridised		(3) sp ³ संव	जरित	(4	4) dsp ² संक	र्जरत	
76.	Sum of number of l P–O–P linkage prese	Sum of number of lone pair of electron and P–O–P linkage present in dimer of P_2O_5 are :-			P ₂ O ₅ के द्विलक में कुल एकांकी इलेक्ट्रॉन युग्म तथा P–O–P बंधों की संख्या का योग होगा :-				
	(1) 16	(2) 22		(1) 16		(2	2) 22		
	(3) 26	(4) 30		(3) 26		(4	4) 30		
77.	Compounds $Ni(CO)_X$, $Fe(CO)_y$ and $K_z[Fe(CN)_6]$ follow EAN rule then :-		77	7. यौगिक Ni((नियम का प	यौगिक Ni(CO) _X , Fe(CO) _y तथा K _z [Fe(CN ₆] EA नियम का पालन करे तो :-				
	(1) $x < y < z$	(2) $x = y > z$		(1) $x < y$	< z	(2	2) $x = y >$	Z	
	(3) $x = z < y$	(4) $x > y = z$		(3) $x = z \cdot $	< y	(4	4) $x > y =$	Z	
78.	Which shows sudden jump between IP_2 and IP_3		78	8. IP ₂ व IP ₃ व	${\rm IP}_2$ व ${\rm IP}_3$ के मानों में अचानक उछाल व्यक्त करत				
	(1) Na (2) Mg	(3) Al (4) Si		(1) Na	(2) Mg	(.	3) Al	(4) Si	
79.	Match list-I with list-	Match list-I with list-II and select			सूची-I तथा सूची-II का सही मिलान कोजिए।				
	List-I	List-I List-II		सूची-I		सूची-II			
(/	A) Zeiglernata catalyst	(i) $\operatorname{Fe}_{4}[\operatorname{Fe}(\operatorname{CN})_{6}]_{3}$		(A) जिंग्लर नाट	। उत्प्रेरक	(i)	Fe ₄ [Fe(Cl	$[N]_{6}]_{3}$	
(I	B) Brown ring complex	(ii) $Fe[(H_2O)_5NO]SO_4$		(B) भूरी वलय	संकुल	(ii)	Fe[(H ₂ O)	NO]SO ₄	
((C) Prussian Blue	(iii) $Al(C_2H_5)_3 + TiCl_4$		(C) प्रुसियन ब्लू		(iii)	$Al(C_2H_5)$	$_{3}$ + TiCl ₄	
(I	D) Turnbull Blue	(iv) $\operatorname{Fe}_{3}[\operatorname{Fe}(\operatorname{CN})_{6}]_{2}$		(D) टर्नबल ब्ल	`	(iv)	Fe IFe(C	N) 1	
	Correct code is :-			$\frac{(1)}{(1)} = \frac{1}{2} \frac{1}{2$					
	A B	C D		सहा काड़ ह	:- D	C	D		
	(1) (iii) (ii) (iv) (i)		A (1) (iii)	ы (ii)	(iv)	D (i)		
	(2) (iii) (i) (i	(iv) (ii)		(1) (iii) (2) (iii)	(i)	(iv)	(ii)		
	(3) (iii) (ii)	(i) (iv)		(3) (iii)	(ii)	(i)	(iv)		
	(4) (i) (ii)	(iii) (iv)		(4) (i)	(ii)	(iii)	(iv)		

E/<u>H</u>

23/26

MAJOR TEST

LEADER & ENTHUSIAST COURSE

21-03-2013

SPACE FOR ROUGH WORK / रफ कार्य के लिये जगह

E/H