FORM NUMBER

CLASSROOM CONTACT PROGRAMME (ACADEMIC SESSION 2012-2013)

LEADER & ENTHUSIAST COURSE JEE-MAIN 2013

MAJOR TEST # 01

DATE: 07 - 03 - 2013

SYLLABUS : SECTION - 1

IMPORTANT INSTRUCTIONS

- 1. Immediately fill in the particulars on this page of the Test Booklet with *Blue/Black Ball Point Pen*. Use of pencil is strictly prohibited.
- 2. The candidates should not write their Form Number anywhere else (except in the specified space) on the Test Booklet/Answer Sheet.
- 3. The test is of 3 hours duration.
- The Test Booklet consists of 90 questions. The maximum marks are 360.
- 5. There are *three* parts in the question paper.

The distribution of marks subjectwise in each part is as under for each correct response.

Part A – Physics (120 marks) – 30 Questions.

Questions No. 1 to 30 carry 4 marks each = 120 Marks

Part B – Chemistry (120 marks) – 30 Questions.

Questions No. 31 to 60 carry 4 marks each = 120 Marks

Part C – Mathematics (120 marks) – 30 Questions.

- Questions No. 61 to 90 carry 4 marks each = 120 Marks
 6. One Fourth mark will be deducted for indicated incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the Answer Sheet.
- Use Blue/Black Ball Point Pen only for writting particulars/marking responses on Side-1 and Side-2 of the Answer Sheet. Use of pencil is strictly prohibited.
- 8. No candidate is allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone any electronic device etc, except the Identity Card inside the examination hall/room.
- **9.** Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 10. On completion of the test, the candidate must hand over the Answer Sheet to the invigilator on duty in the Room/Hall. However, the candidate are allowed to take away this Test Booklet with them.
- 11. Do not fold or make any stray marks on the Answer Sheet.

महत्वपूर्ण सूचनाएँ

- परीक्षा पुस्तिका के इस पृष्ठ पर आवश्यक विवरण नीले/काले बॉल पाइंट पेन से तत्काल भरें। पेन्सिल का प्रयोग बिल्कुल वर्जित हैं।
- परीक्षार्थी अपना फार्म नं. (निर्धारित जगह के अतिरिक्त) परीक्षा पुस्तिका / उत्तर पत्र पर कहीं और न लिखें।
- परीक्षा की अवधि 3 घंटे है।
- 4. इस परीक्षा पुस्तिका में 90 प्रश्न हैं। अधिकतम अंक 360 हैं।
- प्रश्न पत्र में तीन भाग हैं।
 प्रत्येक भाग में प्रत्येक सही उत्तर के लिये अंकों का विषयवार वितरण नीचे दिए अनुसार होगा।

भाग A – भौतिक विज्ञान (120 अंक) – 30 प्रश्न प्रश्न संख्या 1 से 30 तक प्रत्येक 4 अंक का है = 120 अंक भाग B – रसायनिक विज्ञान(120 अंक) – 30 प्रश्न प्रश्न संख्या 31 से 60 तक प्रत्येक 4 अंक का है = 120 अंक भाग C – गणित (120 अंक) – 30 प्रश्न प्रश्न संख्या 61 से 90 तक प्रत्येक 4 अंक का है = 120 अंक

