ur larget is to secure Good Rank in Jat-MAIN 2015

FORM NUMBER

CLASSROOM CONTACT PROGRAMME (ACADEMIC SESSION 2012-2013)

LEADER & ENTHUSIAST COURSE JEE-MAIN 2013

MAJOR TEST # 02

DATE: 11 - 03 - 2013

SYLLABUS : SECTION - 2

IMPORTANT INSTRUCTIONS

- 1. Immediately fill in the particulars on this page of the Test Booklet with *Blue/Black Ball Point Pen*. Use of pencil is strictly prohibited.
- 2. The candidates should not write their Form Number anywhere else (except in the specified space) on the Test Booklet/Answer Sheet.
- 3. The test is of **3 hours** duration.
- 4. The Test Booklet consists of 105 questions. The maximum marks are 420.
- 5. There are *three* parts in the question paper. The distribution of marks subjectwise in each part is as under for each correct response.
 Part A – Mathematics (140 marks) – 35 Questions. Questions No. 1 to 35 carry 4 marks each = 140 Marks
 Part B – Physics (140 marks) – 35 Questions. Questions No. 36 to 70 carry 4 marks each = 140 Marks
 Part C – Chemistry (140 marks) – 35 Questions. Questions No. 71 to 105 carry 4 marks each = 140 Marks
- 6. One Fourth mark will be deducted for indicated incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the Answer Sheet.
- Use Blue/Black Ball Point Pen only for writting particulars/marking responses on Side-1 and Side-2 of the Answer Sheet. Use of pencil is strictly prohibited.
- 8. No candidate is allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone any electronic device etc, except the Identity Card inside the examination hall/room.
- **9.** Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- On completion of the test, the candidate must hand over the Answer Sheet to the invigilator on duty in the Room/Hall. However, the candidate are allowed to take away this Test Booklet with them.
- 11. Do not fold or make any stray marks on the Answer Sheet.

महत्वपूर्ण सूचनाएँ

- परीक्षा पुस्तिका के इस पृष्ठ पर आवश्यक विवरण नीले/काले बॉल पाइंट पेन से तत्काल भरें। पेन्सिल का प्रयोग बिल्कुल वर्जित हैं।
- परीक्षार्थी अपना फार्म नं. (निर्धारित जगह के अतिरिक्त) परीक्षा पुस्तिका / उत्तर पत्र पर कहीं और न लिखें।
- परीक्षा की अवधि 3 घंटे है।
- इस परीक्षा पुस्तिका में 105 प्रश्न हैं। अधिकतम अंक 420 हैं।
- 5. प्रश्न पत्र में तीन भाग हैं। प्रत्येक भाग में प्रत्येक सही उत्तर के लिये अंकों का विषयवार वितरण नीचे दिए अनुसार होगा। भाग A – गणित (140 अंक) – 35 प्रश्न प्रश्न संख्या 1 से 35 तक प्रत्येक 4 अंक का है = 140 अंक भाग B – भौतिक विज्ञान (140 अंक) – 35 प्रश्न प्रश्न संख्या 36 से 70 तक प्रत्येक 4 अंक का है = 140 अंक भाग C – रसायनिक विज्ञान (140 अंक) – 35 प्रश्न
 - प्रश्न संख्या 71 से 105 तक प्रत्येक 4 अंक का है = 140 अंक
 - प्रत्येक गलत उत्तर के लिए उस प्रश्न के कुल अंक का एक चौथाई अंक काटा जायेगा। उत्तर पुस्तिका में कोई भी उत्तर नहीं भरने पर कुल प्राप्तांक में से ऋणात्मक अंकन नहीं होगा।
- उत्तर पत्र के पृष्ठ-1 एवं पृष्ठ-2 पर वांछित विवरण एवं उत्तर अंकित करने हेतु केवल नीले/काले बॉल पाइंट पेन का ही प्रयोग करें। पेन्सिल का प्रयोग बिल्कुल वर्जित है।
- 8. परीक्षार्थी द्वारा परीक्षा कक्ष/हॉल में परिचय पत्र के अलावा किसी भी प्रकार की पाठ्य सामग्री, मुद्रित या हस्तलिखित, कागज की पर्चियों, पेजर, मोबाइल फोन या किसी भी प्रकार के इलेक्ट्रानिक उपकरणों या किसी अन्य प्रकार की सामग्री को ले जाने या उपयोग करने की अनुमति नहीं हैं।
- 9. रफ कार्य परीक्षा पुस्तिका में केवल निर्धारित जगह पर ही कीजिये।
- 10. परीक्षा समाप्त होने पर, परीक्षार्थी कक्ष/हॉल छोड़ने से पूर्व उत्तर पत्र कक्ष निरीक्षक को अवश्य सौंप दें। परीक्षार्थी अपने साथ इस परीक्षा पुस्तिका को ले जा सकते हैं।
- 11. उत्तर पत्र को न मोडें एवं न ही उस पर अन्य निशान लगाएें।

Do not open this Test Booklet until you are asked to do so / इस परीक्षा पुस्तिका को जब तक ना खोलें जब तक कहा न जाऐ।

Corporate Office "SANKALP", CP-6, Indra Vihar, Kota (Rajasthan)-324005 Trin : +91 - 744 - 2436001 Fax : +91-744-2435003 E-Mail: info@allen.ac.in Website: www.allen.ac.in

11-03-2013

HAVE CONTROL \longrightarrow HAVE PATIENCE \longrightarrow HAVE CONFIDENCE \Rightarrow 100% SUCCESS (BEWARE OF NEGATIVE MARKING) **PART A - MATHEMATICS** If $\frac{3}{2 + e^{i\theta}} = \lambda x + i\mu y$, then locus of P(x, y) will यदि $\frac{3}{2+e^{i\theta}} = \lambda x + i\mu y$, तो बिन्दु P(x, y) का बिन्दुपथ 1. 1. होगा :represents a/an :-(1) दीर्घवृत्त, यदि $\lambda = 1, \mu = 2$ हो (1) Ellipse if $\lambda = 1$, $\mu = 2$ (2) सरल रेखा युग्म, यदि $\lambda = 1, \mu = 0$ हो (2) Pair of straight line if $\lambda = 1$, $\mu = 0$ (3) वृत्त, यदि $\lambda = 1, \mu = 1$ हो (3) Circle, if $\lambda = 1$, $\mu = 1$ (4) उपरोक्त सभी (4) All of them यदि z = x + iy, हो तो वक्र $|z| \le 2$ तथा 2. Let z = x + iy, then area bounded by the curve 2. $(1 - i) z + (1 + i) \overline{z} \ge 4$ से परिबद्ध भाग का क्षेत्रफल $|z| \le 2$ and $(1 - i) z + (1 + i) \overline{z} \ge 4$:-होगा :-(1) $\frac{\pi}{2} - 2$ (2) $\frac{1}{2}$ (1) $\frac{\pi}{2} - 2$ (2) $\frac{1}{2}$ (3) $\pi - 2$ (3) $\pi - 2$ (4) $3\pi + 2$ (4) $3\pi + 2$ यदि $z = i^i$ (जहाँ $i = \sqrt{-1}$) हो तो, $\operatorname{Re}(z)$ बराबर होगा:-If $z = i^{i}$ (where $i = \sqrt{-1}$), then Re(z) is :-3. 3. (1) $e^{-\pi/2}$ (2) 0 (3) $e^{-\pi}$ (4) कोई नहीं (1) $e^{-\pi/2}$ (2) 0(3) $e^{-\pi}$ (4) None 4. If the points A(z), B(-z) and c(1 - z) are the vertices यदि A(z), B(-z) तथा c(1 - z) त्रिभुज ABC के शीर्ष 4. हो, तो Re(z) होगा :of an equilateral triangle ABC then Re(z) is equal to :-(2) $\frac{\sqrt{3}}{2}$ (1) $\frac{1}{4}$ (2) $\frac{\sqrt{3}}{2}$ (1) $\frac{1}{4}$ (3) $\frac{1}{2}$ (3) $\frac{1}{2}$ (4) कोई नहीं (4) None 🙂 हमेशा मुस्कराते रहें । **SPACE FOR ROUGH WORK**

