ur larget is to secure Good Rank in Jat-MAIN 2015

FORM NUMBER

CLASSROOM CONTACT PROGRAMME (ACADEMIC SESSION 2012-2013)

LEADER & ENTHUSIAST COURSE JEE-MAIN 2013

MAJOR TEST # 04

DATE: 19 - 03 - 2013

SYLLABUS : SECTION - 4

IMPORTANT INSTRUCTIONS

- 1. Immediately fill in the particulars on this page of the Test Booklet with *Blue/Black Ball Point Pen*. Use of pencil is strictly prohibited.
- 2. The candidates should not write their Form Number anywhere else (except in the specified space) on the Test Booklet/Answer Sheet.
- 3. The test is of **3 hours** duration.
- 4. The Test Booklet consists of 105 questions. The maximum marks are 420.
- 5. There are *three* parts in the question paper. The distribution of marks subjectwise in each part is as under for each correct response.
 Part A – Physics (140 marks) – 35 Questions. Questions No. 1 to 35 carry 4 marks each = 140 Marks
 Part B – Chemistry (140 marks) – 35 Questions. Questions No. 36 to 70 carry 4 marks each = 140 Marks
 Part C – Mathematics (140 marks) – 35 Questions. Questions No. 71 to 105 carry 4 marks each = 140 Marks
- 6. One Fourth mark will be deducted for indicated incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the Answer Sheet.
- Use Blue/Black Ball Point Pen only for writting particulars/marking responses on Side-1 and Side-2 of the Answer Sheet. Use of pencil is strictly prohibited.
- 8. No candidate is allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone any electronic device etc, except the Identity Card inside the examination hall/room.
- **9.** Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- On completion of the test, the candidate must hand over the Answer Sheet to the invigilator on duty in the Room/Hall. However, the candidate are allowed to take away this Test Booklet with them.
- 11. Do not fold or make any stray marks on the Answer Sheet.

महत्वपूर्ण सूचनाएँ

- परीक्षा पुस्तिका के इस पृष्ठ पर आवश्यक विवरण नीले/काले बॉल पाइंट पेन से तत्काल भरें। पेन्सिल का प्रयोग बिल्कुल वर्जित हैं।
- परीक्षार्थी अपना फार्म नं. (निर्धारित जगह के अतिरिक्त) परीक्षा पुस्तिका / उत्तर पत्र पर कहीं और न लिखें।
- परीक्षा की अवधि 3 घंटे है।
- इस परीक्षा पुस्तिका में 105 प्रश्न हैं। अधिकतम अंक 420 हैं।
- प्रश्न पत्र में तीन भाग हैं। प्रत्येक भाग में प्रत्येक सही उत्तर के लिये अंकों का विषयवार वितरण नीचे दिए अनुसार होगा। भाग A – भौतिक विज्ञान (140 अंक) – 35 प्रश्न प्रश्न संख्या 1 से 35 तक प्रत्येक 4 अंक का है = 140 अंक भाग B – रसायनिक विज्ञान (140 अंक) – 35 प्रश्न प्रश्न संख्या 36 से 70 तक प्रत्येक 4 अंक का है = 140 अंक भाग C –गणित (140 अंक) – 35 प्रश्न प्रश्न संख्या 71 से 105 तक प्रत्येक 4 अंक का है = 140 अंक
- प्रत्येक गलत उत्तर के लिए उस प्रश्न के कुल अंक का एक चौथाई अंक काटा जायेगा। उत्तर पुस्तिका में कोई भी उत्तर नहीं भरने पर कुल प्राप्तांक में से ऋणात्मक अंकन नहीं होगा।
- उत्तर पत्र के पृष्ठ-1 एवं पृष्ठ-2 पर वांछित विवरण एवं उत्तर अंकित करने हेतु केवल नीले/काले बॉल पाइंट पेन का ही प्रयोग करें। पेन्सिल का प्रयोग बिल्कुल वर्जित है।
- 8. परीक्षार्थी द्वारा परीक्षा कक्ष/हॉल में परिचय पत्र के अलावा किसी भी प्रकार की पाठ्य सामग्री, मुद्रित या हस्तलिखित, कागज की पर्चियों, पेजर, मोबाइल फोन या किसी भी प्रकार के इलेक्ट्रानिक उपकरणों या किसी अन्य प्रकार की सामग्री को ले जाने या उपयोग करने की अनुमति नहीं हैं।
- 9. रफ कार्य परीक्षा पुस्तिका में केवल निर्धारित जगह पर ही कीजिये।
- 10. परीक्षा समाप्त होने पर, परीक्षार्थी कक्ष/हॉल छोड़ने से पूर्व उत्तर पत्र कक्ष निरीक्षक को अवश्य सौंप दें। परीक्षार्थी अपने साथ इस परीक्षा पुस्तिका को ले जा सकते हैं।
- 11. उत्तर पत्र को न मोड़ें एवं न ही उस पर अन्य निशान लगाऐं।

Do not open this Test Booklet until you are asked to do so / इस परीक्षा पुस्तिका को जब तक ना खोलें जब तक कहा न जाऐ।

Corporate Office "SANKALP", CP-6, Indra Vihar, Kota (Rajasthan)-324005 Trin : +91 - 744 - 2436001 Fax : +91-744-2435003 E-Mail: info@allen.ac.in Website: www.allen.ac.in 1.

the same voltage), the current in the circuit is found to be halved. Then the ratio of reactance to resistance at the original frequency ω is :

An ac source of angular frequency ω is fed across a resistor R and a capacitor C in series.

- (1) $\sqrt{3/5}$ (2) $\sqrt{5/3}$ (3) $\sqrt{2/3}$ (4) $\sqrt{3/2}$
- 2. A wire forming one cycle of sine curve is moved in x-y plane with velocity $\vec{v} = v_x \hat{i} + v_y \hat{j}$. There

exist a magnetic field $\vec{B} = -B_0\hat{k}$. Find the motional emf develop across the ends PQ of wire.

$$(1) 2\lambda V_{v}B_{0}$$

(4) None

(3) $\lambda V_{y} \dot{B}_{0}$

 ω कोणीय आवृति का प्रत्यावर्ती धारा स्रोत प्रतिरोध R तथा संधारित्र C के साथ श्रेणी में जुड़ा है। धारा I है। यदि स्रोत की आवृति ω/3 (जबकि वोल्टेज वही है), हो जाये तो प्रतिरोध में धारा आधी हो जाती है तो वास्तविक आवृति पर प्रतिघात तथा प्रतिरोध में अनुपात होगा-

MAJOR TEST

19-03-2013

- (1) $\sqrt{3/5}$ (2) $\sqrt{5/3}$
- (3) $\sqrt{2/3}$ (4) $\sqrt{3/2}$
- ज्या वक्र के एक चक्र के रूप में मोड़ा गया तार x-y तल में v = vxî + vyĵ वेग से गति करता है। यहां चुम्बकीय क्षेत्र B = -B₀k विद्यमान है। तार के PQ सिरों पर उत्पन्न गतिशील विद्युत वाहक बल ज्ञात कीजिए।

$$\begin{array}{c} x \times \mathbf{y} \times \mathbf{x} \times \mathbf{x} \times \mathbf{x} \\ x \times \mathbf{y} \times \mathbf{x} \times \mathbf{x} \times \mathbf{x} \\ x \times \mathbf{y} \times \mathbf{x} \times \mathbf{x} \times \mathbf{x} \\ x \times \mathbf{y} \times \mathbf{x} \times \mathbf{x} \times \mathbf{x} \\ x \times \mathbf{x} \times \mathbf{x} \times \mathbf{x} \times \mathbf{x} \\ x \times \mathbf{x} \times \mathbf{x} \times \mathbf{x} \times \mathbf{x} \\ x \times \mathbf{x} \times \mathbf{x} \times \mathbf{x} \times \mathbf{x} \\ x \times \mathbf{x} \times \mathbf{x} \times \mathbf{x} \times \mathbf{x} \\ x \times \mathbf{x}$$

SPACE FOR ROUGH WORK

(1)

(3)

JEE-MAIN 2013

HAVE CONTROL \rightarrow HAVE PATIENCE \rightarrow HAVE CONFIDENCE \Rightarrow 100% SUCCESS BEWARE OF NEGATIVE MARKING PART A - PHYSICS

SPACE FOR ROUGH WORK

E / H

MAJOR TEST

6. A metal rod of resistance 20Ω is fixed along a diameter of a conducting ring of radius 0.1 m and lies on x-y plane. There is a magnetic field $\vec{B} = (50T)\hat{k}$. The ring rotates with an angular velocity $\omega = 20$ rad/s about its axis. An external resistance of 10Ω is connected across the centre of the ring and rim. The current through external resistance is :-

(1)
$$\frac{1}{4}$$
A (2) $\frac{1}{2}$ A (3) $\frac{1}{3}$ A (4) Zero

7. As shown in the figure, P and Q are two coaxil conducting loops separated by some distance. When the switch S is closed, a clockwise current I_p flows in P (as seen by E) and an induced current I_{Q_1} flows in Q. The switch remains closed for a long time. When S is opened, a current I_{Q_2} flows in Q. Then the direction I_{Q_1} and I_{Q_2} (as seen by E) are :

- (1) respectively clockwise and anticlockwise
- (2) both clockwise
- (3) both anticlockwise
- (4) respectively anticlockwise and clockwise

6. 20Ω प्रतिरोध की धातु की छड़ 0.1 मीटर त्रिज्या की एक चालक वलय के व्यास के अनुदिश है तथा यह x-y तल में स्थित है। यहाँ पर B = (50T)k का चुम्बकीय क्षेत्र उपस्थित है। वलय ω = 20 rad/s की चाल से इसके अक्ष के सापेक्ष घूर्णन गति करती है। एक बाह्य प्रतिरोध 10Ω को वलय की परिधि तथा केन्द्र के मध्य जोड़ा गया है बाह्य प्रतिरोध में धारा होगी:-

(1)
$$\frac{1}{4}$$
A (2) $\frac{1}{2}$ A (3) $\frac{1}{3}$ A (4) शून्य

7. P तथा Q दो समाक्ष चालक-लूप चित्रानुसार परस्पर कुछ दूरी पर है। जैसे ही स्विच S को बंद करते हैं, P में एक दक्षिणावर्त धारा I_P बहती है। (जैसा कि E देखता है) तथा Q में प्रेरित धारा I_{Q1} बहती है। स्विच एक लम्बे समय के लिये बंद रहता है। जब S को खोलते हैं तो Q में धारा I_{Q2} बहती है। I_{Q1} व I_{Q2} की दिशायें (जैसा कि E देखता है) है :

- (1) क्रमशः दक्षिणावर्त तथा वामावर्त
- (2) दोनों दक्षिणावर्त
- (3) दोनों वामावर्त
- (4) क्रमश: वामावर्त तथा दक्षिणावर्त