- प्रत्येक गलत उत्तर के लिए उस प्रश्न के कुल अंक का एक चौथाई अंक काटा जायेगा। उत्तर पुस्तिका में कोई भी उत्तर नहीं भरने पर कुल प्राप्तांक में से ऋणात्मक अंकन नहीं होगा।
- उत्तर पत्र के पृष्ठ-1 एवं पृष्ठ-2 पर वांछित विवरण एवं उत्तर अंकित करने हेतु केवल नीले/काले बॉल पाइंट पेन का ही प्रयोग करें। पेन्सिल का प्रयोग बिल्कुल वर्जित है।
- 8. परीक्षार्थी द्वारा परीक्षाकक्ष/हॉल में परिचय पत्र के अलावा किसी भी प्रकार की पाठ्य सामग्री मुद्रित या हस्तलिखित कागज की पर्चियों, पेजर, मोबाइल फोन या किसी भी प्रकार के इलेक्ट्रानिक उपकरणों या किसी अन्य प्रकार की सामग्री को ले जाने या उपयोग करने की अनुमति नहीं हैं।
- 9. रफ कार्य परीक्षा पुस्तिका में केवल निर्धारित जगह पर ही कीजिये।
- 10. परीक्षा समाप्त होने पर, परीक्षार्थी कक्ष/हॉल छोड़ने से पूर्व उत्तर पत्र कक्ष निरीक्षक को अवश्य सौंप दें। परीक्षार्थी अपने साथ इस परीक्षा पुस्तिका को ले जा सकते हैं।
- 11. उत्तर पत्र को न मोड़ें एवं न ही उस पर अन्य निशान लगाऐं।

Do not open this Test Booklet until you are asked to do so / इस परीक्षा पुस्तिका को जब तक ना खोलें जब तक कहा न जाऐ।

Corporate Office "SANKALP", CP-6, Indra Vihar, Kota (Rajasthan)-324005 Trin : +91 - 744 - 2436001 Fax : +91-744-2435003 E-Mail: info@allen.ac.in Website: www.allen.ac.in

MAJOR TEST 07-03-2013

JEE-MAIN 2013

HAVE CONTROL → HAVE PATIENCE → HAVE CONFIDENCE ⇒ 100% SUCCESS

- BEWARE OF NEGATIVE MARKING
 - PART A PHYSICS
- 1. A ball collide with the ground at an angle of 30° from vertical and after collision it bounces at an angle of 60° from vertical then the coefficient of restitution will be :-

(1)
$$\frac{1}{\sqrt{3}}$$
 (2) $\sqrt{3}$ (3) $\frac{1}{3}$ (4) 3

- A bomb of mass 10 kg suddenly explodes in to two parts of masses 2 kg and 8 kg. If total 1500 J kinetic energy is produced in the process then what will be kinetic energy of 2 kg fragment ?
 (1) 300 J
 (2) 500 J
 (3) 1000 J
 (4) 1200 J
- 3. Three particles each of mass m are placed at the corners of an equilateral triangle of side 'a' then moment of inertia of the system about an axis passing through the middle point of any side and perpendicular to plane will be :-

(1)
$$\frac{\text{ma}^2}{2}$$
 (2) $\frac{5}{4}$ ma² (3) 2ma² (4) None

4. Two blocks A and B of equal mass are released on two sides of a fixed wedge c as shown in figure, then what will be the acceleration of centre of mass of blocks A and B. Neglect friction एक गेंद जमीन से ऊर्ध्वाधर से 30° के कोण पर टकराती है, यदि टक्कर के बाद यह उर्ध्वाधर से 60° के कोण पर उछलती है तो प्रत्यावस्थान गुणांक होगा :-

(1)
$$\frac{1}{\sqrt{3}}$$
 (2) $\sqrt{3}$ (3) $\frac{1}{3}$ (4) 3

- 2. 10 kg द्रव्यमान का बम अचानक 2 kg तथा 8 kg द्रव्यमान के दो टुकड़ों में विस्फोटित हो जाता है। यदि इस प्रक्रिया में कुल 1500J गतिज ऊर्जा उत्पन्न होती है, तो 2 kg द्रव्यमान के टुकड़े की गतिज ऊर्जा होगी ?
- (1) 300 J
 (2) 500 J
 (3) 1000 J
 (4) 1200 J **3.** तीन कण, प्रत्येक का द्रव्यमान m है, a भुजा के किसी समबाहू त्रिभुज के शीर्षों पर रखे हुए है तो किसी एक भुजा के मध्य बिन्दु से गुजरने वाले तथा तल के लम्बवत् अक्ष के प्रति निकाय का जड्त्व आघूर्ण होगा :-