				MAJOR TEST
Path to Succe		IUSI	AST COURSE	11-03-2013
5.	The region of argand diagram defined by $ z - 1 + z + 1 < 4$ is :-	5.	z - 1 + z + 1 < 4 से परिबद्ध	भाग होगा :- 1
	(1) Interior of an ellipse, $e = \frac{1}{4}$ (2) Exterior of circle		(1) दीर्घवृत्त का आन्तरिक भाग, e =(2) वृत्त का बाह्य भाग	$=\frac{1}{4}$
	(3) Interior of ellipse, $e = \frac{1}{2}$		(3) दीर्घवृत्त का आन्तरिक भाग, e =	$=\frac{1}{2}$
	(4) No real region		(4) कोई वास्तविक क्षेत्र नहीं	
6.	It ω is a cube root of unity then	6.	यदि ω इकाई का घनमूल हो तो	_
	$\omega^{1/21} + \omega^{(1/2)} + \omega^{1/33}$ is equal to :-		$\omega^{[\underline{721}]} + \omega^{(\underline{1022}-2)} + \omega^{[\underline{333}]}$ का मान	होगा :-
	$(1) 2 + \omega$ (2) 0		(1) $2 + \omega$ (2) ((2) $1 + 2$)
	$(3) 1 + 2\omega$ (4) 3		(3) 1 + 20 (4) :	3
7.	If e is the eccentricity of the hyperbola	7.	यदि e अतिपरवलय	
	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and θ is angle between the		$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ की उत्केन्द्रता हो तथा θ) अनन्त स्पर्शियों के मध
	asymptotes, then $\cos\theta/2 =$		यकोण हो तो $\cos\theta/2 =$	
	(1) $\frac{1+e}{e}$ (2) $\frac{1-e}{e}$ (3) $\frac{1}{e}$ (4) $\frac{e-1}{e}$		(1) $\frac{1+e}{e}$ (2) $\frac{1-e}{e}$ (3)	$\frac{1}{e} \qquad (4) \ \frac{e-1}{e}$
8.	Number of points on the ellipse $\frac{x^2}{50} + \frac{y^2}{20} = 1$	8.	दीर्घवृत्त $\frac{x^2}{50} + \frac{y^2}{20} = 1$ पर स्थित बिंह	दुओं की संख्या जिनसे
	drawn to the ellipse $\frac{x^2}{x^2} + \frac{y^2}{x^2} = 1$ is :-		दीर्घवृत्त $\frac{x^2}{16} + \frac{y^2}{9} = 1$ पर खींची ग	ई स्पर्श रेखाएं परस्पर
	16 9		लम्बवत हो, है :-	
	(1) 0 (2) 2 (3) 1 (4) 4		(1) 0 (2) 2 (3) 1	(4) 4

E / H

	MAJOR TES							
Path is Succ		AIN 2	2013	11-03-2013				
9.	If P is a moving point in the xy-plane in such a way that perimeter of triangle PQR is 16	9.	यदि xy-तल में एक चलित बिंदु P इ PQR का परिमाप 16 हो	स प्रकार हो कि त्रिभुज				
10. 11.	{where $Q \equiv (3, \sqrt{5})$, $R \equiv (7, 3\sqrt{5})$ } then maximum area of triangle PQR is :- (1) 6 (2) 12 (3) 18 (4) 9 Let A be the area of triangle formed by any tangent to the curve $xy = 4\csc^2\theta$, $\theta \neq n\pi$, $n \in I$ and the co-ordinate axis. The minimum value of A is :- (1) 4 (2) 8 (3) 2 (4) 16 The equation of a circle touching the parabola $y = x^2$ at the point (1, 1) and passing through the point (2, 2) is :- (1) $x^2 + y^2 - 6x + 4 = 0$ (2) $x^2 + y^2 - 6y + 4 = 0$	10. 11.	$\{ \exists e t Q = (3, \sqrt{5}), R = (7, 3\sqrt{5}), R =$	√5)} तो त्रिभुज PQR 18 (4) 9 nπ, n ∈ I की किसी मेंत त्रिभुज का क्षेत्रफल 8 16 र स्पर्श करने वाले वृत्त से गुजरता हो, हैं :-				
12.	(3) $x^2 + y^2 + 6x + 4 = 0$ (4) $x^2 + y^2 + 6y + 4 = 0$ Number of straight lines from (1, 1) which make area of 1 sq. units with the coordinate axes is equal to - (1) 0 (2) 1 (3) 2 (4) 3	12.	 (3) x² + y² + 6x + 4 = 0 (4) x² + y² + 6y + 4 = 0 (1, 1) से गुजरने वाली सरल रेखाओं अक्षों के साथ 1 वर्ग इकाई के क्षेत्रफ होगी- (1) 0 (2) 1 (3) 1 	iं की संख्या जो निर्देशी ल का निर्माण करती है, 2 (4) 3				
13.14.	Image of the point (1, 0, 2) in the plane x - y + z = 0 is - (1) (-1, 0, 2) (2) (0, -1, 2) (3) (2, -1, 0) (4) (-1, 2, 0) Tangents drawn from (6, 4) to the circle $x^{2} + y^{2} - 4x - 4y + 4 = 0$ intersect the y-axis	13. 14.	बिन्दु (1, 0, 2) का समतल $x - y$ होगा– (1) (-1, 0, 2) (2) ((3) (2, -1, 0) (4) (बिन्दु (6, 4) से वृत्त $x^2 + y^2 - 4x - 2$ रेखायें खींची जाती है, जो y-अक्ष को	+ z = 0 में प्रतिबिम्ब (0, -1, 2) (-1, 2, 0) - 4y + 4 = 0 पर स्पर्श A तथा B पर प्रतिच्छेद				
	at A & B. AB is equal to (1) 6 (2) 8 (3) 10 (4) 12		करती है। AB बराबर होगा- (1) 6 (2) (3) 10 (4)	8 12				

Path in Suc		LEADER & ENT	HUSI	AST COURSE	11-03-2013
15.	Locus of the centre through (0, 1) & touc (1) $(x + y)^2 = 4y - 2$ (3) $(x + y)^2 = 4x - 2$	of circles which pass hes the line $y = x$ is - (2) $(x - y)^2 = 4y - 2$ (4) $(x - y)^2 = 4x - 2$	15.	बिन्दु (0, 1) से गुजरने वाली तथा रे वाले वृत्त के केन्द्र का बिन्दुपथ होग (1) (x + y) ² = 4y - 2 (2) (3) (x + y) ² = 4x - 2 (4)	खा $y = x$ को स्पर्श करने m-) $(x - y)^2 = 4y - 2$) $(x - y)^2 = 4x - 2$
16.	Distance between the pl 2x + 4y = 4z + 5 is ec (1) $\frac{1}{2}$ (2) $\frac{1}{2}$	anes $\vec{r}.(\hat{i}+2\hat{j}-2\hat{k}) = 3 \&$ [ual to -	16.	समतलों $\vec{r}.(\hat{i}+2\hat{j}-2\hat{k})=3$ तथ के मध्य दूरी होगी-	$\pi 2x + 4y = 4z + 5$
17.	(1) 4 (2) 2 Let P be the point (1,2,3) line $\vec{r} = (\hat{i} - \hat{j} + 5\hat{k}) + \lambda$	(3) 3 (4) $63) and Q be a point on the (-2\hat{i}+3\hat{j}+4\hat{k}). Then the$	17.	(1) 4 2 माना बिन्दु P(1,2,3) है उ $\vec{r} = (\hat{i} - \hat{j} + 5\hat{k}) + \lambda (-2\hat{i} + 3\hat{j})$	′3 ^(干) 6 तथा बिन्दु Q रेखा +4k̂)पर स्थित है। तब
	value of λ for which line the plane $4x + 9y - 18$ (1) $\frac{1}{3}$ (2) $-\frac{1}{6}$	ne PQ is perpendicular to 3z = 1 is- (3) $-\frac{2}{3}$ (4) $\frac{2}{5}$		λ का मान जिसके लिए रेखा PQ $= 1$ के लम्बवत् है, होगा- (1) $\frac{1}{3}$ (2) $-\frac{1}{6}$ (3)	समतल $4x + 9y - 18z$ $y -\frac{2}{3}$ (4) $\frac{2}{5}$
18.	Vector $\vec{a} + 3\vec{b}$ is perpendicula $\vec{a} - 5\vec{b}$ is perpendicula between non zero vect	endicular to $7\vec{a} - 5\vec{b}$ and ar to $7\vec{a} + 3\vec{b}$. The angle ors $\vec{a} \ll \vec{b}$ is -	18.	सदिश ā + 3b , 7ā – 5b के लम्ब 7ā + 3b के लम्बवत् है, तो अशून्य य कोण होगा -	वत् तथा सदिश ā – 5b , । सदिश ā तथा b के मध
	(1) $\frac{\pi}{2}$	(2) $\frac{\pi}{3}$		(1) $\frac{\pi}{2}$ (2) π	$\frac{\pi}{3}$
19.	(3) $\frac{\pi}{6}$ If the lines $\vec{r} = 2$	(4) data insufficient $\hat{i} + \hat{j} + \hat{k} + \lambda(\hat{i} - 2\hat{j})$ and	19.	(3) $\frac{-}{6}$ (4) यदि रेखायें $\vec{r} = 2\hat{i} + \hat{j} + \hat{j}$) आकड़ं अपयोप्त k̂+λ(î-2ĵ) तथा
	$\vec{r} = \hat{i} + \hat{j} - 3\hat{k} + \mu(\hat{j} + 2\hat{k})$ then $(\lambda + \mu)$ is equal to $(1) 2 \qquad (2) -1$	 intersect each other, (3) 0 (4) 1 		$\vec{r} = \hat{i} + \hat{j} - 3\hat{k} + \mu(\hat{j} + 2\hat{k})$ एक है, तो ($\lambda + \mu$) का मान होगा - (1) 2 (2) -1 (3)	दूसरे को प्रतिच्छेद करती) 0 (4) 1