					MAJOR TEST
Path to Succ		LEADER & ENT	HUSI	AST COURSE	19-03-2013
8.	A ball is dropped from the surface of water ir index of water is 4/3. A the line of fall of the ba At an instant, when th the water surface, the fi as [Take $g = 10 \text{ m/s}^2$.] (1) 9 m/s (3) 16 m/s	a height of 20 m above a lake. The refractive fish inside the lake, in ll, is looking at the ball. e ball is 12.8 m above sh sees the speed of ball (2) 12 m/s (4) 21.33 m/s	8.	एक झील के पानी की सतह से छोड़ी जाती है। पानी का अपव एक मछली, जो गेंद के गिरने व देख रही है। जब गेंद पानी की समय मछली गेंद की गति को [g = 10 m/s ² .] (1) 9 m/s (3) 16 m/s	में 20m की ऊंचाई पर एक गेंद क्रतनांक 4/3 है। झील में स्थित की रेखा में है, गिरती हुई गेंद को सतह से 12.8 m ऊपर है उस । देखेगी (2) 12 m/s (4) 21.33 m/s
9.	A biconvex lens of focat of a plane mirror. The d and the mirror is 10 cm at a distance of 30 cm image is	l length 15 cm is in front istance between the lens A small object is kept from the lens. The final	9.	15 cm फोकल दूरी वाला एर दर्पण के सामने रखा है। लैंस 10 cm है। एक छोटा बिंब लैं गया है। इसका अंतिम प्रतिबि	क उभयोत्तल लैंस एक समतल 1 तथा दर्पण के बीच की दूरी रंस से 30 cm की दूरी पर रखा त्रंब
	(1) virtual and at a distance(2) real and at a distance(3) virtual and at a distance	e of 16 cm from the mirror of 16 cm from the mirror a of 20 cm from the mirror		 (1) काल्पनिक तथा दर्पण से (2) वास्तविक तथा दर्पण से 	16 cm की दूरी पर है। 16 cm की दूरी पर है।
	(4) real and at a distance	of 20 cm from the mirror		(3) काल्पानक तथा दर्पण स(4) वास्तविक तथा दर्पण से	20 cm की दूरी पर है। 20 cm की दूरी पर है।
10.	Image of an object appr of radius of curvature 20 is observed to move f 30 seconds. What is the per hour?	oaching a convex mirror) m along its optical axis from $\frac{25}{3}$ m to $\frac{50}{7}$ m in speed of the object in km	10.	20m त्रिज्या के एक उत्तल द जाते हुए एक बिंब का प्रतिबिंब पर खिसकता है। बिंब क होगी ?	र्षण की ओर प्रकाश अक्ष पर ब 30 sec में <mark>25</mark> m से <mark>50</mark> m गे चाल km/hour में क्या
	(1) 2 km/hr.(3) 4 km/hr.	(2) 3 km/hr.(4) 5 km/hr.		(1) 2 km/hr.(3) 4 km/hr.	(2) 3 km/hr.(4) 5 km/hr.

E/H

Pate to Success

JEE-MAIN 2013

- 11. A large glass slab $\left(\mu = \frac{5}{3}\right)$ of thickness 8 cm is placed over a point source of light on a plane surface. It is seen that light emerges out of the top surface of the slab from a circular area of radius R cm. What is the value of R?
 - (1) 6 cm (2) 12 cm
 - (3) 3 cm (4) 18 cm
 - **12.** Young's double slit experiment is carried out by using green, red and blue light, one color at a time.

The fringe widths recorded are β_G , β_R and β_B , respectively. Then

- (1) $\beta_G > \beta_B > \beta_R$ (2) $\beta_B > \beta_G > \beta_R$
- (3) $\beta_R > \beta_B > \beta_G$ (4) $\beta_R > \beta_G > \beta_B$

Paragraph : (Q. No. 13 and 14)

Most materials have the refractive index, n>1. So, when a light ray from air enters a naturally occurring material, then by Snell's law, $\sin \theta = n$

 $\frac{\sin \theta_1}{\sin \theta_2} = \frac{n_2}{n_1}$, it is understood that the refracted ray bends towards the normal. But it never emerges

on the same side of the normal as the incident ray. According to electromagnetism, the refractive index of the medium is given by the relation,

 $n = \left(\frac{c}{v}\right) = \pm \sqrt{\varepsilon_r \mu_r}$, where c is the speed of

electromagnetic waves in vacuum, v its speed in the medium, ε_r and μ_r are the relative permittivity and permeability of the medium respectively.

- 11. एक समतल पर काँच $\left(\mu = \frac{5}{3}\right)$ का 8 cm मोटाई का एक बड़ा गुटका प्रकाश के एक बिन्दु स्रोत पर रखा है। यह देखा जाता है कि इसके ऊपरी पृष्ठ से प्रकाश R cm त्रिज्या के वृत्ताकार क्षेत्र से बाहर निकलता है। R का मान ज्ञात कीजिए। (1) 6 cm (2) 12 cm
 - (3) 3 cm (4) 18 cm
- यंग-द्वि-स्लिट प्रयोग को तीन बार क्रमश: हरा, लाल और नीला प्रकाश प्रयुक्त करके किया गया। एक बार में एक ही रंग प्रयोग किया गया। तीन फ्रिंज-चौड़ाई क्रमश: β_G, β_R व β_B पाई गई। तब
 - (1) $\beta_G > \beta_B > \beta_R$ (2) $\beta_B > \beta_G > \beta_R$

(3) $\beta_R > \beta_B > \beta_G$ (4) $\beta_R > \beta_G > \beta_B$

गद्यांश: (प्र. सं. 13 व 14)

अधिकतर पदार्थों का अपवर्तनांक, n >1 होता है। इसलिये जब कोई प्रकाश किरण वायु से किसी प्राकृतिक पदार्थ में प्रवेश $\sin \theta_1 = n_2$

करती है तब, Snell's नियम $\frac{\sin \theta_1}{\sin \theta_2} = \frac{n_2}{n_1}$ क अनुसार, अपवर्तित किरण अभिलंब की तरफ झुकती है। लेकिन यह कभी भी अभिलंब के आपतित किरण वाले और से बाहर नहीं निकलती। विद्युत-चुम्बकत्व के अनुसार, किसी माध्यम का अपवर्तनांक $n = \left(\frac{c}{v}\right) = \pm \sqrt{\varepsilon_r \mu_r}$ होता है, जहां c विद्युत-चुम्बकीय तरंगों की निर्वात् में चाल तथा v उनकी माध्यम में चाल है, ε_r व μ_r क्रमश: माध्यम की सापेक्ष विद्युतशीलता व चुंबकशीलता है। आम पदार्थों में ε_r व μ_r दोनों धनात्मक

SPACE FOR ROUGH WORK

MAJOR TEST

LEADER & ENTHUSIAST COURSE

In normal materials, both ε_r and μ_r are positive, implying positive n for the medium. When both ε_r and μ_r are negative, one must choose the negative root of n. Such negative refractive index materials can now be artificially prepared and are called meta-materials. They exhibit significantly different optical behaviour, without violating any physical laws. Since n is negative, it results in a change in the direction of propagation of the refracted light. However, similar to normal materials, the frequency of light remains unchanged upon refraction even in meta-materials.

13. For light incident from air on a meta-material, the appropriate ray diagram is

- **14.** Choose the correct statement.
 - (1) The speed of light in the meta-material is v = c|n|
 - (2) The speed of light in the meta-material is $v = \frac{v}{|n|}$
 - (3) The speed of light in the meta-material is v = c.
 - (4) The wavelength of the light in the metamaterial (λ_m) is given by $\lambda_m = \lambda_{air} |\mathbf{n}|$, where λ_{air} is the wavelength of the light in air.

होते हैं, अर्थात् माध्यम का n धनात्मक है। जब ε_r व μ_r दोनों ऋणात्मक हों तब हमें n का ऋणात्मक वर्गमूल लेना होगा। ऐसे ऋणात्मक n वाले पदार्थ अब अप्राकृतिक रूप में तैयार किये जा सकते हैं, और उन्हें मैटा-पदार्थ (meta-material) कहते हैं। वे बिल्कुल अलग तरह का प्रकाशिक गुणधर्म दर्शाते हैं, परन्तु भौतिक नियमों का उल्लंघटन नहीं करते। चूंकि n ऋणात्मक है, अपवर्तित प्रकाश की चलने की दिशा में परिवर्तन होता है तथापित आम पदार्थों की तरह इन मैटा-पदार्थों में भी अपवर्तन पर प्रकाश की आवृत्ति नहीं बदलती।

 वायु (air) से मैटा-पदार्थ पर आपतित प्रकाश-किरण के लिये उपयुक्त किरण-चित्र है

- 14. सही प्रकथन चुनें।
 (1) मैटा-पदार्थ में प्रकाश की गति v = c|n| है।
 - (2) मैटा-पदार्थ में प्रकाश की गति v = $\frac{c}{|n|}$ है।
 - (3) मैटा-पदार्थ में प्रकाश की गति v = c है।
 - (4) मैटा-पदार्थ में प्रकाश की तरंगदैर्ध्य (λ_m) को $\lambda_m = \lambda_{air} |n|$ द्वारा दर्शा सकते हैं, जहां λ_{air} वायु में प्रकाश की तरंगदैर्ध्य है।

SPACE FOR ROUGH WORK

E / H

15. The kinetic energy of an electron gets tripled, then the de Broglie wavelength associated with it will be 1/n times, where n = :-

(1)
$$\frac{1}{3}$$
 (2) $\sqrt{3}$ (3) $\frac{1}{\sqrt{3}}$ (4) 3

16. According to de-Broglie, the de-Broglie wavelength for electron in an orbit of (radius 4.8×10^{-11} m) hydrogen atom is 10^{-10} m. The principle quantum number for this electron is :-

(1) 1 (2) 2 (3) 3 (4) 4

- 17. The work functions of metals A and B are in the ratio 1 : 2. If light of frequencies f and 2f are incident on the surface of A and B respectively, the ratio of the maximum kinetic energies of photoelectrons emitted is (f is greater than threshold frequency of A, 2f is greater than threshold frequency of B)
 - (1) 1 : 1 (2) 1 : 2
 - (3) 1 : 3 (4) 1 : 4
- 18. When radiation of wavelength λ is incident on a metallic surface, the stopping potential is 4.8 volts. If the same surface is illuminated with radiation of double the wavelength, then the stopping potential becomes 1.6 volts. Then the threshold wavelength for the surface is :-

(1) 2λ (2) 4λ (3) 6λ (4) 8λ

15. एक इलेक्ट्रॉन की गतिज ऊर्जा तीन गुनी हो जाती है, तब इससे सम्बद्ध डी-ब्रोग्ली तरंगदैर्ध्य 1/n गुना हो जाती है, जहाँ n = :-

(1)
$$\frac{1}{3}$$
 (2) $\sqrt{3}$ (3) $\frac{1}{\sqrt{3}}$ (4) 3

- 16. डी-ब्रोग्ली के अनुसार, हाइड्रोजन परमाणु की किसी कक्षा (त्रिज्या = 4.8×10^{-11} m) में घुमते हुये इलेक्ट्रॉन की संगत डी-ब्रोग्ली तरंगदैर्ध्य 10^{-10} m है। इस इलेक्ट्रॉन के लिये मुख्य क्वाण्टम संख्या होगी :-
 - (1) 1 (2) 2 (3) 3 (4) 4
- 17. धातुओं A तथा B के कार्यफलनों का अनुपात 1 : 2 है। यदि f तथा 2f आवृत्तियों का प्रकाश क्रमश: A तथा B पृष्ठों पर आपतित होता है, तो उत्सर्जित फोटो इलैक्ट्रॉनों की अधिकतम ऊर्जाओं का अनुपात है (f, A की देहली आवृत्ति से अधिक है तथा 2f, B की देहली आवृत्ति से अधिक है।)
 - (1) 1 : 1
 (2) 1 : 2