(1) ma²/2
(2) 5/4 ma²
(3) 2ma²
(4) कोई नहीं
4. समान द्रव्यमान के दो ब्लॉक A तथा B चित्रानुसार किसी अचल वेज की दोनों भुजाओं पर छोड़े जाते हैं। यदि घर्षण नगण्य है. तो ब्लॉक A तथा B के द्रव्यमान केन्द्र का त्वरण होगा :-

07-03-2013 LEADER & ENTHUSIAST COURSE 2 kg द्रव्यमान के किसी कण की स्थिति समीकरण Position of a particle of mass 2 kg is given by 5. 5. $x = \frac{t^3}{2} + t^2$ द्वारा प्रदर्शित की जाती है, तो प्रथम 2 सैकण्ड $x = \frac{t^2}{2} + t^2$, then what will be the work done in first two seconds :-में किया गया कार्य होगा :-(1) 100 J (2) 200 J (3) 300 J (4) 400 J (1) 100 J (2) 200 J (3) 300 J (4) 400 J एक कण R त्रिज्या के वृत्ताकार पथ पर गतिशील है। यदि 6. A particle moves in a circular path of radius R. 6. इस पर कार्यरत अभिकेन्द्रीय तथा स्पर्शरेखीय बल F_c तथा If F_c and F_t are the centripetal and tangential F, हैं, तो इन बलों द्वारा एक चौथाई वृत्तीय पथ तय करने पर forces acting on the particle then workdone by इन बलों द्वारा किया गया कार्य होगा :these forces in guarter revolution will be :-(2) $F_c \times \frac{\pi R}{2}, F_t \times \frac{\pi R}{2}$ (2) $F_c \times \frac{\pi R}{2}, F_t \times \frac{\pi R}{2}$ (1) 0, 0(1) 0, 0(3) 0, $F_t \times \frac{\pi R}{2}$ (4) 0, $F_t \times \sqrt{2} R$ (3) 0, $F_t \times \frac{\pi R}{2}$ (4) 0, $F_t \times \sqrt{2} R$ एक L लम्बाई की नली में M द्रव्यमान का असंपीड्य द्रव 7. A tube of length L is filled completely with an 7. incompressible liquid of mass M and closed at भर कर नली के सिरों को बन्द कर दिया गया है। अब ट्यूब both ends. The tube is then rotated in a horizontal के एक सिरे से पारित अक्ष: के सापेक्ष नली को क्षैतिज तल plane about one of its end with a uniform angular में एक समान कोणीय वेग ω से घमाया जाता है। नली के दसरे velocity ω . Then the force exerted by the liquid सिरे पर द्रव द्वारा लगाया गया बल है :at this other end is :-(1) $M\omega^{2}L$ (2) $\frac{1}{2}M\omega^{2}L$ (3) $\frac{1}{4}M\omega^{2}L$ (4) $2M\omega^{2}L$ (1) $M\omega^2 L$ (2) $\frac{1}{2}M\omega^2 L$ (3) $\frac{1}{4}M\omega^2 L$ (4) $2M\omega^2 L$ 8. A string of length 1m is fixed at one end and 8. 1m लम्बी एक डोरी का एक सिरा बद्ध है और दूसरे सिरे पर carries a mass of 100 g at the other end. The string 100 g का द्रव्यमान बंधा है। द्रव्यमान चित्रानुसार, क्षैतिज makes $(2/\pi)$ revolutions per second around वृत्ताकार पथ में शंकु लोलक की भाँति गति कर रहा है। डोरी vertical axis through the fixed end. What is the ऊर्ध्वाधर अक्ष के चारों ओर (2/π) चक्कर प्रति सैकण्ड लगा tension in the string :-रही है। डोरी में तनाव क्या है? (1) 1.6 N (1) 1.6 N (2) 0.8 N (2) 0.8 N 100g 100g (3) 3.2 N (3) 3.2 N (4) 2.4 N (4) 2.4 N प्रत्येक प्रश्न को अर्जुन बनकर करो।

SPACE FOR ROUGH WORK

E / H

MAJOR TEST

9.