SPACE FOR ROUGH WORK

E/H

Path is Succe				JEE-MA	IN 2	013			11–03	-2013
20.	A plane pass If distance maximum, th (1) $2x + y - (3)x + y - z$	es through of this p nen its equ 3z = 14 = 1	the point A plane from ation is (2) 2x + y (4) None	A(2, 1, -3). origin is + 3z = 2	20.	बिन्दु A(2, 1 महत्तम दूरी प (1) 2x + y (3) x + y -	., –3) से होकर र स्थित समतल – 3z = 14 · z = 1	र जाने व की समी (2) 2 (4) कं	ाले तथा ग ।करण है x + y + ोई नहीं	नूल बिंदु से 3z = 2
21.	The volume coterminous e of the parallel edges $\vec{a} + \vec{b}$, (1) 6 (of the tetr edges \vec{a} , \vec{b} , lopiped for $\vec{b} + \vec{c}$, $\vec{c} -$ (2) 18	ahedron for \vec{c} is 3. Then med by the \vec{c} \vec{a} is (3) 36	(4) 9 med by the the volume coterminous	21.	ā, b, c सह 3 है तो ā + आयताकार ष (1) 6	सीमांत कोरों वात b , b + c , c ट्फलकी का अ (2) 18	ले सम च E + ā स गायतन हे (3) 30	तुष्फलक गहसीमांत ोगा 6 (का आयतन कोरों वाले (4) 9
22.	If a vector \vec{r} of the bisector $\vec{a} = 7\hat{i} - 4\hat{j} - 4\hat$	of magnitud of the ang $4\hat{k}$ and $\vec{b} = \hat{k}$ $2\hat{k}$	de $3\sqrt{6}$ is di le between $= -2\hat{i} - \hat{j} + 2\hat{l}$ (2) $\hat{i} + 7\hat{j} - (4) \hat{i} - 7\hat{j}$	rected along the vectors \hat{k} then \vec{r} $-2\hat{k}$ $-2\hat{k}$	22.	यदि सदिशों के मध्य कोण परिमाण $3\sqrt{6}$ (1) $\hat{i} - 7\hat{j} +$ (3) $-\hat{i} + 7\hat{j}$	$\vec{a} = 7\hat{i} - 4\hat{j} - 4\hat{j}$ के अर्धक के $\overline{5}$ हो तो \vec{r} होग $-2\hat{k}$ + $2\hat{k}$	4kे एवं अनुदिश [ा] (2) i (4) i	$\vec{b} = -2$ सदिश \vec{r} $+7\hat{j} - 2\hat{l}$ $-7\hat{i} - 2\hat{l}$	iे – ĵ + 2k̂ हो जिसका k̂ k̂
23.	Let \vec{a} be a un not parallel to of whose side $\vec{b} - (\vec{a} \cdot \vec{b})\vec{a}$ as	it vector and \vec{a} . The and \vec{a} s are represented by represented by the second	and \vec{b} is a non- ngles of the transformed by $\sqrt{2}$	nzero vector riangle, two $\overline{\mathfrak{g}}(\vec{a} \times \vec{b})$ and	23.	यदि ā एक है जो ā के स भुजाऐं सदिशों हों	इकाई सदिश हे तमांतर नहीं है तो रं $\sqrt{3}(\vec{a} imes \vec{b})$ त	ो तथा 🖥 ा उस त्रि' गथा 🖥 –	ु एक अ भुज के क (ā . b)ā	शून्य सदिश ोण जिसको से निरूपित
	(1) $\frac{\pi}{4}, \frac{\pi}{4}, \frac{\pi}{2}$		(2) $\frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{3}$	$\frac{5\pi}{12}$		(1) $\frac{\pi}{4}, \frac{\pi}{4}, \frac{\pi}{2}$	τ <u>2</u>	(2) $\frac{\pi}{4}$	$\frac{\pi}{3}, \frac{\pi}{12}, \frac{5\pi}{12}$	
	(3) $\frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{2}$		(4) None			(3) $\frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{2}$	$\frac{\tau}{2}$	(4) क	ोई नहीं	
		\subset	अपनी क्षम	ता को पूरा व	सूलने	का प्रयास व	करें।			

SPACE FOR ROUGH WORK

5/30

Path is Suic	CARLER & ENT	HUSI	AST COURSE	11-03-2013
24.	A mirror and a source of light are situated at the origin O and at a point on OX respectively. A ray of light from the source along the x-axis strikes the mirror and is reflected. If the direction ratios of the normal to the plane of mirror are 1, -1, 1, the direction cosines of the reflected ray are $(1) \frac{1}{3}, \frac{2}{3}, \frac{2}{3}$ $(2) -\frac{1}{3}, \frac{-2}{3}, \frac{2}{3}$	24.	एक दर्पण तथा प्रकाश का स्त्रोत न तथा OX के एक बिन्दु पर स्थित के अनुदिश एक प्रकाश किरण परावर्तित हो जाती है। यदि दर्पण के 1, -1, 1 हों तो परावर्तित किरण होंगी $(1) \frac{1}{3}, \frac{2}{3}, \frac{2}{3}$ (2)	क्रमश: मूल बिन्दु O है। स्त्रोत से x-अक्ष दर्पण से टकराकर लंब के दिक् अनुपात 1 की दिक् कोज्याऐं - <u>1₃, -2₃, 2 3, 3, 3</u>
	(3) $\frac{-1}{3}, \frac{-2}{3}, \frac{-2}{3}$ (4) None		$(3) \ \frac{-1}{3}, \frac{-2}{3}, \frac{-2}{3} \qquad (4) \ \overline{}$	होई नहीं
25.	If Δ_1 is the area of the triangle formed by the centroid and two vertices of a triangle, Δ_2 is the area of the triangle formed by the mid-points of the sides of the same triangle, then $\Delta_1 : \Delta_2 =$ (1) 3 : 4 (2) 4 : 1 (3) 4 : 3 (4) 2 : 1	25.	किस त्रिभुज के दो शी छों व उ त्रिभुज का क्षेत्रफल Δ_1 हो तथा उस के मध्य बिन्दुओं से बने त्रिभुज क $\Delta_1 : \Delta_2 =$ (1) 3 : 4 (2) 4 (3) 4 : 3 (4) 2	सके केन्द्रक से बने ो त्रिभुज की भुजाओं ा क्षेत्रफल Δ_2 हो, तो 2:1
26.	Tangents OP and OQ are drawn from the origin O to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$. Then, the equation of the circumcircle of the triangle OPQ is :- (1) $x^2 + y^2 + 2gx + 2fy = 0$ (2) $x^2 + y^2 + gx + fy = 0$ (3) $x^2 + y^2 - gx - fy = 0$ (4) $x^2 + y^2 - 2gx - 2fy = 0$	26.	मूल बिन्दु O से वृत्त $x^2 + y^2 + 2gx$ स्पर्श रेखा OP तथा OQ खींची गई परिवृत्त का समीकरण है :- (1) $x^2 + y^2 + 2gx + 2fy = 0$ (2) $x^2 + y^2 + gx + fy = 0$ (3) $x^2 + y^2 - gx - fy = 0$ (4) $x^2 + y^2 - 2gx - 2fy = 0$	k + 2fy + c = 0 पर है तो त्रिभुज OPQ के
27.	The equation of the bisector of the acute angle between the lines $2x - y + 4 = 0$ and x-2y = 1 is :- (1) $x + y + 5 = 0$ (2) $x - y + 1 = 0$ (3) $x - y - 5 = 0$ (4) None of these	27.	रेखाओं 2x - y + 4 = 0 व x - 2y = के अर्धक का समीकरण है :- (1) x + y + 5 = 0 (2) x (3) x - y - 5 = 0 (4) इ	= 1 के मध्य न्यूनकोण x – y + 1 = 0 नमें से कोई नहीं