 (3) 1 : 3
 (4) 1 : 4
- 18. जब किसी धात्विक पृष्ठ पर λ तरंगदैर्ध्य का विकरण आपतित होता है, तो निरोधी विभव 4.8 वोल्ट है। यदि वही पृष्ठ दुगनी तरंगदैर्ध्य के विकरण से दीप्त हो तो निरोधी विभव 1.6 वोल्ट हो जाता है। पृष्ठ की देहली तरंगदैर्ध्य होगी :-
 - (1) 2λ (2) 4λ (3) 6λ (4) 8λ

SPACE FOR ROUGH WORK

MAJOR TEST

LEADER & ENTHUSIAST COURSE

- **19.** A photon of 1.7×10^{-13} Joules is absorbed by a material under special circumstances. The correct statement is :-
 - (1) Electrons of the atom of absorbed material will go the higher energy states
 - (2) Electron and positron pair will be created
 - (3) Only positron will be produced
 - (4) Photoelectric effect will occur and electron will be produced
- 20. The correct graph between the energy E of an electron and its de-Broglie wavelength λ will be:-

21. The figure indicates the energy level diagram of an atom and the origin of six spectral lines in emission (e.g. line no. 5 arises from the transition from level B to A). Which of the following spectral lines will also occur in the absorption spectra :-

SPACE FOR ROUGH WORK

- 19. 1.7 × 10⁻¹³ जूल का एक फोटॉन विशेष परिस्थितियों में एक पदार्थ द्वारा अवशोषित कर लिया जाता है सत्य कथन है :-
 - (1) अवशोषित पदार्थ के परमाणु के इलेक्ट्रॉन उच्च ऊर्जा स्तर में पहुँच जाऐंगें।
 - (2) इलेक्ट्रॉन तथा पॉजिट्रॉन युग्म उत्पनन होगा
 - (3) केवल पॉजिट्रॉन का उत्पन्न होगा
 - (4) इलेक्ट्रॉन उत्पन्न होगा तथा प्रकाश विद्युत प्रभाव भी होगा।
- यदि किसी इलेक्ट्रॉन की ऊर्जा E एवं इसकी डी-ब्रोग्ली तरंगदैर्ध्य λ है तो log E एवं log λ के मध्य सही ग्राफ होगा :-

 यह चित्र एक पॅरमाणु के ऊर्जा स्तरों और छ: वर्णक्रम रेखाओं के उद्गम को दर्शाता है। (उदाहरणत: रेखा 5 स्तर B से स्तर A में स्थानान्तरण से प्राप्त होती है) निम्नलिखित में से कौनसी

रेखायें अवशोषण वर्णक्रम में भी प्राप्त होगी :-

22.

22. In the Bohr model of a hydrogen atom, the centripetal force is furnished by the coulomb attraction between the proton and the electron. If a_0 is the radius of the ground state orbit, m is the mass, e is the charge on the electron and ε_0 is the vacuum permittivity, the speed of the electron in first excited state is :-

(1)
$$\frac{e}{4\sqrt{\pi\epsilon_0 a_0 m}}$$
 (2) $\frac{e}{\sqrt{\epsilon_0 a_0 m}}$

(3)
$$\frac{e}{\sqrt{4\pi\epsilon_0 a_0 m}}$$
 (4) $\frac{\sqrt{4\pi\epsilon_0 a_0 m}}{e}$

23. At any instant the ratio of the amount of radioactive substances is 2 : 1. If their half lives be respectively 12 and 16 hours, then after two days, what will be the ratio of the substances :-

(1) 1:1 (2) 2:1 (3) 1:2 (4) 1:4

(4) $\frac{R_0}{6}$

- 24. Activity of radioactive element decreased to one third of original activity R_0 in 9 years. After further 9 years, its activity will be :-
 - (1) R_0 (2) $\frac{2}{3}R_0$
 - (3) $\frac{R_0}{9}$

हाइड्रोजन परमाणु के बोहर मॉडल में प्रोटॉन तथा इलेक्ट्रॉन के मध्य कूलॉम आकर्षण से अभिकेन्द्रीय बल प्राप्त होता है। यदि निम्न स्तर कक्ष की त्रिज्या a₀ इलेक्ट्रॉन का द्रव्यमान m एवं इलेक्ट्रॉन पर आवेश e है, तथा निर्वात की विद्युतशीलता ε₀ है, तो इलेक्ट्रॉन की चाल होगी :-

(1)
$$\frac{e}{4\sqrt{\pi\varepsilon_0 a_0 m}}$$
 (2) $\frac{e}{\sqrt{\varepsilon_0 a_0 m}}$

(3)
$$\frac{e}{\sqrt{4\pi\epsilon_0 a_0 m}}$$
 (4) $\frac{\sqrt{4\pi\epsilon_0 a_0 m}}{e}$

23. किसी क्षण पर दो रेडियोएक्टिव पदार्थों की मात्राओं का अनुपात 2 : 1 है। यदि इनकी अर्द्ध-आयु क्रमश: 12 एव 16 घण्टे है, तो दो दिन बाद इनकी मात्राओं का अनुपात होगा :-

 $(1) 1 : 1 \quad (2) 2 : 1 \quad (3) 1 : 2 \quad (4) 1 : 4$

(4) $\frac{R_0}{6}$

24. एक रेडियोसक्रिय पदार्थ की सक्रियता 9 वर्ष पश्चात् अपनी प्रारम्भिक सक्रियता R_0 की एक तिहाई रह जाती है। अगले 9 वर्ष बाद इसकी सक्रियता हो जायेगी :-

(1)
$$R_0$$
 (2) $\frac{2}{3}R_0$

कोई भी प्रश्न Key Filling से गलत नहीं होना चाहिए।

(3) $\frac{R_0}{9}$

Path to Succ		IUSI	AST COURSE	19-03-2013
25.	Mass spectrometric analysis of potassium and argon atoms in a Moon rock sample shows that the ratio of the number of (stable) ⁴⁰ Ar atoms present to the number of (radioactive) ⁴⁰ K atoms is 10.3. Assume that all the argon atoms were produced by the decay of potassium atoms, with a half-life of 1.25×10^9 yr. How old is the rock:- (1) 2.95×10^{11} yr (2) 2.95×10^9 yr (3) 4.37×10^9 yr (4) 4.37×10^{11} yr	25.	चन्द्रमा की चट्टान के नमूने में पोटेशिय का द्रव्यमान स्पेक्ट्रोमीट्रिक विश्लेषण उपस्थित स्थायी ⁴⁰ Ar परमाणुओं परमाणुओं से अनुपात 10.3 देखा गया आर्गन परमाणु पोटेशियम परमाणुओं व जिनकी अर्द्ध-आयु 1.25×10^9 yr. है (1) 2.95 × 10^{11} yr (2) (3) 4.37×10^9 yr (4)	न और आर्गन परमाणुओं किया जाता है। जिसमें का रेडियोसक्रिय ⁴⁰ K । यह माना जाए कि सभी के क्षय से उत्पन्न होते हैं, । चट्टान की आयु होगी:- 2.95 × 10 ⁹ yr 4.37 × 10 ¹¹ yr
26.	Energy released in the fission of a single ${}_{92}U^{235}$ nucleus is 200 MeV. The fission rate of a ${}_{92}U^{235}$ fuelled reactor operating at a power level of 5W is :- (1) 1.56 × 10 ¹⁰ s ⁻¹ (2) 1.56 × 10 ¹¹ s ⁻¹ (3) 1.56 × 10 ¹⁶ s ⁻¹ (4) 1.56 × 10 ¹⁷ s ⁻¹	26.	एकल $_{92}U^{235}$ के नाभिक के विस् 200 MeV है। $_{92}U^{235}$ के ईंधन रिये पर कार्य करता है, इसमें विखण्डन द (1) 1.56 × 10 ¹⁰ s ⁻¹ (2) (3) 1.56 × 10 ¹⁶ s ⁻¹ (4)	ब्रण्डन में मुक्त ऊर्जा क्टर 5W के शक्ति स्तर र होगी :- 1.56 × 10 ¹¹ s ⁻¹ 1.56 × 10 ¹⁷ s ⁻¹
27.	Highly energetic electrons are bombarded on a target of an element containing 30 neutrons. The ratio of radii of nucleus to that of Helium nucelus is $14^{1/3}$. The atomic number of nucleus will be :- (1) 25 (2) 26	27.	एक लक्ष्य पर अत्यधिक ऊर्जावान इ जाती है। लक्ष्य तत्व में 30 न्यूट्रॉन है। एवं हीलियम नाभिक की त्रिज्याओं नाभिक का परमाणु क्रमाक है :- (1) 25 (2) 2 (3) 56 (4)	लेक्ट्रॉन की बौछार की लक्ष्य नाभिक की त्रिज्या का अनुपात 14 ^{1/3} है। 26 30
28.	(3) 56 (4) 30 If the binding energy per nucleon in Li^7 and He ⁴ nuclei are respectively 5.60 MeV and 7.06 MeV, then energy of reaction Li ⁷ + p \rightarrow 2 ₂ He ⁴ is :- (1) 19.6 MeV (2) 2.4 MeV (3) 8.4 MeV (4) 17.3 MeV	28.	यदि Li ⁷ एवं He ⁴ के नाभिकों में प्रति क्रमश: 5.60 MeV एवं 7.06 MeV Li ⁷ + p → 2 ₂ He ⁴ की ऊर्जा होग (1) 19.6 MeV (2) (3) 8.4 MeV (4)	न्यूक्लिऑन बंधन ऊर्जा ⁷ है, तो निम्न अभिक्रिया 11 :- 2.4 MeV 17.3 MeV
	(Use ston, look and go meth	od in r	eading the question	

Use stop, look and go method in reading the question SPACE FOR ROUGH WORK

E / H

MAJOR TEST

- **29.** A signal wave of frequency 12 kHz is modulated with a carrier wave of frequency 2.51 MHz. The upper and lower side band frequencies are respectively :-
 - (1) 2512 kHz and 2508 kHz
 - (2) 2522 kHz and 2488 kHz
 - (3) 2502 kHz and 2498 kHz
 - (4) 2522 kHz and 2498 kHz
- **30.** In the circuit given below, V(t) is the sinusoidal voltage source, voltage drop $V_{AB}(t)$ across the resistance R is :-

- (1) Is half wave rectified
- (2) Is full wave rectified
- (3) Has the same peak value in the positive and negative half cycle
- (4) Has different peak values during positive and negative half cycle
- **31.** A transistor is used as an amplifier in CB mode with a load resistance of 5 k Ω the current gain of amplifier is 0.98 and the input resistance is 70 Ω , the voltage gain and power gain respectively are :-

