LEADER & ENTHUSIAST COURSE

JEE-MAIN 2013

DATE: 21 - 03 - 2013

ТΜ

FULL SYLLABUS

_	ANSWER REI																			
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	2	1	2	3	2	4	2	4	1	3	3	4	2	1	4	1	1	4	3	3
Que.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	2	1	1	1	3	4	4	1	3	3	1	3	2	3	3	3	1	3	2	4
Que.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	2	4	2	3	1	3	1	2	1	2	1	2	2	1	3	2	4	4	4	4
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans.	3	1	3	3	3	4	3	4	2	2	3	2	4	3	3	3	3	2	3	2
Que.	81	82	83	84	85	86	87	88	89	90		-		<u> </u>			-			
Ans.	1	1	4	2	3	3	1	3	3	3										

HINT - SHEET

1. ${}^{4}C_{0}{}^{4}C_{4} + {}^{4}C_{1}{}^{4}C_{3} + {}^{4}C_{2}{}^{4}C_{2}$ 1 + 16 + 36 = 53 $1 + |e^x - 1| = e^{2x} - 2x + 1 - 1$ 2. $1 + |e^x - 1| = |e^x - 1|^2 - 1$ $|e^{x} - 1|^{2} - |e^{x} - 1| - 2 = 0$ $|et| |e^{x} - 1| = t$ $t^2 - t - 2 = 0$ (t-2)(t+1) = 0t = 2, -1 $|e^{x} - 1| = 2$ $e^{x} - 1 = \pm 2$ \therefore e^x=-1 is not possible $e^{x} = 3$ $x = \ell n3$ Only one solution. 3. $x^2 - 13x - 30 \le 0$ $(x - 15) (x + 2) \le 0$ $-2 \le x \le 15$ but x∈N so $x \in [1, 15]$ Probability = $\frac{15}{100} = \frac{3}{20}$

4.
$$Z = \frac{\sqrt{3} + i}{2} = \frac{-1 + \sqrt{3}i}{2i}$$

$$Z = \frac{\omega}{i}$$

$$(Z^{101} + i^{103})^{105}$$

$$\left(\frac{\omega^{101}}{i^{101}} + i^{103}\right)^{105}$$

$$\left(\frac{\omega^2}{i} - i\right)^{105} = \left(\frac{\omega^2 + 1}{i}\right)^{105}$$

$$= \left(\frac{-\omega}{i}\right)^{105} = \frac{-1}{i} = i = Z^3$$
6. Let the first 5 terms of AP are a - 2d, a-d, a, a + d, a + 2d
Now $a_1 + a_3 + a_5 = -12$

$$\Rightarrow 3a = -12 \Rightarrow a = -4$$
Also, $a_1 \cdot a_2 \cdot a_3 = 8$

$$\Rightarrow (a - 2d) (a - d) a = 8$$

$$\Rightarrow (-4 - 2d) (-4 - d) (-4) = 8 \Rightarrow d = -3$$
Hence the AP is 2, -1, -4, -7, -10, -13,...

Hence $a_2 + a_4 + a_6 = -21$

LEADER & ENTHUSIAST COURSE

21.

21-03-2013

7. Let 3n terms of G.P. are a, ar, ar^2, \ldots, ar^{3n-1}

Then
$$S_1 = a + ar + ar^2 + + ar^{n-1} = \frac{a(1-r^n)}{1-r}$$

 $S_2 = ar^n + ar^{n+1} + ar^{n+2} + + ar^{2n-1} = \frac{ar^n(1-r^n)}{1-r}$
 $S_3 = ar^{2n} + ar^{2n+1} + ar^{2n+2} + + ar^{3n-1} = \frac{ar^{2n}(1-r^n)}{1-r}$
So, $S_2^2 = S_1S_3$. Hence S_1 , S_2 , S_3 are in G.P.
Hnd **method :** Put the value of n.