SPACE FOR ROUGH WORK

E / H

Path is Suc	ALLEN JEE-M	AIN 2	2013	11-03-2013
28.	The equation of lactus rectum of a parabola is $x + y = 8$ and the equation of the tangent at the vertex is $x + y = 12$, then length of L.R. is :-	28.	एक परवलय के नाभिलम्ब का समीव इसके शीर्ष पर स्पर्श रेखा का समीक इसके नाभिलम्ब की लम्बाई है :-	फरण x + y = 8 तथा एण x + y = 12 है, तो
	(1) $4\sqrt{2}$ (2) $2\sqrt{2}$ (3) 8 (4) $8\sqrt{2}$		(1) $4\sqrt{2}$ (2) $2\sqrt{2}$ (3) 8	(4) $8\sqrt{2}$
29.	If $\hat{a}.\hat{b} = 0 \& \hat{c}$ makes an angle of $\pi/3$ with both	29.	यदि $\hat{a}.\hat{b}=0\&\hat{c}$, \hat{a} व \hat{b} दोनों से	ं π/3 कोण बनाता है।
	\hat{a} and \hat{b} then $\left[\hat{a} \ \hat{b} \ \hat{c}\right]^2$ can be		तो $\left[\hat{a} \ \hat{b} \ \hat{c} ight]^2$ होगा।	
	(1) $-\frac{1}{\sqrt{2}}$ (2) 1 (3) $\frac{1}{\sqrt{2}}$ (4) $\frac{1}{2}$		(1) $-\frac{1}{\sqrt{2}}$ (2) 1 (3) $-\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$ (4) $\frac{1}{2}$
30.	The co-ordinates of a point on the parabola $y^2 = 8x$ whose focal distance is 4 is :	30.	परवलय y² = 8x पर स्थित बिन्दु के नि दरी 4 हो, होंगे :-	ार्देशांक जिसकी नाभिय
	(1) $(2, \pm 4)$ (2) $(\pm 2, 4)$		(1) $(2, \pm 4)$ (2) (±2, 4)
	(3) $(-2, \pm 4)$ (4) $(\pm 2, -4)$		(3) $(-2, \pm 4)$ (4) ($(\pm 2, -4)$
31.	The focal chord to $y^2 = 16x$ is tangent to $(x - 6)^2 + y^2 = 2$ then the possible values of	31.	y ² = 16x का नाभिय जावा, (x – 6) रेखा है तो जीवा की संभव पवणता)² + y² = 2 का स्पश ओं के मान दोंगे•-
	(x = 0) + y = 2, then the possible values of the slope of this chord are:-		(1) $\{-1, 1\}$ (2) $\{-1, 1\}$	-2, 2}
	(1) $\{-1, 1\}$ (2) $\{-2, 2\}$ (3) $\{-2, \frac{1}{2}\}$ (4) $\{2, -\frac{1}{2}\}$		(3) $\{-2, \frac{1}{2}\}$ (4) $\{2, \frac{1}{2}\}$	$(2, -\frac{1}{2})$
32.	Maximum length of chord of the ellipse	32.	दीर्घावृत्त $\frac{x^2}{8} + \frac{y^2}{4} = 1$ की र्ज	ोवा की अधिकतम
	$\frac{x^2}{8} + \frac{y^2}{4} = 1$, such that eccentric angles of its		लम्बाई ताकि इसके सिरों के उत्व	केन्द्र कोण का अन्तर
	π		$\frac{\pi}{2}$ हो, होगी -	
	2 2		(1) 4 (2) 2	$2\sqrt{2}$
	(1) 4 (2) $2\sqrt{2}$ (3) 16 (4) 8		(3) 16 (4) 8	3

	MAJOR TEST						
Path os Suc		LEADER & ENTH	IUSI	AST COURSE	11-03-2013		
33.	Consider two curves $C_2: x^2 + y^2 - 3x + 2 =$	s $C_1 : y^2 = 2x$ and = 0, then -	33.	माना दो वक्र C ₁ : y ² = 2x ⁻ 2 = 0 है, तब -	तथा $C_2 : x^2 + y^2 - 3x + y^2$		
	(1) C_1 and C_2 touch e point	each other only at one		(1) C ₁ तथा C ₂ एक दूसरे को व है।	केवल एक बिन्दु पर स्पर्श करते		
	(2) C ₁ and C ₂ touch ea points	ch other exactly at two		(2) C ₁ तथा C ₂ एक दूसरे को त है।	ग्रीक दो बिन्दुओं पर स्पर्श करते		
(3) C ₁ and C ₂ intersect (but do not touch) a exactly two points		t (but do not touch) at		(3) C ₁ तथा C ₂ ठीक दो बिन्दु चर्ची) करने है।	ओं पर प्रतिच्छेद (परन्तु स्पर्श		
	(4) C ₁ and C ₂ neither i other	C_2 neither intersect nor touch each		(4) C_1 तथा C_2 ना तो प्रतिच्छेत्	द करते है ना ही स्पर्श करते है।		
34.	If $ \overline{a} = 4$, $ \overline{b} = 2$ and	d angle between \overline{a} and	34.	यदि $ \overline{a} = 4, \overline{b} = 2$ त	ाथा \overline{a} व \overline{b} के मध्य कोण		
	$\overline{\mathbf{b}}$ is $\frac{\pi}{6}$ then $\left \overline{\mathbf{a}} \times \overline{\mathbf{b}}\right ^2$ i	s equal to :-		$\frac{\pi}{6}$ है तो $\left \overline{a} \times \overline{b}\right ^2$ बराबर हो	गा :-		
	(1) 48	(2) 16		(1) 48	(2) 16		
	(3) 8	(4) 12		(3) 8	(4) 12		
35.	Distance between lin	e L & plane P where	35.	रेखा L तथा समतल P व	के मध्य दूरी होगी, जहाँ		
	$L: \frac{x-1}{2} = \frac{y}{1} = \frac{z-2}{3} \& I$	P: 3x - 2z = 1 is equal to-		$L: \frac{x-1}{2} = \frac{y}{1} = \frac{z-2}{3} \ \pi a$	ग P : 3x − 2z = 1 है-		
	(1) $\frac{1}{\sqrt{13}}$	(2) $\frac{3}{\sqrt{13}}$		(1) $\frac{1}{\sqrt{13}}$	(2) $\frac{3}{\sqrt{13}}$		
	(3) $\frac{4}{\sqrt{13}}$	(4) $\frac{2}{\sqrt{13}}$		(3) $\frac{4}{\sqrt{13}}$	(4) $\frac{2}{\sqrt{13}}$		

E / H

PART B - PHYSICS

36. R is the radius of the earth and ω is its angular velocity and g_p is the value of g at the poles. The effective value of g at the latitude $\lambda = 60^{\circ}$ will be equal to :-

(1)
$$g_p - \frac{1}{4} R\omega^2$$
 (2) $g_p - \frac{3}{4} R\omega^2$
(3) $g_p - R\omega^2$ (4) $g_p + \frac{1}{4} R\omega^2$