(1) 70, 68.6	(2) 80, 75.6
(3) 60, 66.6	(4) 90, 96.6

- 29. एक 12 kHz आवृत्ति की संकेत तरंग को 2.51 MHz. आवृत्ति की वाहक तरंगों के साथ मॉडूलित किया जाता है। इसमें उच्च और निम्न साइड-बैंड आवृत्ति क्रमश: है :-
 - (1) 2512 kHz and 2508 kHz
 - (2) 2522 kHz and 2488 kHz
 - (3) 2502 kHz and 2498 kHz
 - (4) 2522 kHz and 2498 kHz
- नीचे दिये गये परिपथ में V(t) एक ज्यावक्रीय वोल्टेज स्त्रोत है। प्रतिरोध R के सिरों पर विभवान्तर V_{AB}(t) है :-

- (1) अर्द्धतरंग दिष्टकृत
- (2) पूर्ण तरंग दिष्टकृत
- (3) धनात्मक एवं ऋणात्मक अर्द्धचक्र में शिखर मान समान है।
- (4) धनात्मक एवं ऋणात्मक अर्द्धचक्र में शिखर मान अलग-अलग है।
- एक ट्रांजिस्टर उभयनिष्ठ आधार विधा में प्रवर्धक के रूप में प्रयुक्त किया जाता है। इसमें लोड प्रतिरोध 5 kΩ धारा लाभ 0.98 तथा निवेशी प्रतिरोध 70Ω है। वोल्टेज लाभ एवं शक्ति लाभ क्रमश: होंगे :-

(1) 70, 68.6	(2) 80, 75.6
(3) 60, 66.6	(4) 90, 96.6

SPACE FOR ROUGH WORK

LEADER & ENTHUSIAST COURSE

32. The logic circuit shown below has the input waveforms 'A' and 'B' as shown. Pick out the correct output waveform :-

33. The resonance frequency of the tank circuit of an oscillator when $L = \frac{10}{\pi^2} mH$ and $C = 0.04 \ \mu F$ are connected in parallel is :-(1) 250 kHz (2) 25 kHz (3) 2.5 kHz (4) 25 MHz 32. नीचे दर्शाये लॉजिक परिपथ के निवेश तरंग रूप 'A' एवं 'B' निम्न है। सही निर्गम का चयन करें :-

SPACE FOR ROUGH WORK

34.

34. The energy band diagrams for three semiconductor samples of silicon are as shown.We can then assert that :-

- (1) Sample X is undoped while sample Y and Z have been doped with a third group and a fifth group impurity respectively
- (2) Sample X is undoped while both samples Y and Z have been doped with a fifth group impurity
- (3) Sample X has been doped with equal amounts of third and fifth group impurities while samples Y and Z are undoped
- (4) Sample X is undoped while samples Y and Z have been doped with a fifth group and a third group impurity respectively
- **35.** The truth table shown in figure is equivalent for :-

सिलिकॉन अर्द्धचालक के तीन नमूनों के बैण्ड ऊर्जा को चित्रों में दिखाया गया है। इससे निष्कर्ष प्राप्त होता है :-

(1) नमूना X शुद्ध है, जबकि Y एवं Z क्रमश: त्रिसंयोजी एवं

पंच संयोजी अशुद्धि युक्त है।

- (2) नमूना X शुद्ध है जबकि Y एवं Z में पंच संयोजी अशुद्धि है।
- (3) नमूना X समान परिमाण में त्रिसंयोजी एवं पंच संयोजी अशुद्धि है जबकि Y एवं Z अशुद्ध है।
- (4) नमूना X शुद्ध है जबकि Y एवं Z क्रमश: पंचसंयोजी

एवं त्रिसंयोजी अशुद्धि युक्त है।

35. निम्न सत्य-सारिणी (Truth table) किस परिपथ के समतुल्य है :-

SPACE FOR ROUGH WORK

	ALLEN	IN
Path to Success	CAREER INSTITUTE	

LEADER & ENTHUSIAST COURSE

PART B - CHEMISTRY

19–03–2	013
---------	-----

36.	Which or	ne represents	an impossible	e arrangement:	36.	निम्न में से	कौनसी व्यवस	था सम्भव नहीं है	:
	n	l	m	S		n	l	m	S
	(1) 3	2	-2	1/2		(1) 3	2	-2	1/2
	(2) 4	0	0	1/2		(2) 4	0	0	1/2
	(3) 3	2	-3	1/2		(3) 3	2	-3	1/2
	(4) 5	3	0	1/2		(4) 5	3	0	1/2
37.	Which o	rbit of Be ⁺³	has the same	e orbit radius	37.	Be ⁺³ कौनर	गी कक्षा में हाइ	ड्रोजन परमाणु व	नी मूल अवस्था में
	as that o	f the ground	d state of hyd	lrogen atom:-		कक्षा की त्रिज्या के समान त्रिज्या का मान रखता है :-			
	(1) 3	(2) 2	(3) 4	(4) 5		(1) 3	(2) 2	(3) 4	(4) 5
38.	The freq	uency of ra	diation emit	ted when the	38.	हाइड्रोजन प	ारमाणु में जब	एक इलैक्ट्रॉन 1	n = 4 से n = 1
	electron	falls from n	= 4 to n = 1	in a hydrogen		में कूदता है, तो उत्सर्जित विकिरणों की आवृत्ति क्या			
	atom will be (Given h = 6.625×10^{-34} Js) :- (1) 3.08×10^{15} s ⁻¹ (2) 2.00×10^{16} s ⁻¹				होगी				
					(दिया है: h = 6.625 × 10 ⁻³⁴ Js):-				
					(1) $3.08 \times 10^{15} \mathrm{s}^{-1}$				
					(2) $2.00 \times 10^{16} \mathrm{s}^{-1}$				
	(3) 1.54	$\times 10^{17} \mathrm{s}^{-1}$				(3) $1.54 \times 10^{17} \mathrm{s}^{-1}$			
	(4) 1.03	$\times 10^{14} \mathrm{s}^{-1}$				(4) $1.03 \times 10^{14} \mathrm{s}^{-1}$			
39.	Arrange	the followi	ng in increa	sing order of	39.	निम्न को	ऊर्जा के	बढ़ते क्रम	में व्यवस्थित
	energy :	-				करो :-			
	(i) n = 4	4, $\ell = 2, m =$	$= -1, s = +\frac{1}{2}$	2		(i) n = 4	$, \ell = 2, m$	$= -1, s = +\frac{1}{2}$	2
	(ii) n = 3	= 3, ℓ = 2, m = -1, s = - $\frac{1}{2}$		(ii) $n = 3$, $\ell = 2$, $m = -1$, $s = -\frac{1}{2}$					
	(iii) n =	4, $\ell = 0, m$	$\ell = 0, m = 0, s = +\frac{1}{2}$ $\ell = 0, m = 0, s = -\frac{1}{2}$		(iii) n = -	4, $\ell = 0$, m	$s = 0, s = +\frac{1}{2}$	2	
	(iv) n =	5, $\ell = 0, m$			(iv) n =	5, $\ell = 0, m$	$u = 0, s = -\frac{1}{2}$	2	
	(1) (i) < (ii) < (iii) < (iv)			< (ii) < (iii) < (iv)		(1) (i) < (ii) < (iii) < (iv)			
	(2) (iii) < (ii) < (iv) < (i)					(2) (iii) < (ii) < (iv) < (i)			
	(3) (iii) <	< (iv) $<$ (ii)	< (i)			(3) (iii) <	(iv) < (ii)	< (i)	
	(4) (ii) <	(iii) < (i) < (i	< (iv)			(4) (ii) <	$(\mathrm{iii}) < (\mathrm{i}) <$	< (iv)	
			(Ta	ike it Easy ar	nd Ma	ke it Easy	$\mathbf{\hat{b}}$		
			S	PACE FOR R	OUGI	HWORK			

				2013	19-03-2013
4 0. 4 1. 4 2.	If velocity of particle B and of A. If wave wavelength of (1) 4Å (2) 20Å (3) 6.0Å (4) None Ammonium ch cubic lattice w 387 pm. If th radius of NH ₄ (1) 116 pm (2) 154 pm (3) 174 pm (4) 206 pm Element X cr fcc lattice. C changes to 8 the radius of (1) Edge leng lattice is	JEE-MA a particle A is 50% of velocity of mass of B is 25% more than mass length of A is 10Å then calculate of B :- nloride crystallizes in a body-centred ith edge length of unit cell equal to e radius of Cl ⁻ ion is 181 pm, the t ion would be approximately- rystllizes in a 12 co-ordination of on applying high temperature it co-ordination bcc lattice. If r is atom X, then : th of unit cell in 12 co-ordination $2\sqrt{2}$ r	40. 41. 42.	2013 a IG एक कण A का वेग कण B के B का द्रव्यमान A के द्रव्यमान से 259 A का तरंगदैर्ध्य 10Å है, तो कण B कीजिये :- (1) 4Å (2) 20Å (3) 6.0Å (4) कोई नहीं अमोनियम क्लोराइड काय केन्द्रित घन क्रिस्टलीकृत होता है तथा एकक कोर्ति 387 pm है। यदि Cl ⁻ आयन की ति NH ₄ ⁺ आयन की त्रिज्या का मान लग (1) 116 pm (2) 154 pm (3) 174 pm (4) 206 pm तत्व X एक 12 समन्वय fcc जात होता है उच्च ताप पर यह 8 समन् परिवर्तित हो जाता है। यदि X परम् तो : (1) 12 समन्वय जालक में एकक को $2\sqrt{2}$ r है।	19–03–2013 वेग का 50% है तथा % अधिक है। यदि कण के तरंगदैर्ध्य की गणना फेठका की छोर लम्बाई त्रेज्या 181 pm हो तो गभग होगा - लक में क्रिस्टलीकृत न्वय bcc जालक में गणु की त्रिज्या r हो, फिटका की छोर लम्बाई
	 (2) Edge leng lattice is (3) Ratio of c high temp (4) All of the 	the of unit cell in 8 co-ordination $\frac{4}{\sqrt{3}}$ r lensities before and after applying perature is $2(\sqrt{2})^3 : (\sqrt{3})^3$ ese SPACE FOR R	OUG	(2) 8 समन्वय जालक में एकक को $\left(\frac{4}{\sqrt{3}} r \ \overline{\epsilon}\right)$ (3) पहले तथा उच्च ताप लगाने के ब $2(\sqrt{2})^3 : (\sqrt{3})^3 \overline{\epsilon}$ (4) उपरोक्त सभी I WORK	ष्टिका की छोर लम्बाई 11द घनत्वों का अनुपात