9. Clearly, L = 0 is the perpendicular bisector of the segment joining (-2, 6) and (4, 2). The equation of which is

$$y - 4 = \frac{3}{2}(x - 1) \Rightarrow 3x - 2y + 5 = 0$$

$$\therefore L = 3x - 2y + 5$$

Put z = 0 in line

 $\therefore x = 5 : y = 1 \text{ put is curve}$ $c = \pm \sqrt{5}$

10.

11. We know that PS = AS = SB $\Rightarrow S$ is the circum-centre of $\triangle PAB$

- :. Equation of the required circle is $(x - 2)^2 + (y - 0)^2 = (2 - 18)^2 + (0 - 12)^2$ $\Rightarrow x^2 + y^2 - 4x - 396 = 0$
- **12.** $\vec{r}.\vec{a} = \mu[\vec{a}\vec{b}\vec{c}]$
 - $\vec{r}.\vec{b} = v[\vec{a}\,\vec{b}\,\vec{c}]$
 - $\vec{r}.\vec{c} = \lambda[\vec{a}\,\vec{b}\,\vec{c}]$

$$\Rightarrow \vec{r}.[\vec{a}+\vec{b}+\vec{c}]=(\lambda+\mu+\nu)[\vec{a}\ \vec{b}\ \vec{c}]$$

$$\Rightarrow 8 = (\lambda + \mu + \nu)\frac{1}{8}$$
$$\Rightarrow \lambda + \mu + \nu = 64$$

14. Since, the given line touches the given circle, the length of the perpendicular from the centre (2, 4) of the circle to the line 3x - 4y - k = 0 is equal to the radius $\sqrt{4+16+5} = 5$ of the circle.

$$\therefore \frac{3 \times 2 - 4 \times 4 - k}{\sqrt{9 + 16}} = \pm 5$$

$$\Rightarrow \quad k = 15 \qquad [\because k > 0]$$

hence equation of tangent is

$$3x - 4y - 15 = 0 \qquad \dots (1)$$

Let equation of normal to circle

$$4x + 3y = \lambda$$

It passes through centre (2, 4)

$$\Rightarrow \lambda = 20$$

hence equation of normal is

$$4x + 3y = 20 \qquad \dots (2)$$

Solve (1) & (2)

$$a = 5, b = 0$$

$$k + a + b = 15 + 5 + 0 = 20$$

$$f(0) = 0$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x}{\sqrt{x+1} - \sqrt{x}}$$
$$= \lim_{x \to 0} x(\sqrt{x+1} + \sqrt{x})$$
$$= 0$$
$$f(x) \text{ is conti. at } x = 0$$

LHD =
$$\lim_{h \to 0} \frac{\frac{-11}{\sqrt{-h+1} - \sqrt{-h}} - 0}{\frac{-h}{-h}} = 1$$

$$RHD = \lim_{h \to 0} \frac{\frac{h}{\sqrt{h+1} - \sqrt{-h}} - 0}{h} = 1$$

22.
$$\sqrt{3-2\sin^2 x} + \cos y \cdot y' = 0$$

 $y' = \sqrt{3}$

23. $f'(x) = 2(x - 1) (x - 2)^3 + 3 (x - 1)^2 (x - 2)^2$ $f'(x) = (x - 1) (x - 2)^2 [2(x - 2) + 3(x - 1)]$ $f'(x) = (x - 1) (x - 2)^2 (5x - 7)$

24.
$$\frac{1}{f(x)} = |x| - \{x\}$$
$$|x| < \{x\}$$
$$x \in \left(\frac{-1}{2}, 0\right)$$

2/5

HS

JEE-MAIN 2013

- **25.** $p \rightarrow q \equiv \neg p \lor q$ $\equiv \neg q \rightarrow \neg p$
- **26.** $\frac{{}^{15}C_2 + {}^{16}C_2}{{}^{31}C_2} = \frac{15}{31}$

St.-1, 2 Both are true and St. 2 is a correct explanation of St.-1.