- **37.** A body is projected vertically upwards from the surface of a planet of radius R with a velocity equal to half the escape velocity for that planet. The maximum height attained by the body is :-
 - (1) R/3 (2) R/2
 - (3) R/4 (4) R/5
- **38.** A planet moves arround the sun. At a given point P, it is closest from the sun at a distance d_1 and has a speed v_1 . At another point Q, when it is farthest from the sun at a distance d_2 , its speed will be :-

(4) $\frac{d_2^2 v_1}{d_1^2}$

(1)
$$\frac{d_1^2 \upsilon_1}{d_2^2}$$
 (2) $\frac{d_2 \upsilon_1}{d_1}$

$$(3) \ \frac{\mathbf{d}_1 \mathbf{v}_1}{\mathbf{d}_2}$$

36. पृथ्वी की त्रिज्या R, कोणीय वेग ω तथा 'g' का मान g_p है इसके द्रवों पर, तो अक्षांश $\lambda = 60^\circ$ पर 'g' का प्रभावी :-

(1)
$$g_p - \frac{1}{4} R\omega^2$$
 (2) $g_p - \frac{3}{4} R\omega^2$

(3)
$$g_p - R\omega^2$$
 (4) $g_p + \frac{1}{4} R\omega^2$

- 37. किसी R त्रिज्या वाले ग्रह से एक पिण्ड को, उस ग्रह के लिये पलायन वेग के आधे वेग से ऊर्ध्वाधर ऊपर की ओर प्रक्षेपित किया जाता है। पिण्ड द्वारा प्राप्त अधिकतम ऊँचाई होगी :-
 - (1) R/3 (2) R/2 (3) R/4 (4) R/5
- 38. एक ग्रह सूर्य के चारों ओर चक्कर लगाता है। सूर्य से सबसे नजदीक बिन्दु P पर इसका वेग v₁ तथा सूर्य से इस बिन्दु की दूरी d₁ है। दूसरे बिन्दु Q पर जो कि सूर्य से सबसे अधिक दूरी d₂ पर है, ग्रह की चाल होगी :-

(1)
$$\frac{d_1^2 \upsilon_1}{d_2^2}$$
 (2) $\frac{d_2 \upsilon_1}{d_1}$

(3)
$$\frac{d_1 v_1}{d_2}$$
 (4) $\frac{d_2^2 v_1}{d_1^2}$

्प्रत्येक प्रश्न को अर्जुन बनकर करो।

MAJOR TEST

LEADER & ENTHUSIAST COURSE

39. Two spheres of radii R_1 and R_2 joined by a fine wire are raised to potential V. Let the surface charge densities at these two spheres be respectively σ_1 and σ_2 , then :-

(1)
$$\sigma_2 = \left(\frac{R_1}{R_2}\right)\sigma_1$$
 (2) $\sigma_2 = \left(\frac{R_2}{R_1}\right)\sigma_1$
(3) $\sigma_2 = \sigma_1$ (4) $\sigma_2 = \left(\frac{R_2}{R_1}\right)^2\sigma_1$

- 40. A half ring of radius R has a charge of λ per unit length. The potential at the centre of the half ring is :-
 - (1) $k \frac{\lambda}{R}$ (2) $k \frac{\lambda}{\pi R}$ (3) $\frac{2K\lambda}{R}$ (4) $k\pi\lambda$
- **41.** A solid sphere of radius R is charged uniformly. The electrostatic potential V is plotted as a function of distance r from the centre of the sphere. Which of the following best represents the resulting curve ?

SPACE FOR ROUGH WORK

39. R₁ व R₂ त्रिज्या के दो गोले V विभव से आवेशित कर पतले तार द्वारा जोड़े जाते हैं। माना इन दोनों गोलों का पृष्ठ आवेश घनत्व क्रमश: σ₁ व σ₂ हैं, तो :-

(1)
$$\sigma_2 = \left(\frac{R_1}{R_2}\right)\sigma_1$$
 (2) $\sigma_2 = \left(\frac{R_2}{R_1}\right)\sigma_1$
(3) $\sigma_2 = \sigma_1$ (4) $\sigma_2 = \left(\frac{R_2}{R_1}\right)^2\sigma_1$

40. एक R त्रिज्या की अर्ध वलय पर λ रेखीय आवेश आवेश घनत्व है। वलय के केन्द्र पर विभव का मान होगा :-

(1)
$$k \frac{\lambda}{R}$$
 (2) $k \frac{\lambda}{\pi R}$
(3) $\frac{2K\lambda}{R}$ (4) $k\pi\lambda$

41. एक R त्रिज्या के ठोस गोले को समान रूप से आवेशित किया गया। विभव V को दूरी r के फलन के रूप में (जो गोले केन्द्र से मापी गई हैं) दर्शाया गया है। कौनसा वक्र सबसे सही है ?

10/30

then value of integral $\int_{r_1=\frac{R}{\sqrt{2}}}^{r_2=2R} \vec{E} \cdot \vec{d\ell}$. Where r_1 and

r₂ distances from centre (in SI units) :-

$$(1) - 30$$
 (2) 30

- (3) 20 (4) None
- 43. An α particle is taken from points A to B having potentials 40 V and 20 V repectively then work done by electrostatic forces is :-
 - (1) $6.4 \times 10^{-18} \text{ J}$
 - $(2) 6.4 \times 10^{-18} \text{ J}$
 - (3) $3.2 \times 10^{-18} \text{ J}$
 - $(4) 3.2 \times 10^{-18} \text{ J}$
- **44.** Variation in potential on the axial point with the distance from the centre of the uniformly charged ring, is correctly represented by :-

42. एक परावैद्युत ठोस गोले आवेशित करने पर उसकी सतह पर

विभव 40V है, तो समाकल $\int_{r_1=rac{R}{\sqrt{2}}}^{r_2=2R} \vec{E}.\vec{d\ell}$ का मान होगा

 r_1 व r_2 गोले के केन्द्र से दूरीयाँ है (SI इकाई में):-

(1) - 30 (2) 30

(3) - 20(4) कोई नहीं

 43. एक α कण बिन्दु A से B तक ले जाया जाता है जिनके विभव क्रमश: 40 V व 20 V है तो स्थिर वैद्युत बलों द्वारा कार्य होगा :-

- (1) $6.4 \times 10^{-18} \text{ J}$
- $(2) 6.4 \times 10^{-18} \text{ J}$
- (3) $3.2 \times 10^{-18} \text{ J}$
- $(4) 3.2 \times 10^{-18} \text{ J}$
- 44. एक समान, आवेशित वलय की अक्ष पर विभव का केन्द्र से दूरी के साथ सही परिवर्तन है :-

SPACE FOR ROUGH WORK

11/30

(1

LEADER & ENTHUSIAST COURSE

45. Four equal charges of magnitude q are arranged as shown in fig. Now the charge at center C is taken to infinite, then work done by external force will be :-

$$) \frac{-3Kq^2}{a} \qquad (2)$$

(3)
$$\frac{-3 \operatorname{Kq}^2}{a} \left(\sqrt{3} + 1 \right)$$
 (4) $\frac{3 \operatorname{Kq}^2}{a} \left(\sqrt{3} + 1 \right)$

46. Volume charge density (ρ) of a nonuniformly charged solid sphere of radius R varies with the distance r from center as

shown in fig. then the total charge given to the sphere is :-

- (1) $\frac{23\pi\rho_0 R^3}{12}$ (2) $\frac{31}{24} \pi\rho_0 R^3$ (3) $\frac{37}{36} \pi\rho_0 R^3$ (4) None
- 47. Dimension's of $\sigma^2 / 2 \in_0$ are equal to :-(1) M¹L³T⁻²A⁻¹ (2) M¹L⁻¹T⁻²A^o (3) M¹L⁻³T⁻²A^o (4) None
- **48.** Two charges 16μ C and -4μ C are placed at seperation 27 cm, then distance of the point from -4μ C where electric potential is zero, is (point is lying on the line joining the charges) (1) 4 cm (2) 7 cm (3) 9 cm (4) 15 cm