MAJOR TEST

43. A 0.020 m solution of each of the following compounds is prepared. Which solution would you expect to freeze at $-0.149^{\circ}C$? K _f (water) = 1.86 K kg. mol ⁻¹ :- (1) [Co(en)_2Cl_2]Cl (2) Na[Co(EDTA)] (3) [Cr(py)_5Cl]Cl_2 (4) [Cr(NH_3)_6]Cl_3 43. निम्न में से प्रत्येक यौगिकों के 0.020 m गये। किस विलयन की $-0.149^{\circ}C$ पर 	n विलयन तैयार किये र जमने की सम्भावना
you expect to freeze at -0.149° C ? K_{f} (water) = 1.86 K kg. mol ⁻¹ :- (1) [Co(en)_{2}Cl_{2}]Cl (2) Na[Co(EDTA)] (3) [Cr(py)_{5}Cl]Cl_{2} (4) [Cr(NH_{3})_{6}]Cl_{3} where py = pyridine (unidentate) \overline{C} \overline{C}	
K_f (water) = 1.86 K kg. mol ⁻¹ :- K_f ($\overline{\neg}e\overline{\neg}$) = 1.86 K kg. mol ⁻¹ :- (1) [Co(en)_2Cl_2]Cl (2) Na[Co(EDTA)] (3) [Cr(py)_5Cl]Cl_2 (4) [Cr(NH_3)_6]Cl_3 where py = pyridine (unidentate) $\overline{\neg}g\overline{z}$ py = $\overline{[Ud]gl]gl}$ (Upcdpt)	
(1) $[Co(en)_2Cl_2]Cl$ (2) $Na[Co(EDTA)]$ (3) $[Cr(py)_5Cl]Cl_2$ (4) $[Cr(NH_3)_6]Cl_3$ (3) $[Cr(py)_5Cl]Cl_2$ (4) $[Cr(NH_3)_6]Cl_3$ (3) $[Cr(py)_5Cl]Cl_2$ (4) $[Cr(py)_5Cl]Cl_2$ (4	
(3) $[Cr(py)_5Cl]Cl_2$ (4) $[Cr(NH_3)_6]Cl_3$ (3) $[Cr(py)_5Cl]Cl_2$ (4) $[Cm_3]Cl_3$ (3) $[Cr(py)_5Cl]Cl_2$ (4) $[Cm_3]Cl_3$	a[Co(EDTA)]
where ny - nyridine (unidentate) जहाँ ny - पिरीडीन (Uppergram)	$Cr(NH_3)_6]Cl_3$
where, $py = py$ function ($q_1 q_2 q_3$),	
en = ethylenediamine (bidentate), en = एथीलीनडाईएमीन (द्विदंतुक),	
and EDTA = ethylenediaminetetraacetic acid तथा EDTA = एथीलीनडाईएमीनटे	टेट्राएसीटिक एसिड
(hexadentate) (षट्दंतुक)	
44. Calcium titanate crystallizes in a cubic unit cell 44. केल्शियम टाइटेनेट एक घनीय एकक कोणि	ष्ठिका में क्रिस्टलीकृत
with titanium atoms at the corner of the cell, होता है जिसमें टाइटेनियम परमाणु कोष्टि	ठका के प्रत्येक कोनों
oxygen atoms in the middle of the edges of the पर, ऑक्सीजन परमाणु कोष्ठिका के किन	नारों के केन्द्रों पर तथा
cell and a calcium atom in the centre of the cell. केल्शियम परमाणु कोष्ठिका के केन्द्र प	पर उपस्थित होते है।
What is the formula of calcium titanate - केल्शियम टाइटेनेट का सूत्र होगा -	
(1) CaTiO (2) CaTiO ₃ (1) CaTiO (2) Ca	aTiO ₃
(3) CaTiO_4 (4) $\operatorname{Ca}_2\operatorname{TiO}_4$ (3) CaTiO_4 (4) Ca_4	a ₂ TiO ₄
45. The total number of 2 nd nearest Cl ⁻ ions to the 45. NaCl एकक कोष्ठिका मे Na ⁺ आय	न के सापेक्ष द्वितीय
Na ⁺ ion in NaCl unit cell are - समीपवती Cl ⁻ आयनो की कुल सख्या	। होगी -
(1) 8 (2) 6 (3) 12 (4) 4 (1) 8 (2) 6 (3) 12	2 (4) 4
46. Consider the equation $Z = \frac{PV}{nRT}$ which of the 46. समीकरण $Z = \frac{PV}{nRT}$ के लिए निम्न में र	से कौनसा कथन सही
following statement is correct ? होगा:-	
(1) When $Z > 1$ real gases are easier to compress (1) अब $Z > 1$ है तो वास्तविक गैस अ	भार्दश गैस की तुलना
than the ideal gas H since $T_{\rm eff}$ is the interval of t	
(2) When $Z = 1$ real gases get compressed easily (2) When $Z = 1$ 44 alking a set of the set of t	ाना स सम्पाडित होगा स्टियाई से समग्रीहित
(3) when $\Sigma > 1$ real gases are difficult to (3) via $\Sigma > 1$ 44 alkalation via the compress (3) via $\Sigma > 1$ 44 alkalation via the site of	००ना१ स सम्पा।डत
(4) None (4) कोई नहीं	

E / H

MAJOR TEST

						MAJOR TEST		
Path is Succ			JEE-MA	AIN 2	2013	19-03-2013		
47.	Rate of phys	i-sorption	increase with :-	47.	किससे भौतिक अधिशोषण की	ो दर बढ़ती है		
	(1) Decrease	in tempe	rature		(1) ताप में कमी			
	(2) Increases	in tempe	rature		(2) ताप में वृद्धि			
	(3) Decrease	in pressu	re		(3) दाब में कमी			
	(4) Decrease	in surfac	e area		(4) सतही क्षेत्रफल में कमी			
48.	A unit cell of	an elemen	t of atomic mass 108 and	48.	एक तत्व के इकाई सैल का पर	रमाणु भार तथा घनत्व क्रमश:		
	density 10.5	density 10.5 g cm^{-3} is a cube with edge length			108 तथा 10.5 g cm ⁻³ है तथा	ा किनारे की लम्बाई 409 pm		
	409 pm. Find the structure of the crystal lattice.				है तो क्रिस्टलक जालक की स	गरंचना होगी:-		
	(1) Simple cubic (2) BCC				(1) सरल घनीय	(2) काय केन्द्रित घनीय		
	(3) FCC		(4) None		(3) फलक केन्द्रित घनीय	(4) कोई नहीं		
49.	Rearrange the	e following	g (a to d) in the order of	49.	निम्न (a से d) को उनके द्रव्यम	ान के बढ़ते क्रम में व्यवस्थित		
	increasing m	masses :			करें:-			
	(a) 0.5 mole	of O ₃			(a) O3 के 0.5 mole			
	(b) 0.5 gm a	atom of oxygen		(b) आक्सीजन के 0.5 gm परमाणु				
	(c) 3.011×10^{-10}	10 ²³ mole	0^{23} molecule of O_2		(c) O ₂ के 3.011 × 10 ²³ अणु			
	(d) 5.6 Lt of	CO ₂ at S	ГР		(d) STP पर CO ₂ के 5.6 Lt			
	(1) $b < d < c$	c < a			(1) $b < d < c < a$ (2) $b < a < d < c$			
	(2) $b < a < d$	l < c						
	(3) $d < b < c$	c < a			(3) $d < b < c < a$			
	(4) $a < b < c$	c < d			(4) $a < b < c < d$			
50.	3.011×10^2	²² atoms	of an element weight	50.	एक तत्व के 3.011×10^{22}	परमाणु का भार 1.15gm है		
	1.15gm. The	atomic m	ass of the element is :- (2) 2.2		तो तत्व का परमाणु भार होगा:	_		
	(1) 10 (2) 25 5		(2) 2.3		(1) 10	(2) 2.3		
51	(3) 55.5 Correct order	r of rodii	(4) 25	51	(3) 35.5	(4) 23		
51.	(1) Na \sim Be	$\sim B$	15	51.	ાંગે ગ્લા બા સંદા જામ દ :- (1) No < Do < D			
	(1) $\text{Na} < \text{Dc}$ (2) $\text{F}^- < \Omega^{-2}$	$< N^{-3}$			(1) $Na < De < D$ (2) $E^{-} < O^{-2} < N^{-3}$			
	(2) $\Gamma < O$ (3) $Fe^{+3} < F$	$e^{+2} < Fe^{+4}$			(2) $\Gamma < O^{-1} < N^{-1}$ (2) $F c + 3 < F c + 2 < F c + 4$			
	(4) Na $<$ Li $<$	< K			(3) $re^{-2} < re^{-2} < re^{-1}$ (4) Na < Li < K			
	ाकसा प्रश्न पर दर तक रूका नहा ।							

SPACE FOR ROUGH WORK

	MAJOR TEST					
Path to Succ		IUSI	AST COURSE 19-03-2013			
52.	Ortho and para hydrogen differ :-	52.	आर्थो तथा पेरा हाइड्रोजन किसमे भिन्न होते है:-			
	(1) In the number of hydrogen proton		(1) हाइड्रोजन में उपस्थित प्रोटोन की संख्या द्वारा			
	(2) In the molecular weight		(2) अणु भार में			
	(3) In the nature of spin of proton's		(3) प्रोटोन के चक्रण में			
	(4) In the nature of spin of electrons		(4) इलेक्ट्रान के चक्रण में			
53.	Which of the following reaction shows	53.	निम्न में से कौनसी अभिक्रिया निस्तापन को दर्शाती			
	calcination process :-		है:-			
	(1) $ZnS + O_2 \xrightarrow{\Delta} ZnO + CO_2$		(1) $ZnS + O_2 \xrightarrow{\Lambda} ZnO + CO_2$			
	(2) FeO + SiO ₂ $\xrightarrow{\Lambda}$ FeSiO ₃		(2) FeO + SiO ₂ $\xrightarrow{\Lambda}$ FeSiO ₃			
	(3) $CuFeS_2 \xrightarrow{\Delta} Cu_2S + FeS$		(3) $CuFeS_2 \xrightarrow{\Lambda} Cu_2S + FeS$			
	(4) $CuCO_3.Cu(OH)_2 \xrightarrow{\Delta} CuO + CO_2 + H_2O$		(4) $CuCO_3.Cu(OH)_2 \xrightarrow{\Delta} CuO + CO_2 + H_2O$			
54.	$\operatorname{CrO}_{4}^{-2} \xrightarrow[(B)]{(A)} \operatorname{Cr}_{2}O_{7}^{-2}$ pH of (B) & (A)	54.	$\operatorname{CrO}_{4}^{-2} \xrightarrow{(A)} \operatorname{Cr}_{2}\operatorname{O}_{7}^{-2}$ of (B) तथा (A) की pH			
	respectively are:-		क्रमश: होगी:-			
	(1) 7 & 7 (2) 7 & 9 (3) 5 & 9 (4) 8 & 6		(1) 7 & 7 (2) 7 & 9 (3) 5 & 9 (4) 8 & 6			
55.	Acidic oxide is :-	55.	अम्लीय ऑक्साइड है :-			
	(1) Mn_3O_4 (2) Mn_2O_3 (3) Mn_2O_7 (4) MnO		(1) $Mn_{3}O_{4}$ (2) $Mn_{2}O_{3}$ (3) $Mn_{2}O_{7}$ (4) MnO			
56.	Which ligand forms chelates :-	56.	कौनसा लिगेण्ड किलेट बनाता है :-			
	(1) Acetate (2) cyanide		(1) एसीटेट (2) सायनाइड			
	(3) Oxalate (4) Ammonia		(3) ऑक्सेलेट (4) अमोनिया			
57.	Wrong statement about [Ni(CO) ₄] is :-	57.	[Ni(CO) ₄] के लिए गलत कथन है :-			
	(1) sp ³ hybridised		(1) sp ³ संकरित			
	(2) unpaired electron is zero		(2) अयुग्मित इलेक्ट्रॉन शून्य है			
	(3) diamagnetic		(3) प्रतिचुम्बकीय			
	(4) Square planer geometry		(4) समतलीय वर्गाकार ज्यामितीय			
58.	Electric conductivity is maximum found for :-	58.	वैद्युत चालकता सर्वाधिक होती है :-			
	(1) $K_2[PtCl_6]$ (2) $[Pt(NH_3)_2Cl_2]$		(1) $K_2[PtCl_6]$ (2) $[Pt(NH_3)_2Cl_2]$			
	(3) $[Pt(NH_3)_4Cl_2]Cl$ (4) All equal		(3) [Pt(NH ₃) ₄ Cl ₂]Cl (4) सभी समान			
		OUCT	IWODV			