27. The number of ways of selecting committee of r persons among 40 women and 60 men = ${}^{100}C_r$. This will assume greatest value at r = 50.

30.
$$\sin^{-1} \frac{2x}{1+x^2} = \cos^{-1} \frac{1-x^2}{1+x^2} = 2\tan^{-1} x$$

= $2\tan^{-1} x$
 $\forall x \in (0, 1)$

- : St. 1 is correct but
 - St. 2 is not correct.
- 32. Mean kinetic energy of molecule depends upon temperature only. For O_2 it is same as that of H₂ at the same temperature of $-73^{\circ}C$
- **33.** In first case $\eta_1 = \frac{T_1 T_2}{T_1}$

In second case
$$\eta_2 = \frac{2T_1 - 2T_2}{2T_1} = \frac{T_1 - T_2}{T_1} = \eta$$

34. A is compressed isothermally, hence

$$P_1 V = P_2 \frac{V}{2} \implies P_2 = 2P_1$$

and B is compressed adiabatically, hence

$$\mathbf{P}_{1}' \mathbf{V}^{\gamma} = \mathbf{P}'_{2} \left(\frac{\mathbf{V}}{2}\right)^{\gamma} \implies \mathbf{P}'_{2} = (2)^{\gamma} \mathbf{P}'_{1}$$

Since $\gamma > 1$, hence $P_2' > P_2$ or $P_2 < P_2'$

$$45. \quad \stackrel{q}{\bullet} \quad \stackrel{2q}{r} \quad \stackrel{4q}{\bullet} \quad \stackrel{q}{\bullet} \quad \stackrel{q}{r} \quad \stackrel{q}{\bullet} \quad \stackrel{q}{\bullet$$

Force on 4q due to q, $F_1 = \frac{kq4q}{(2r)^2} = \frac{kq^2}{r^2}$

net force on 2q $F_2 = F_{4q} - F_q$

$$= \frac{k4q \times 2q}{r^2} - \frac{kq \times 2q}{r^2} = \frac{6kq^2}{r^2}$$

46. Electric field due to solid sphere = $\frac{\rho r}{3 \epsilon_0}$

Now electric field at any point inside cavity

So \vec{E} at any point inside cavity is along the line joining centrs c_1 and c_2 i.e. +x direction.

47.
$$V_{CB} = \frac{\frac{4}{1} + \frac{4}{1} - \frac{2}{1}}{\frac{1}{1} + \frac{1}{1} + \frac{1}{1}} = 2$$

So
$$V_A - 1 - 2 = V_B$$

 $V_A - V_B = 3V$

48. CKt can be reduced as

Which is balanced WSB So

|--|

LEADER & ENTHUSIAST COURSE

MAJOR TEST 21-03-2013

On solving (i) and (ii)

$$\frac{1}{2}mv^{2} = \frac{hc}{3} \left[\frac{1}{250 \times 10^{-9}} - \frac{1}{400 \times 10^{-9}} \right] \qquad \dots \dots (iii)$$

From equation (i) and (iii) $W^{}_{_0}$ = 2hc \times $10^6~J$

55.
$$\frac{C_{14}}{C_{12}} = \frac{1}{4} = \left(\frac{1}{2}\right)^{1/5700} \implies \frac{t}{5700} = 2$$

$$\implies t = 11400 \text{ years}$$
56.
$$\lambda = \frac{0.693}{T_{1/2}} = \frac{0.693}{20} = 0.03465$$
Now time of decay $t = \frac{2.303}{\lambda} \log \frac{N_0}{N}$

$$\implies t_1 = \frac{2.303}{0.03465} \log \frac{100}{67} = 11.6 \text{ min}$$
and $t_2 = \frac{2.303}{0.03465} \log \frac{100}{33} = 32 \text{ min}$
Thus time difference between points of time
$$= t_1 - t_2 = 32 - 11.6 = 20.4 \text{ min} \approx 20 \text{ min}$$
57.
$$\sigma = ne(\mu_e + \mu_h)$$