चार समान आवेश g चित्रानुसार व्यवस्थित 45. है अब केन्द्र C पर रखे आवेश को अनंत पर ले जाया जाता है तो बाह्य q बलों द्वारा कार्य होगा :-(1) $\frac{-3Kq^2}{a}$ (2) $\frac{-3\sqrt{3}Kq^2}{a}$ $-3\sqrt{3}$ Kq² (3) $\frac{-3 \text{ Kq}^2}{2} \left(\sqrt{3} + 1\right)$ (4) $\frac{3 \text{ Kq}^2}{2} \left(\sqrt{3} + 1\right)$ एक असमान आवेशित ठोस गोले **46**. जिसका त्रिज्या R है का आयतन ρ.-आवेश घनत्व (ρ) चित्रानुसार केन्द्र से दुरी r के साथ परिवर्तित होता है r=R/2r=R/2r=R r=R तो गोले को दिया गया कुल आवेश है :-(1) $\frac{23\pi\rho_0 R^3}{12}$ (2) $\frac{31}{24} \pi\rho_0 R^3$ (3) $\frac{37}{36} \pi \rho_0 R^3$ (4) कोई नहीं **47.** $\sigma^2 / 2 \in_0$ की विमा निम्न के तुल्य है :-(1) $M^{1}L^{3}T^{-2}A^{-1}$ (2) $M^{1}L^{-1}T^{-2}A^{\circ}$ (4) कोई नहीं (3) $M^{1}L^{-3}T^{-2}A^{\circ}$ दो आवेश $16\mu C$ तथा – $4\mu C$, 27 cm दूरी पर रखे जाते है 48. तो दोनों आवेशों को मिलाने वाली रेखा के किस बिन्दु पर वैद्युत विभव शून्य होगा (- 4 µC से) :-(1) 4 cm (2) 7 cm (4) 15 cm (3) 9 cm

SPACE FOR ROUGH WORK

E / H

- **49.** Two heater wires of equal resistance are first connected in series and then in parallel. The ratio of heat produced in the two cases is :-
 - (1) 2 : 1 (2) 1 : 2
 - (3) 4 : 1 (4) 1 : 4
- 50. For the circuit shown in Figure the potential difference between point a and b will be $(V_b V_a)$

- 51. A storage battery of emf 8.0 V and internal resistance 0.5Ω is being charged by a 120 V dc supply using a series resistor of 15.5Ω terminal voltage of the battery during charging:-
 - (1) 10.5V (2) 4.5 V (3) 8.5V (4) 11.5V
- **52.** In a potentiometer arrangement, a cell of emf 1.25V gives a balance point at 35.0 cm length of the wire. If the cell is replaced by another cell and the balance point shifts to 63.0 cm, the emf of the second cell :-

(1) 2.0V	(2) 2.25V
(3) 1.75V	(4) 2.5V

- 49. समान प्रतिरोध के दो हीटर के तारों को पहले श्रेणी में तथा फिर समान्तर में जोड़ा जाता है। दोनों स्थितियों में उत्पन्न ऊष्मा में अनुपात है:-
 - (1) 2 : 1 (2) 1 : 2 (1) 1 = 1 (2)
- **50.** चित्र में दर्शाये गय परिपथ में बिन्दु a = b के मध्य विभवान्तर का मान होगा :- $(V_b V_a)$

(3)
$$\frac{R_1 R_2}{R_1 + R_2}$$
 (4) शून्य

51. 8.0 V विद्युत वाहक बल की एक संचायक बैटरी जिसका आंतरिक प्रतिरोध 0.5Ω है, को श्रेणीक्रम में 15.5Ω के प्रतिरोध का उपयोग करके 120V के dc स्रोत द्वारा चार्ज किया जाता

है। चार्ज होते समय बैटरी की टर्मिनल वोल्टता है

- (1) 10.5V (2) 4.5 V (3) 8.5V (4) 11.5V
- 52. किसी विभवमापी व्यवस्था में, 1.25V विद्युत वाहक बल के एक सेल का संतुलन बिन्दु तार के 35.0 cm लम्बाई पर प्राप्त होता है। यदि इस सेल को किसी अन्य सेल द्वारा प्रतिस्थापित कर दिया जाऐ तो संतुलन बिन्दु 63.0 cm पर स्थानान्तरित हो जाता है। दूसरे सेल का विद्युत वाहक बल है :-

(1) 2.0V	(2) 2.25V
(3) 1.75V	(4) 2.5V

LEADER & ENTHUSIAST COURSE

54.

- **53.** In figure a meter-bridge is shown in its balance position. If the resistance of the wire of meter-bridge is 1.0 ohm/cm then find the value of unknown resistance X :-
 - 4.5Ω
 - (2) 2Ω

 - (3) 6Ω

54. Equiavalent resistance between A and B is :-

6V

(1) $\frac{3}{4}$ R

- (4) R
- 55. Statement-1 : Resistance of thermistor always decreases with the increase in temperature.Statement-2 : Thermistor is made metal oxide which has negative thermal coefficient.
 - Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1.
 - (2) Statement-1 is false, Statement-2 is true.
 - (3) Statement-1 is true, Statement-2 is false.
 - (4) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation of Statement-1.

53. चित्र में एक मीटर ब्रिज को संतुलन अवस्था में दर्शाया गया है। मीटर ब्रिज के तार का प्रतिरोध 1.0 ओम प्रति सेन्टीमीटर है। अज्ञात प्रतिरोध X :-

(4) R

55. कथन-1: तापी प्रतिरोध का प्रतिरोध ताप बढ़ाने पर सदैव घटता है।

> **कथन-2 :** तापी प्रतिरोध धातु के ऑक्साइड के बने होते हैं, जिनका ताप गुणांक ऋणात्मक होता है।

- (1) कथन-1 सही है और कथन-2 सही है।कथन-2, कथन-1 का सही स्पष्टीकरण नहीं है।
- (2) कथन-1 गलत है और कथन-2 सही है।
- (3) कथन-1 सही और कथन-2 गलत है।
- (4) कथन-1 सही है और कथन-2 सही है। कथन-2, कथन-1 का सही स्पष्टीकरण है।

SPACE FOR ROUGH WORK

E / H

Paragraph : (Q. No. 56 & 57)

Two cells are connected to resistance 20Ω as shown in figure.

- 56. Potential difference between points A and B is:-(1) 12 V (2) 16 V
 - (3) 20 V (4) 24 V
- Current through resistance R₁ is :-57.

(1)
$$\frac{3}{5}A$$
 (2) $\frac{4}{5}A$
(3) $\frac{7}{5}A$ (4) $\frac{6}{5}A$

Six cells each of emf 1V and internal resistance **58**. 1Ω are connected as shown in fig.

Current through the cells is :-

(1)
$$\frac{3}{4}$$
A (2)

गद्यांश : (प्रश्न संख्या 56 एवं 57)

दो सेल 20Ω प्रतिरोध के साथ चित्रानुसार जोडे जाते हैं।

- बिन्दुओं A व B के मध्य विभवांतर है :-56. (1) 12 V (2) 16 V (3) 20 V (4) 24 V
- प्रतिरोध R1 से प्रवाहित धारा है :-57.