E/H

						MAJOR TEST
Peth is Such		JEE-MA	IN 2	2013		19-03-2013
59.	The thermal stability	of II A carbonate is :-	59.	II A के कॉर्बोनेट्स का त	ाप स्थायित	त्र क्रम होगा ?
	(1)BeCO ₃ > MgCO BaCO ₃	$P_3 > CaCO_3 > SrCO_3 >$		$(1)BeCO_3 > MgCO_3$ BaCO_3	$D_3 > Ca$	$CO_3 > SrCO_3 >$
	$(2)BaCO_3 > SrCO_3$ $BeCO_3$	> MgCO ₃ > CaCO ₃ >		$(2)BaCO_3 > SrCOBeCO_3$	₃ > Mg	$CO_3 > CaCO_3 >$
	$(3)BeCO_3 < MgCOBaCO_3$	$P_3 < SrCO_3 < CaCO_3 <$		$(3)BeCO_3 < MgCO_3$ BaCO_3	$D_3 < Sr$	$CO_3 < CaCO_3 <$
	$(4)BeCO_3 < MgCO_3 < CaCO_3 < SrCO_3 < BaCO_3$			$(4)BeCO_3 < MgCO_3$ BaCO_3	О ₃ < Са	$CO_3 < SrCO_3 <$
60.	Deep orange color of	f potasium dichromate is	60.	पोटेशियम डाइक्रोमेट के ग	ाहरे नारंगी	रंग का कारण है :-
	due to :-			(1) d-d संक्रमण		
	(1) d-d transition(2) Charge transfer spectra			(2) आवेश स्थानान्तरण स्पेक्टा		
				(3) नाधिकीय आनेष		
	(3) Nuclear charge			(૩) ગામબાય આવરા		
	(4) All of these			(4) उपरोक्त सभी		
61.	If compound absorbs which color :-	violet color it appears in	61.	यदि यौगिक बैंगनी रंग अ होगा:-	ग्वशोषित)	करता है तो उसका रंग
	(1) Green	(2) Red		(1) हरा	(2) 7	ताल
	(3) Blue	(4) Yellow		(3) नीला	י (4)	गेला
62.	M ⁻² configuration i	s $1s^2 2s^2 2p^6$ then M ⁺²	62.	M^{-2} का विन्यास $1s^2$ 2	s ² 2p ⁶ है	तो M ⁺² का विन्यास
	configuration will be	2 :-		होगा :-		
	(1) $1s^2$	(2) $1s^2 2s^2$		(1) $1s^2$	(2)	$1s^2 2s^2$
	(3) $1s^2 2s^2 2p^2$	(4) $1s^2 2s^2 2p^4$		(3) $1s^2 2s^2 2p^2$	(4)	$1s^2 \ 2s^2 \ 2p^4$
63.	If ΔEN is 0.5 the character will be : (a	n percentage covalent app.)	63.	यदि ∆EN 0.5 हो तो प्र होगे :-	तिशत सह	संयोजक गुण लगभग
	(1) 91%	(2) 95%		(1) 91%	(2)	95%
	(3) 85%	(4) 8%		(3) 85%	(4)	8%

19/30

		m					MAJO	DR TEST
Path to Succe			DER	& ENTI	HUSI	AST COURSE	19–0	3–2013
64.	The	electronegativities of the el	emen	ts P, Q, R,	64.	तत्व P, Q, R, S तथा T की वि	द्युतऋणत	ताऐं नीचे दी
	S ar	nd T are given below				गई है		
	Eler	nent – P Q F	k S	Т		तत्व – P Q	R S	Б Т
Elect	roneg	gativity – 0.7 1.1 1	.6 2	2.5 1.7		विद्युतऋणताऐं – 0.7 1.1	1.6 2	2.5 1.7
	P, Ç	, R, S and T are not the ch	nemic	al symbols		P, Q, R, S तथा T तत्वों के रासायनिक प्रतीक नह		
	for t	the elements, which of the	follov	ving bonds		है, निम्न में से किस बंध में अधि	कितम अ	ायनिक गुण
	has	the most ionic character -				होंगे -		
	(1)	P - T (2) $P - T$	Q			(1) $P - T$ (2) P	– Q	
	(3)	R - S (4) $T -$	S			(3) $R - S$ (4) T	– S	
65.	Sele	ect the correct set of match	nings		65.	सुमेलन का सही समुच्चय चुनें -		
		List-I		List-II		सारणी-I		सारणी-II
	(p)	Fire clay bricks	(i)	Li		(p) अग्नि सह ईँटे	(i)	Li
	(q)	Metal used in	(ii)	Mg		(q) ग्रिगनार्ड अभिकर्मक में	(ii)	Mg
		grignard reagent				प्रयुक्त धातु		
	(r)	The metal which	(iii)	Cs		(r) धातु जो जलयोजित	(iii)	Cs
		form hydrated chloride				क्लोराइड बनाती है		
	(s)	Metal shows	(iv	K		(s) धातु जो फोटोइलैक्ट्रिक	(iv)	Κ
		photoelectric effect				प्रभाव दर्शाती है		
•	(1)	p – i ; q –iii ; r – ii ; s –iv	,			(1) p – i ; q –iii ; r – ii ; s -	iv	LI
	(2)	p – ii ; q –ii ; r – i,ii ; s –i	ii,iv			(2) p – ii ; q –ii ; r – i,ii ; s	–iii,iv	
	(3)	p – i ; q –iii, i ; r – iv, i ;	s –ii,	iii		(3) p – i ; q –iii, i ; r – iv, i	; s –ii,	iii
	(4)]	p - iv; q - ii, iii; r - iii;	s —i			(4) p – iv ; q –ii, iii ; r – iii	; s –i	
66.	Inco	prrect statement is :-			66.	गलत कथन है :–		
	(1)	H_2O_2 has half open book	struct	ture		$(1) \ { m H}_2 { m O}_2$ आधी खुली किताब जैसी संरचना रखता है		
	(2)	CH ₄ is electron precise hy	dride			(2) CH_4 इलेक्ट्रॉन परिशुद्ध हाइड्राइ	ड है	
	(3)	$Na_2Al_2Si_2O_8$. xH_2O is form	nula	of calgon		(3) केलगन का सूत्र $Na_2Al_2Si_2C$	$_{8}$. xH ₂ C) है
	(4)	Na ₃ AlF ₆ is crayolite				(4) क्रायोलाइट का सूत्र Na_3AlF_6	है	
	स्वस्थ रहो, मस्त रहो त				था पढ़ाई	में व्यस्त रहो ।		

67. Select the correct statement about the given complex-

- (1) It has four ions in aquous solution.
- (2) Primary valency of cobalt is six.
- (3) It give one mole of AgCl ppt on reaction with excess of AgNO₃.
- (4) It has one primary valency
- **68.** Which of the following compound shows optical isomerism but not geometrical isomerism ?
 - (1) $[Co(en)_2Cl_2]^{+1}$
 - (2) $[Co(en)_3]^{+3}$
 - (3) $[Ni(en)_2]^{+2}$
 - (4) [Co(Cl) (Br) (NH₃) (H₂O) (PH₃) (Py)]⁺
- 69. Which of the following is correctly matched :-

	Column-I	Column-II		
(Atomic Number)		(Position Periodic table)		
(1)	52	s-block		
(2)	56	p–block		
(3)	57	d–block		
(4)	109	f-block		

- **70.** The hydration energy of Mg^{2+} ion is less than that of :-
 - (1) Al^{3+} (2) Be^{2+} (3) Na^{+} (4) 1 & 2 both

67. नीचे दिये गये यौगिक के बारे में सत्य कथन छांटिये :-

- (1) यह जलीय विलयन में चार आयन बनाता है।
- (2) कोबाल्ट की प्राथमिक संयोजकता छ: है।
- (3) यह AgNO₃के आधिक्य से क्रिया करने पर एक मोल AgCl अवक्षेप बनाता है।
- (4) इसकी प्राथमिक संयोजकता एक है
- 68. निम्नलिखित में से कौनसा यौगिक प्रकाशिक समावयवा प्रदर्शित करता परन्तु ज्यामितीय समावयता नहीं ?
 - (1) $[Co(en)_2Cl_2]^{+1}$
 - (2) $[Co(en)_3]^{+3}$
 - (3) $[Ni(en)_2]^{+2}$
 - (4) $[Co(Cl) (Br) (NH_3) (H_2O) (PH_3) (Py)]^+$
- 69. निम्न में से सही मिलान है :-

	स्तम्भ–I	स्तम्भ-II		
(पर	माणु क्रमांक)	(आवर्त सारणी में स्थिति)		
(1)	52	s-block		
(2)	56	p-block		
(3)	57	d-block		
(4)	109	f-block		

- 70. Mg2+ आयन की जलयोजन ऊर्जा किससे कम है :-

LEADER & ENTHUSIAST COURSE

19-03-2013

PART C - MATHEMATICS

$$71. \quad \int \left(1+x-\frac{2}{x}+\frac{1}{x^{2}}+\frac{1}{x^{3}}\right)e^{\left(x+\frac{1}{x}\right)} dx \text{ is equal to}$$

$$(1) \left(x+\frac{1}{x}\right)e^{\left(x+\frac{1}{x}\right)} + C \quad (2) \left(x-\frac{1}{x}\right)e^{\left(x+\frac{1}{x}\right)} + C \quad (3) \left(x+\frac{1}{x}\right)e^{\left(x+\frac{1}{x}\right)} + C \quad (4) \left(x-\frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (3) \left(x+\frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (4) \left(x-\frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (3) \left(x+\frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (4) \left(x-\frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (3) \left(x+\frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (4) \left(x-\frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (3) \left(x+\frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (4) \left(x-\frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (3) \left(x+\frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (4) \left(x-\frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (3) \left(x+\frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (4) \left(x-\frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (1) \left(1 + \frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (2) \left(x-\frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (3) \left(x+\frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (4) \left(x-\frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (3) \left(x+\frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (4) \left(x-\frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (1) \left(1 + \frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (2) \left(x-\frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (3) \left(x+\frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (4) \left(x-\frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (3) \left(x+\frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (4) \left(x-\frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (1) \left(1 + \frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (3) \left(x+\frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (4) \left(x-\frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (1) \left(1 + \frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (3) \left(x+\frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (4) \left(x-\frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (1) \left(1 + \frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (3) \left(x+\frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (4) \left(x-\frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (1) \left(1 + \frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (3) \left(x+\frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (4) \left(x-\frac{1}{x}\right)e^{\left(x-\frac{1}{x}\right)} + C \quad (5) \left(x-\frac{1}{x}\right)e$$