$$= 2 \times 10^{19} \times 1.6 \times 10^{-19}(0.36 + 0.14)$$

$$= 1.6(\Omega \text{ cm})^{-1}$$

$$R = \rho \frac{1}{A} = \frac{1}{\sigma A} = \frac{0.5 \times 10^{-3}}{1.6 \times 10^{-4}} = \frac{25}{8}\Omega$$

$$\therefore \quad i = \frac{V}{R} = \frac{2}{25/8} = \frac{16}{25}A = 0.64A$$
61.
$$E_{cell}^* = (E_{RP}^*)_{cathode} - (E_{RP}^*)_{anode}$$

$$E_{cell}^* = 0.3435 + 0.453$$

$$= 0.7965 \text{ volt}$$

$$E_{cell}^* = \frac{0.059}{n} \log K_{eq}$$

$$\log K_{eq} = \frac{0.7965 \times 2}{0.059} = 27 \implies \text{Keq} = 10^{27}$$
63.
$$\Delta x \times \Delta P = \frac{h}{4\pi}$$

$$\therefore \Delta x = \Delta p \text{ (given)}$$

$$\therefore (\Delta P)^2 = \frac{h}{4\pi} \implies \Delta P = \sqrt{\frac{h}{4\pi}}$$
$$\implies m \ \Delta v = \frac{1}{2}\sqrt{\frac{h}{\pi}}$$

.....(ii)

JEE-MAIN 2013

65.		X ===	⇒ 2Y
	t _o	1	0
	t _{eq}	1-α	2α
	K _{p1} =	$\frac{4\alpha^2 p_1}{1-\alpha^2}$	
	Z ≂ 1	$\stackrel{\longrightarrow}{\longrightarrow} P + 0$	Q 0
	1–α	α	α
	K _{p2} =	$\frac{\alpha^2 p_2}{1-\alpha^2}$	
	$\frac{K_{p_1}}{K_{p_2}} =$	$=\frac{1}{9}=\frac{4p_1}{p_2}c$	or $\frac{p_1}{p_2} = \frac{1}{36}$
	$\sqrt{\frac{p_2}{p_1}}$	= 6	
66.	HCl M ₁ V ₁	+ NaC M ₂ V	$DH \longrightarrow NaCl + H_2O$
(A)	10	10	Complete neutralizat pH = 7
(B)	5.5	4.5	$[\mathrm{H}^+] = \frac{5.5 - 4.5}{100}$
			pH = 2
(C)	1	9	$[OH^{-}] = \frac{9-1}{100}$
			pH = 12.9
(D)	15	5	$[\mathrm{H}^+] = \frac{15 - 5}{100}$
			pH = 1
67.	$\Delta T_{f} =$	i K _f m	
	$i = \frac{1}{1}$	$\frac{0.372}{86 \times 0.1} =$	2
68.	Neare	st distanc	$e = \frac{\sqrt{3}a}{2}$
	0.368	$=\frac{\sqrt{3}a}{2}$	
	a = 0	.425 nm	

JEE-MAIN 2013
21–03–2013
69.
$$\frac{No. of atom}{N_A} = \frac{Weight}{Atomic wt}$$

 $\frac{4.6 \times 10^{22}}{6.023 \times 10^{23}} = \frac{13.8}{Atomic wt}.$
70. $\log \frac{x}{m} = \log K + 1/x \log P$
 $\log K = \log 2$
 $1/n = 1$
 $x/m = K (P)^{1/n} = 4$
84. $(\bigcirc \bigcirc \bigcirc)$ is most stable among following due to
aromaticity.
85. $HCCl_3 \longrightarrow \bigcirc Cl_3$
Here \odot charge is stabilized by d-orbital
resonance as Cl has vacant d-orbital.
86. $CH_7 - C=C-CH_7 \longrightarrow \bigcirc CH_7 - CH_7 \oplus \bigcirc CH_7 \oplus OH_7 \oplus OH_$

HS