(1)
$$\frac{3}{5}A$$
 (2) $\frac{4}{5}A$
(3) $\frac{7}{5}A$ (4) $\frac{6}{5}A$

चित्रानुसार 6 सेल जिनका प्रत्येक का emf 1V तथा आंतरिक 58. प्रतिरोध 1Ω है जोड़े जाते हैं।

सेलों से प्रवाहित धारा होगी :-

LEADER & ENTHUSIAST COURSE

59. Find the value of e.m.f. (ε_1) in a circuit in Figure if the current in circuit remains unchanged by connecting it across the ends of resistance R_2 :-

60. If V_A and V_B are electric potentials at points A and B in given dig. then :-

- (4) None of these
- 61. In the figure, a charged sphere of mass m and charge q starts sliding from rest on a vertical fixed circular track of radius R from the position shown. There exists a uniform and constant horizontal magnetic field of induction B. The maximum force exerted by the track on the sphere is :-
 - (1) mg

(2)
$$3mg - qB\sqrt{2gR}$$

(3)
$$3mg + qB\sqrt{2gR}$$

(4) mg – qB $\sqrt{2gR}$

59. चित्र में दर्शाये गये परिपथ में वि.वा.बल ε_1 का वह मान ज्ञात कीजिए जो प्रतिरोध \mathbf{R}_2 के सिरों के मध्य जोड़ने पर परिपथ में प्रवाहित धारा का मान अपरिवर्तित रख सके :-

60. यदि $V_{_{\rm A}}$ एवं $V_{_{\rm B}}$ दिये गये चित्र A व B के विभव है तो :-

- (4) इनमें से कोई नहीं
- 61. चित्र में, द्रव्यमान m और आवेश q का एक आवेशित गोला, त्रिज्या R के वृत्ताकार मार्ग पर, दिखाये गये स्थान से, विरामावस्था से खिसकना प्रारम्भ होता है। एक एकसमान और नियत क्षैतिज, चुम्बकीय प्रेरण B का क्षेत्र उपस्थित है। मार्ग में, गोले पर आरोपित अधिकतम बल है:-

(2) $3mg - qB\sqrt{2gR}$ (3) $3mg + qB\sqrt{2gR}$

(3)
$$3\text{mg} + qB\sqrt{2gI}$$

(4) mg – qB $\sqrt{2gR}$

SPACE FOR ROUGH WORK

E / H

- A conducting ring of mass 2 kg and radius **62**. 0.5 m is placed on a smooth horizontal plane. The ring carries a current i = 4A. A horizontal magnetic field B = 10 T is switched on at time t=0 as shown in figure. The initial angular acceleration of the ring will be
 - (1) $40\pi \text{ rad}/\text{s}^2$ (2) $20\pi \text{ rad}/\text{s}^2$

- (4) $15\pi \text{ rad}/\text{s}^2$ 63. A conducting rod of length ℓ and mass m is moving down a smooth inclined plane of inclination θ with constant velocity v in fig. A current I is flowing in the conductor in a
 - direction perpendicular to paper inwards. A vertically upward magnetic field B exists in space. Then magnitude of magnetic field \vec{B} is

- An electron (mass = 9.1×10^{-31} ; charge **64**. = -1.6×10^{-19} C) experiences no deflection if subjected to an electric field of 3.2×10^5 V/m and a magnetic field of 2.0×10^{-3} Wb/m². Both the fields are normal to the path of electron and to each other. If the electric field is removed, then the electron will revolve in an orbit of radius (1) 45 m (2) 4.5 m
 - (3) 0.45 m (4) 0.045 m

2 kg द्रव्यमान तथा 0.5 m त्रिज्या की चालक वलय को **62**. एक चिकने क्षैतिज तल पर रखा गया है। वलय में धारा i = 4A प्रवाहित है। चित्रानुसार t=0 समय पर एक क्षैतिज चुम्बकीय क्षेत्र B = 10T को चालू किया जाता है। वलय का प्रारम्भिक कोणीय त्वरण होगा:-

(3) $5\pi \text{ rad}/\text{s}^2$

(4) $15\pi \text{ rad}/\text{s}^2$

लम्बाई l व द्रव्यमान m वाली एक चालक छड़ घर्षण रहित 63. नत-तल (जिसका झुकाव कोण θ है) पर नियत वेग v से चित्रानुसार नीचे की तरफ गति करती है। चालक में धारा I पेपर के लम्बवत् अन्दर की तरफ है। क्षेत्र में उर्ध्वाधर ऊपर की ओर चुम्बकीय क्षेत्र B विद्यमान है। चुम्बकीय क्षेत्र B का मान है।

(1)
$$\frac{\text{mg}}{i\ell} \sin \theta$$
 (2) $\frac{\text{mg}}{i\ell} \tan \theta$
(3) $\frac{\text{mg} \cos \theta}{i\ell}$ (4) $\frac{\text{mg}}{i\ell \sin \theta}$ side view

एक इलेक्ट्रॉन (द्रव्यमान = 9.1×10^{-31} ; **64**. आवेश = -1.6×10^{-19} C), यदि 3.2×10^5 V/m वाले विद्युत क्षेत्र तथा $2.0 \times 10^{-3} \text{ Wb/m}^2$ वाले चुम्बकीय क्षेत्र में है तो कोई विक्षेप अनुभव नहीं करता है। दोनों क्षेत्र इलेक्ट्रॉन के पथ के तथा एक दुसरे के लम्बवत है। यदि विद्युत क्षेत्र को हटा देते हैं तो इलेक्ट्रॉन कितनी त्रिज्या वाली कक्षा में घमेगा? (1) 45 m (2) 4.5 m

UCH WODV	
(3) 0.45 m	(4) 0.045 m
(1) - J III	(2) 4 .5 III

SPACE FOR ROUGH WORK

Ŕ

MAJOR TEST

LEADER & ENTHUSIAST COURSE

65. A conducting wire bent in the form of a parabola $y^2 = 2x$ carries a current i = 2A as shown in figure. This wire is placed in a uniform

magnetic field $\vec{B} = -4\hat{k}$ Tesla. The magnetic force on the wire is (in newton)

(1) –16i	(2) 32î
(3) –32î	(4)16i

- **66.** A vibration magnetometer consists of two idential bar magnets placed one over the other such that they are perpendicular and bisect each other. The time period of oscillation in a horizontal magnetic field is $2^{5/4}$ sec. One of the magnets is removed and if the other magnet oscillates in the same field, then the time period in seconds is :-
 - (1) $2^{1/4}$ (2) $2^{\frac{1}{2}}$ (3) 2 (4) $2^{5/4}$
- 67. Electron of mass m and charge q is travelling with a speed v along a circular path of radius r at right angles to a uniform magnetic field of intensity B. If the speed of the electron is doubled and the magnetic field is halved, the resulting path would have a radius :
 (1) 2r
 (2) 4r
 - $\begin{array}{c} (1) & 21 \\ (3) & r/4 \\ \end{array} \qquad \begin{array}{c} (2) & 41 \\ (4) & r/2 \\ \end{array}$

65. एक चालक तार को मोड़कर चित्रानुसार परवलय y² = 2x (जिसमें धारा i=2A प्रवाहित होती है) बनाया जाता है। तार को एकसमान चुम्बकीय क्षेत्र B = -4k में रखा जाता है। तार पर लगने वाले चुम्बकीय बल का मान होगा।

(1) –16î	(2) 32î

(3) -32i
(4) 16i
(4) 16i
एक दोलन चुम्बकत्वमापी में दो समान छड़ चुम्बकें हैं जोकि एक-दूसरे पर इस प्रकार रखी हैं कि वे एक-दूसरे पर लम्बवत् और अर्धक हैं। एक क्षैतिज चुम्बकीय क्षेत्र में दोलनकाल 2^{5/4} sec है। अब एक चुम्बक को हटा दिया गया है और यदि दूसरी चुम्बक उसी क्षेत्र में दोलन करती है, तब सैकण्डों में दोलनकाल है :-

(1) $2^{1/4}$ (2)	21/2
-------------------	------

- $(3) 2 (4) 2^{5/4}$
- 67. द्रव्यमान m और आवेश q का इलेक्ट्रॉन, त्रिज्या r के वृत्ताकार पथपर एकसमान चुम्बकीय क्षेत्र की तीव्रता B के लम्बवत् वेग v से चल रहा है। यदि इलेक्ट्रॉन के वेग को दोगुना किया जाता है और चुम्बकीय क्षेत्र को आधा किया जाता है, तब परिणामी पथ की त्रिज्या होगी :-

(1) 2r	(2) 4r
(3) r/4	(4) r/2

Use stop, look and go method in reading the question)

69.