22/30

E/H

Pitte for Success

JEE-MAIN 2013

1- dim to mdo	KOTA (RAJASTHAN)						
75.	$\int_{0}^{\pi} \log_{e}(1 + \cos x) dx \text{ is}$	equal to	75.	$\int_{0}^{\pi} \log_{e}(1 + \cos x) \mathrm{d}x \overline{\mathrm{aut}}$	बर है		
	(1) 0	(2) $\pi \ell n 2$		(1) 0	(2) $\pi \ell n 2$		
	$(3) - \frac{\pi}{2} \ln 2$	(4) $\pi \ell n\left(\frac{1}{2}\right)$		$(3) - \frac{\pi}{2} \ln 2$	(4) $\pi \ell n\left(\frac{1}{2}\right)$		
76.	$\int_{0}^{\infty} \left\{ \log\left(x + \frac{1}{x}\right) \right\} \frac{1}{(1 + x^2)}$	dx is equal to	76.	$\int_{0}^{\infty} \left\{ \log\left(x + \frac{1}{x}\right) \right\} \frac{1}{(1 + x^2)}$	- dx बराबर है		
	(1) $\pi \ell n2$	(2) $\pi \ell n\left(\frac{1}{2}\right)$		(1) $\pi \ell n 2$	(2) $\pi \ell n\left(\frac{1}{2}\right)$		
	(3) 0	$(4) - \frac{\pi}{2} \ln 2$		(3) 0	$(4) - \frac{\pi}{2} \ln 2$		
77.	If $\int (1 + x \tan x)^{-2} dx = -\frac{1}{2}$	$\frac{1}{x+f(x)}$ + C ; then value	77.	यदि $\int (1+x\tan x)^{-2} \mathrm{d}x =$	$\frac{1}{x + f(x)} + C$; तो $f(x)$ का		
	of f(x) is (1) x tan x (3) tan x	(2) cot x (4) tan ² x		मान होगा (1) x tan x (3) tan x	(2) cot x (4) tan ² x		
78.	$\int \frac{\cos ec^2 x - 2005}{\cos^{2005} x} dx is$	s equal to	78.	$\int \frac{\cos ec^2 x - 2005}{\cos^{2005} x} dx =$	त्रराबर है		
	(1) $\frac{\cot x}{(\cos x)^{2005}} + C$	(2) $\frac{\tan x}{(\cos x)^{2005}} + C$		(1) $\frac{\cot x}{(\cos x)^{2005}} + C$	(2) $\frac{\tan x}{(\cos x)^{2005}} + C$		
	(3) $\frac{-\tan x}{(\cos x)^{2005}} + C$	(4) $\frac{-\cot x}{(\cos x)^{2005}} + C$		(3) $\frac{-\tan x}{(\cos x)^{2005}} + C$	(4) $\frac{-\cot x}{(\cos x)^{2005}} + C$		
	SPACE FOR ROUGH WORK						

23/30

LEADER & ENTHUSIAST COURSE

79. $\int_{-1}^{\overline{2}} \frac{1}{1 + (\tan x)^{2013}} dx$ is equal to 79. $\int^{\overline{2}} \frac{1}{1 + (\tan x)^{2013}} \, dx$ बराबर है (2) $\frac{\pi}{6}$ (2) $\frac{\pi}{6}$ (1) 1(1) 1 (3) $\frac{\pi}{2}$ (4) $\frac{\pi}{4}$ (3) $\frac{\pi}{2}$ (4) $\frac{\pi}{4}$ The integrating factor of the differential 80. 80. अवकल समीकरण का समाकल गुणांक equation $3x \log_e x \frac{dy}{dx} + y = 2 \log_e x$ is given by $3x \log_e x \frac{dy}{dx} + y = 2 \log_e x$ दिया जाता है (1) $(\log_{e} x)^{3}$ (2) $\log_e(\log_e x)$ (1) $(\log_{e} x)^{3}$ (2) $\log_e(\log_e x)$ (4) $(\log_{a} x)^{\frac{1}{3}}$ $(3) \log_{a} x$ (3) $\log_a x$ (4) $(\log_e x)^{\frac{1}{3}}$ अवकल समीकरण का व्यापक हल है 81. The general solution of the differential equation 81. $\frac{dy}{dx} = \left(\frac{x+y+1}{2x+2y+1}\right)$ is $\frac{dy}{dx} = \left(\frac{x+y+1}{2x+2y+1}\right)$ is (1) $\log_{a} |3x + 3y + 2| + 3x + 6y = c$ (1) $\log_{e} |3x + 3y + 2| + 3x + 6y = c$ (2) $\log_2 |3x + 3y + 2| - 3x + 6y = c$ (2) $\log_{a}|3x+3y+2| - 3x + 6y = c$ (3) $\log_{2}|3x+3y+2| - 3x - 6y = c$ (3) $\log_{a}|3x+3y+2| - 3x - 6y = c$ (4) $\log_2 |3x + 3y + 2| + 3x - 6y = c$ (4) $\log_{2} |3x + 3y + 2| + 3x - 6y = c$

82.	Let $I_1 = \int_{0}^{\infty} \frac{x^2 \sqrt{x}}{(1+x)^6} dx$; $I_2 = \int_{0}^{\infty} \frac{x \sqrt{x}}{(1+x)^6} dx$;	82.	माना $I_1 = \int_0^\infty \frac{x^2 \sqrt{x}}{(1+x)^6} dx$; $I_2 = \int_0^\infty \frac{x \sqrt{x}}{(1+x)^6} dx$;		
	then (1) $I_1 = 2I_2$ (2) $I_2 = 2I_1$ (3) $I_1 = I_2^2$ (4) $I_1 = I_2$ dy	83	$\vec{\mathbf{n}}$ (1) $\mathbf{I}_1 = 2\mathbf{I}_2$ (2) $\mathbf{I}_2 = 2\mathbf{I}_1$ (3) $\mathbf{I}_1 = \mathbf{I}_2^2$ (4) $\mathbf{I}_1 = \mathbf{I}_2$ $\frac{dy}{dt} = (x^3 - 2x\sin^{-1}x) \sqrt{1 - x^2}$		
83.	$\frac{dy}{dx} = (x^3 - 2x\sin^{-1}y) \sqrt{1 - y^2}$ General solution will be (1) $2\sin^{-1}y = (x^2 - 1) + Ce^{-x^2}$ (2) $2\cos^{-1}y = (x^4 + 1) + C$ (3) $e^{x^2} \sin^{-1}y = (x^2 - x) + C$ (4) $2\cos^{-1}y = (x^2 - 1)e^{-x^2} + C$ Area bounded by $y = 2x^2$ & $y = \frac{4}{(1 + x^2)}$ will		$\frac{1}{dx} = (x^{2} - 2x\sin^{4}y) \sqrt{1-y}$ का व्यापक हल होगा (1) $2\sin^{-1}y = (x^{2} - 1) + Ce^{-x^{2}}$ (2) $2\cos^{-1}y = (x^{4} + 1) + C$		
			(3) $e^{x^2} \sin^{-1}y = (x^2 - x) + C$ (4) $2\cos^{-1}y = (x^2 - 1)e^{-x^2} + C$ $y = 2x^2$ तथा $y = \frac{4}{(1 + x^2)}$ द्वारा परिबद्ध क्षेत्रफल होगा		
	(1) $\left(2\pi + \frac{4}{3}\right)$ (2) $\left(2\pi - \frac{4}{3}\right)$ (3) $\frac{4}{3} - 2\tan^{-1}2 + \frac{\pi}{2}$ (4) $\frac{4}{3} - 8\tan^{-1}2 + 2\pi$		$(\overline{a}\overline{h} \ \overline{s}\overline{a}\overline{h} \ \overline{s}\overline{h})$ $(1) \left(2\pi + \frac{4}{3}\right)$ $(2) \left(2\pi - \frac{4}{3}\right)$ $(3) \ \frac{4}{2} - 2\tan^{-1}2 + \frac{\pi}{2}$ $(4) \ \frac{4}{2} - 8\tan^{-1}2 + 2\pi$		
85.	The area of smaller region bounded by the circle $x^2 + y^2 = 1$ and the lines $ y = x + 1$ is (1) $\pi/4 - 1/2$ (2) $\pi/2 - 1$ (3) $\pi/2$ (4) $\pi/2 + 1$	85.	3 2 3 $\overline{q}\pi x^2 + y^2 = 1$ तथा रेखाओं $ y = x + 1$ से घिरे छोटे क्षेत्र का क्षेत्रफल है $(1) \pi/4 - 1/2$ $(2) \pi/2 - 1$ $(3) \pi/2$ $(4) \pi/2 + 1$		
SPACE FOR BOUCH WODV					

	MAJOR TEST						
Path in Success		IUSI	AST COURSE	19-03-2013			
86.	$\lim_{n \to \infty} n \left[\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \frac{1}{(n+3)^2} + \dots + \frac{1}{(2n)^2} \right] =$	86.	$\lim_{n \to \infty} n \left[\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \frac{1}{(n+3)^2} \right]$	$\frac{1}{(2n)^2} + \dots + \frac{1}{(2n)^2} =$			
	(1) $\frac{1}{2}$ (2) $\ell n2$ (3) $\frac{3}{2}$ (4) 0		(1) $\frac{1}{2}$ (2) $\ell n2$ (3)	$\frac{3}{2}$ (4) 0			
87.	Area bounded by the curves $y = \left[\frac{x^2}{64} + 2\right];$	87.	वक्र $y = \left[\frac{x^2}{64} + 2\right]; y = x - 1$ त	था x = 0 से घिरा क्षेत्र			
	y = x - 1 and $x = 0$ above x-axis is ([·] denotes G.I.F.)		जो x-अक्ष के ऊपर है होगा ([.] मह	इत्तम पूर्णांक फलन है)			
88.	(1) 2 (2) 3 (3) 4 (4) None The solution of the differential equation	88.	(1) 2 (2) 3 (3) अवकल समीकरण (x + y) (dx -	4 (4) कोई नहीं dy) = dx + dy का			
	(x + y) (dx - dy) = dx + dy is (1) x + y = Ce ^{x+y} (2) x - y = Ce ^{x-y} (3) x + y = Ce ^{x-y} (4) None		(1) $x + y = Ce^{x+y}$ (2) (3) $x + y = Ce^{x-y}$ (4)	x – y = Ce ^{x-y} कोई नहीं			
89.	The area enclosed between the curves $f(x) = f(x) + f(x) $	89.	वक्रों $y = \log_e(x + e), x = \log_e(x + e)$	$\left(\frac{1}{y}\right)$ तथा x-अक्ष द्वारा			
	$y = \log_e(x + e)$ $x = \log_e\left(\frac{1}{y}\right)$ and the x-axis is		परिबद्ध क्षेत्र का क्षेत्रफल है (1) 2e (2)	2			
	equal to (1) 2e (2) 2 (3) $\frac{2}{e}$ (4) None		(3) $\frac{2}{e}$ (4) $\frac{1}{2}$	कोई नहीं			
90.	$f(x) = \frac{\sin x}{\sqrt{1 + \tan^2 x}} + \frac{\cos x}{\sqrt{1 + \cot^2 x}}$ is constant in	90.	$f(x) = \frac{\sin x}{\sqrt{1 + \tan^2 x}} + \frac{\cos x}{\sqrt{1 + \cot^2 x}}$	— , किस अन्तराल में x			
	which of following interval		अचर है-				
	(1) (0, $\pi/2$) (2) ($\pi/2$, π)		(1) $(0, \pi/2)$ (2)	$(\pi/2, \pi)$			
	(3) $(\pi, 3\pi/2)$ (4) None		(3) $(\pi, 3\pi/2)$ (4)	कोई नहीं			
	अपनी क्षमता को पूरा व	बसूलने	का प्रयास करें।				
	SPACE FOR ROUGH WORK						