MAJOR TEST

11-03-2013

68. Shown in the figure is a conductor carrying a current I. The magnetic field intensity at the point O (common centre of all the three arcs) is

(1)
$$\frac{5\mu_0I\theta}{24\pi r}$$
 (2) $\frac{\mu_0I\theta}{24\pi r}$

(3)
$$\frac{11\mu_0I\theta}{24\pi r}$$

An electron (e/m) = 1.76×10^{11} coulomb/kg] 69. enters a region where there is a uniform magnetic field of induction 1.78×10^{-3} T with a velocity 4×10^6 m/s in a direction 30° with the field. The pitch in cm of its helical path in the region is :-

 θI_0

(4) Zero

- (1) 3.2 cm (2) 4.0 cm
- (3) 7.4 cm (4) 6.0 cm
- Two very long, straight, parallel wires carry 70. currents I and -I respectively. The distance between the wires is d. At a certain instant of time, a point charge q is at a point equidistant from the two wires, in the plane of the wires. Its instantaneous velocity \vec{v} is perpendicular to this plane. The magnitude of the force due to magnetic field acting on the charge at this instant is :-
 - (1) $\frac{\mu_0 Iqv}{2\pi d}$ (2) $\frac{\mu_0 Iqv}{\pi d}$ (3) $\frac{2\mu_0 Iqv}{\pi d}$ (4) zero

68. चित्र में एक चालक प्रदर्शित है जिसमें धारा I प्रवाहित है। बिन्दु O (तीनों चापों का सामान्य केंद्र) पर चुम्बकीय क्षेत्र की तीव्रता :-(2) $\frac{\mu_0 I \theta}{24\pi r}$ (1) $\frac{5\mu_0I\theta}{24\pi r}$ (3) $\frac{11\mu_0I\theta}{24\pi r}$ (4) शून्य

वेग 4×10^6 m/s से एक इलेक्ट्रॉन $[(e/m) = 1.76 \times 10^{11} \text{ coulomb/kg}],$ चुम्बकीय प्रेरण 1.78×10^{-3} T के एकसमान क्षेत्र में क्षेत्र की दिशा से 30° पर प्रवेश करता है। इसके कुण्डलिनी मार्ग की पिच (सेमी में) होगी :-

- (1) 3.2 cm (2) 4.0 cm (3) 7.4 cm (4) 6.0 cm
- दो बहुत लम्बे, सीधे समान्तर तारों में धाराएँ क्रमश: I और –I 70. हैं। तारों के बीच दूरी d है। किसी क्षण पर, एक बिन्दु आवेश g दोनों तारों से समान दूरी पर तारों के तल में है। इसका तत्काल वेग 求 इस तल के लम्बवत है। इस क्षण पर चुम्बकीय क्षेत्र के कारण लगने वाले बल का परिणाम है :-

(1)
$$\frac{\mu_0 Iqv}{2\pi d}$$
 (2) $\frac{\mu_0 Iqv}{\pi d}$
(3) $\frac{2\mu_0 Iqv}{1}$ (4) शून्य

πd

LEADER & ENTHUSIAST COURSE

11-03-2013

PART C - CHEMISTRY

above configuration is named as :-

- (1) (2S, 3S)-2-chloro-3-pentanol
- (2) (2S, 3R)-2-chloro-3-pentanol
- (3) (2R, 3R)-2-chloro-3-pentanol
- (4) (2R, 3S)-2-chloro-3-pentanol
- **72.** The maximum number of isomers (including stereoisomers) that are possible on mono-chlorination of the following compounds is :-

73. Rank the following in increasing basic nature-

दिए गए यौगिक का विन्यास के साथ नाम है :-

- (1) (2S, 3S)-2-क्लोरो-3-पेन्टेनॉल
- (2) (2S, 3R)-2-क्लोरो-3-पेन्टेनॉल
- (3) (2R, 3R)-2-क्लोरो-3-पेन्टेनॉल
- (4) (2R, 3S)-2-क्लोरो-3-पेन्टेनॉल
- 72. दिए गए यौगिक के मोनोक्लोरीनीकरण से अधिकतम कितने समावयवी (त्रिविम समावयवी सहित) संभव है :-

(Take it Easy and Make it Easy)

SPACE FOR ROUGH WORK

E / H

SPACE FOR ROUGH WORK

21/30

LEADER & ENTHUSIAST COURSE 11-03-2013 86. दी गई अभिक्रिया में, In the given reaction, 86. [X] + एसिटिक एनहाइडुइड \rightarrow एस्प्रीन [X] + Acetic anhydride \rightarrow Aspirin (1) बेंजोइक अम्ल (1) Benzoic acid (2) o-मेथाक्सी बेंजाइक अम्ल (2) o-Methoxy benzoic acid (3) ०-हाइड्रॉक्सी बेंजोइक अम्ल (3) o-Hydroxy benzoic acid (4) p-हाइड्रॉक्सी बेंजोइक अम्ल (4) p-Hydroxy benzoic acid दी गई अभिक्रिया में, 87. In the given reaction, 87. 0 0 $\underset{C_{6}H_{5}-C-CH_{3}}{\overset{(i) Br_{2}/KOH}{\underset{(ii) H^{\oplus}}{\longrightarrow}}}CHBr_{3}+[X]$ $\underset{C_{6}H_{5}-C-CH_{3}-\underbrace{(i) Br_{2}/KOH}_{(ii) H^{\oplus}} CHBr_{3} + [X]$ [X] होगा :-[X] will be :-(1) C_6H_5 -CHO (2) C_6H_5COOH (3) C_6H_5 -CH₂-OH (4) CH₃COOH (1) C_6H_5 -CHO (2) C_6H_5COOH (3) C_6H_5 -CH₂-OH (4) CH₃COOH 0 0 0 Ⅱ **88.** एल्किन [A] <u>-O₃/H₂O</u> CH₃-C-CH₃ + CH₃COOH Alkene [A] $\xrightarrow{O_3/H_2O}$ CH₃-C-CH₃ + CH₃COOH 88. + CH₃-C-COOH + CH₃-C-COOH A हो सकता है :-A can be :-(1) $CH_3-C-CH = C \begin{pmatrix} CH_3 \\ CH_3 \end{pmatrix}$ (1) $CH_3-C-CH = C \begin{pmatrix} CH_3 \\ CH_3 \end{pmatrix}$ (2) CH_3 -C-CH = CH-CH₃ \parallel $C(CH_3)_2$ (2) CH_3 -C-CH = CH-CH₃ \downarrow $C(CH_3)_2$ (3) दोनों सही हैं (3) Both correct (4) उपरोक्त में कोई नहीं (4) None of these

SPACE FOR ROUGH WORK

E / H

25/30

SPACE FOR ROUGH WORK

E / H

- (3) ${}^{14}\text{CO}_2$ (4) SO₃
- **103.** Order of reactivity is :-
 - (1) $RCOX > RCONH_2 > RCOOCOR > RCOOR$
 - (2) $RCOX > RCOOCOR > RCOOR > RCONH_{2}$
 - (3) $RCOOR > RCONH_2 > RCOX > RCOOCOR$
 - (4) RCOOCOR > RCOOR > RCOX > RCONH,
- **104.** The lassaigne's extract is boiled with conc. HNO_3 while testing for the hologens by doing so it :-
 - (1) Decomposes Na₂S and NaCN, is formed
 - (2) Helps in the precipitation of AgCl
 - (3) Increase the solubility product of AgCl
 - (4) Increase the concentration of NO_3^{\odot} ions
- 105. Ether and benzene can be separated by :-
 - (1) Filtration (2) Distillation
 - (3) Crystallisation (4) Sublimation

- (1) CO_2 (2) SO_2
- (3) ${}^{14}\text{CO}_2$ (4) ${}^{5}\text{O}_3$
- 103. क्रियाशीलता का क्रम है :-
 - (1) $RCOX > RCONH_2 > RCOOCOR > RCOOR$
 - (2) $RCOX > RCOOCOR > RCOOR > RCONH_{2}$
 - (3) $RCOOR > RCONH_2 > RCOX > RCOOCOR$
 - (4) RCOOCOR > RCOOR > RCOX > RCONH,
- **104.** हैलोजन के परीक्षण में लैसाने निष्कर्ष को सांद्र HNO₃ के साथ उबालने पर, होता है :-
 - (1) यदि Na,S तथा NaCN बनते हैं तो उन्हें विघटित करता है
 - (2) AgCl के अवक्षेपण में सहायता करता है ।
 - (3) AgCl का विलेयता गुणनफल बढ़ाता है ।
 - (4) NO⁰ आयन की सांद्रता बढ़ता है।
- 105. ईथन तथा बेंजीन को पृथक कर सकते हैं :-
 - (1) छनन (2) आसवन
 - (3) क्रिस्टलीकरण (4) उर्ध्वपातन

SPACE FOR ROUGH WORK

MAJOR TEST

LEADER & ENTHUSIAST COURSE

11-03-2013

SPACE FOR ROUGH WORK / रफ कार्य के लिये जगह