E/H

Path is Succe		J	EE-MAIN	2013	19-03-2013
91.	If $\log_2 x \ge 0$	then	91.	यदि $\log_2 x \ge 0$ हो, तब	
	$\log_{1/\pi} \left\{ \sin^{-1} \frac{1}{1} \right\}$	$\frac{2x}{x^{2}} + 2\tan^{-1}x$ is equals	to	$\log_{1/\pi} \left\{ \sin^{-1} \frac{2x}{1+x^2} + 2 \tan^{-1} x \right\}$	x बराबर है-
92.	(1) $\log_{1/\pi} (4ta)$ (3) -1 If solution of	(1) (1) (2) (2) (2) (2) (3) (4) None the equation	92.	(1) $\log_{1/\pi} (4\tan^{-1} x)$ (2)(3) -1(4)यदि समीकरण	0 कोई नहीं
	$3\cos^2\theta - 2\sqrt{3}$	$\sin\theta\cos\theta - 3\sin^2\theta = 0 \text{are}$	e nπ +	$3\cos^2\theta - 2\sqrt{3}\sin\theta\cos\theta -$	$3\sin^2\theta = 0$ के हल
	π/r and $n\pi$ +	$\frac{\pi}{s}$ then $ r - s =$		$n\pi + \pi/r$ तथा $n\pi + \frac{\pi}{s}$ है, तब (1) 3 (2) 9 (3)	$ \mathbf{r} - \mathbf{s} =$ 7 (4) 1
93.	(1) 3 (2) The no. of so	(4) 9 (3) 7 (4) lution of	1 93.	समीकरण $ \cot x = \cot x + \frac{1}{\sin x}$	। — के हलों की संख्या, 1 x
	$ \cot x = \cot x$	$+\frac{1}{\sin x}, x \in [0, 3\pi]$		जहां x∈[0, 3π]	
94.	(1) 0 (2) If $f(x) = cos[2]$ greatest intege (1) 0 (2)	(2) 1 (3) 2 (4) $\tau_1 x + \cos[\pi x]$. Where [y] er function of y then $f(\pi/2)$ cos 3 (3) cos 4 (4)	3 is the 2) = None 94.	(1) 0(2) 1(3)यदि $f(x) = cos[\pi]x + cos[\pi x]x$ पूर्णांकिय फलन है तब $f(\pi/2) =$ (1) 0(2) cos 3(3)	2 (4) 3] जहाँ [y] एक महत्तम cos 4 (4) कोई नहीं
95.	$\sin^{-1}\frac{3}{5} + \sin^{-1}\frac{3}{5}$	$\frac{12}{13}$ is :-	95.	$\sin^{-1}\frac{3}{5} + \sin^{-1}\frac{12}{13}$	
	(1) Acute ang(3) Suppleme	(2) Obtuse a ntry angle (4) right ang	ingle gle	(1) न्यून कोण(2)(3) पूरक कोण(4)	अधिक कोण समकोण
96.	If $\frac{16\cos^2 80^\circ}{9-12\sin^2 1}$	$\frac{-12}{80^{\circ}} = \frac{b}{a\sqrt{a}}\cot 10^{\circ} \text{ then the}$	e value 96.	यदि $\frac{16\cos^2 80^\circ - 12}{9 - 12\sin^2 180^\circ} = \frac{b}{a\sqrt{a}}\cos^2 \frac{1}{2}\cos^2 \frac{b}{a\sqrt{a}}\cos^2 \frac{b}{a\sqrt{a}}\cos^2 \frac{b}{a}\cos^2 \frac{b}{a}\cos^$	t10° तब a + b का मान
	of a + b is :-			है-	
	(1) 4 (3) 7	(2) 3		$\begin{array}{c} (1) \ 4 \\ (3) \ 7 \\ (4) \end{array}$	3
	(3) 7	(4) 0		(3) 7 (4)	0

27 / 30

MAJOR TEST

				MAJOR TEST
Path in Succ		IUSI	AST COURSE	19-03-2013
97.	If $\tan (\pi/4 + \theta) + \tan(\pi/4 - \theta) = \lambda$ sec 2 θ , then	97.	यदि $\tan(\pi/4 + \theta) + \tan(\pi/4 - \theta)$	θ) = λ sec 2 θ , तब
	$\lambda =$		λ =	
	(1) 3 (2) 4		(1) 3 (2) 4	4
	(3) 1 (4) 2		(3) 1 (4) 2	2
98.	Median of 21 terms is 50. If smallest 8 terms	98.	21 संख्याओं की माध्यिका 50 है। यदि	सबसे छोटी 8 संख्याओं
	are decreased by 5 then what will be the new		को 5 से कम कर दिया जाए तो स	मूह की नई माध्यिका
	median of the group :-		होगाी :-	
	(1) 50 (2) 45		(1) 50 (2) 4	45
	(3) Can't be predicted (4) None of these		(3) कुछ नहीं कहा जा सकता (4) इ	नमें से कोई नहीं
99.	Consider the following statements :	99.	ानम्न कथना पर ावचार कााजए : *	
	p : Sachin plays well		p : साचन अच्छा खलता ह	
	q : Sachin IS good at healt		q : साचन दिल से अच्छा ह • . गुनिन को भगत पूर्व पिलेगा	
	then negation of the statement "Sachin will get		1. सायन का मारत रतन मिलेगा कथन "मचिन को भारत रतन मिलेगा	राति और केवल राति
	Bharat Ratna iff the plays will and is good at		वह अच्छा खेलता है तथा वह दिल से	अच्छा है।" का निषेध
	heart" will be :-		होगा :-	
	(1) $\sim r \leftrightarrow \sim (p \Lambda q)$ (2) $r \leftrightarrow (\sim p \Lambda \sim q)$		(1) $\sim r \leftrightarrow \sim (p \Lambda q)$ (2) r	\leftrightarrow (~p Λ ~q)
	(3) $(\sim p \lor \sim q) \leftrightarrow r$ (4) None of these		$(3) (-p \lor -q) \leftrightarrow r \qquad (4) \not\equiv$	नमें से कोई नहीं
100.	$p \rightarrow (p \leftrightarrow q)$ is logically equivalent to :-	100.	$p \rightarrow (p \leftrightarrow q)$ तार्किक समतुल्य	है :-
	$(1) \sim [p \lor \{(p \land \sim q) \lor (q \land \sim p)\}]$		(1) $\sim [p \lor \{(p \land \neg q) \lor (q \land \neg p)\}$)}]
	$(2) \sim [p \land \{(p \land \neg q) \lor (q \land \neg p)\}]$		(2) $\sim [p \land \{(p \land \neg q) \lor (q \land \neg p)\}$)}]
	$(3) \sim [p \rightarrow (q \leftrightarrow p)]$		(3) $\sim [p \rightarrow (q \leftrightarrow p)]$	
	$(4) \ \sim(p \ \to \ (\simq \ \to \ \simp))$		(4) \sim (p \rightarrow (\sim q \rightarrow \sim p))	
101.	For 15 observations of x, mean and median	101.	x के 15 प्रेक्षणों के माध्य तथा प	माध्यिका क्रमश: 12
	were found to be 12 and 20 respectively. Later		तथा 20 पाये गए। बाद में एक प्रे	क्षिण जो कि 25 था
	an observation which was 25 found to be		गलत पाया गया तथा इसको इस	के सहां मान 55 से
	wrong then replaced by its correct value 55,		बदल ादया गया तो प्रक्षणों का नया चेन्ने	। माध्य तथा माध्यिका
	then new mean and median will be :-		हागा :- (1) नगण, 14 नण, 50	
	(1) 14 and 50 respectively		 (1) क्रमश: 14 तथा 50 (2) क्रमण: 12 तथा 20 	
	(2) 12 and 20 respectively		(2) क्रम्पराः 12 (19) 20 (3) कम्प्रज्ञाः 14 तथा 20	
	(3) 14 and 20 respectively		(4) माध्य 14 परन्त माध्यिका ज्ञात न	हों को जा सकती।
	(4) Mean is 14 but median can't be determined.			

E/H

					MAJOR TEST		
Path is Succe		JEE-MA	AIN 2	2013	19-03-2013		
102. 103. 104.	Let a, b, c an c). If mean an c, d are 5 and -a + 3d + 3c (1) 8 (3) 12 If variance of is $\frac{110}{3}$, then (1) 21 (3) 19 Median and symmetric di then mean of (1) 10 (2) $\frac{19}{3}$	and d are real numbers $(d > a > b >$ nd median of the distribution a, b, d 6 respectively then the value of c - b is : (2) 10 (4) None f the group ∞ , $1 + \infty$,, $n + \infty$ value of n will be :- (2) 20 (4) none of these 1 mode of a moderately Skew stribution is 13 and 7 respectively f the distribution will be :- (2) 16 (4) None of these	102. 103. 104.	माना कि a, b, c तथा d वास्तविक न यदि बंटन a, b, c, d का माध्य तथ 6 है तो $-a + 3d + 3c - b का म (1) 8 (2) (3) 12 (4) यदि समूह \infty, 1 + \infty,\frac{110}{3} है, तो n का मान होगा :-(1) 21 (2)(3) 19 (4)एक दुर्बल असममित बंटन कीक्रमश: 13 तथा 7 है तो बंटन(1) 10 (2)(3) \frac{19}{2} (4)$	संख्याएँ है ($d > a > b > c$) II माध्यिका क्रमश: 5 तथा II न होगा : 10 कोई नहीं , n + ∞ का प्रसरण 2) 20 4) इनमें से कोई नहीं I माध्यिका तथा बहुलक का माध्य होगा :- 2) 16 4) इनमें से कोई नहीं		
105.	 3 Let S be a non empty subset of N. Negation of the statement "There exists a number x∈S such that x is even" will be :- There exists a number x ∈ S such that x is odd For any number x ∈ S, x is even For every number x ∈ S, x is odd None of these 			माना S, N का एक अरिक्त उपसमुच्चय है। कथन ''एक संख्या x∈S इस प्रकार विद्यमान है कि x सम है" का निषेध होगा:- (1) एक संख्या x ∈ S इस प्रकार विद्यमान है कि x विषम है। (2) किसी भी संख्या x ∈ S के लिए x सम है। (3) प्रत्येक संख्या x ∈ S के लिए x विषम है। (4) इनमें से कोई नहीं			

is that to prove **ALLEN** is **ALLEN** SPACE FOR ROUGH WORK

MAJOR TEST

LEADER & ENTHUSIAST COURSE

19-03-2013

SPACE FOR ROUGH WORK / रफ कार्य के लिये जगह