A stone is tied to a string of length L is whirled in a vertical circle with the other end of the string at the centre. At a certain instant of time, the stone is at its lowest position and has a speed u. The magnitude of the change in its velocity as it reaches

a position where the string is horizontal is :-

(1)
$$\sqrt{u^2 - 2gL}$$
 (2) $\sqrt{2gL}$
(3) $\sqrt{u^2 - gL}$ (4) $\sqrt{2(u^2 - gL)}$

10. When acceleration of 5 kg block is 2 m/s^2 as shown in figure, then what will be the acceleration of 15 kg block :-

$$(1) 2 \text{ m/s}^{2} (2) 5 \text{ m/s}^{2} (3) 6 \text{ m/s}^{2} (4) \frac{20}{3} \text{ m/s}^{2}$$

11. In which of the following cases is the contact force between A and B is maximum. If mass of each block is 1 kg :-

एक पत्थर को L लम्बाई की एक डोरी से बांध कर और डोरी के दूसरे सिरे को स्थिर रखकर, ऊर्ध्वाधर वृत्ताकार पथ में घुमाया जाता है। किसी क्षण जब पत्थर पथ के निम्नतम बिन्दु पर होता है तब इसकी चाल u है। जब यह उस स्थान पर पहुँचता है जहाँ डोरी क्षैतिज है तब इसके वेग में आये परिवर्तन का मान है :-

(1)
$$\sqrt{u^2 - 2gL}$$
 (2) $\sqrt{2gL}$

(3)
$$\sqrt{u^2 - gL}$$

(4)
$$\sqrt{2(u^2 - gL)}$$

10. यदि 5 kg द्रव्यमान के ब्लॉक का त्वरण चित्रानुसार 2 m/s² है तो 15 kg द्रव्यमान के ब्लॉक का त्वरण होगा :-

 निम्न में से किस स्थिति में A तथा B के मध्य लगने वाला सम्पर्क बल अधिकतम है :-

SPACE FOR ROUGH WORK

MAJOR TEST

07-03-2013

					MAJOR TEST	
Path in Succe		LEADER & ENTH	IUSI	AST COURSE	07–03–2013	
12.	A man of mass 80 kg i moving upward with a u s then the apparent weigh	is standing inside a lift inform velocity of 4 m/ nt of the person will be:-	12.	80 kg द्रव्यमान का एक व्य से ऊपर की ओर गतिशील एक का आभासी भार होगा :-	गक्ति 4 m/s के एक समान वेग लिफ्ट के अन्दर खड़ा हैतो व्यक्ति	
	(1) 112 kg	(2) 112 N		(1) 112 kg	(2) 112 N	
	(3) 80 kg	(4) 80 N		(3) 80 kg	(4) 80 N	
13.	A block of mass 5 h horizontal surface with it comes to rest after 2 the cofficient of friction	cg is projected on a a velocity of 10 m/s. If sec, then what will be n?	13.	5 kg द्रव्यमान का एक ब्लॉव से प्रक्षेपित किया जाता है। या जाता है तो घर्षण गुणांक हो	क क्षैतिज तल में 10 m/s के वेग दि यह 2 सैकण्ड के पश्चात् रूक गा ?	
	(1) 0.2	(2) 0.3		(1) 0.2	(2) 0.3	
	(3) 0.4	(4) 0.5		(3) 0.4	(4) 0.5	
14.	4. The time taken by a body to slide down a rough 45° inclined plane is twice that required to slide down a smooth 45° inclined plane. The cofficient of kinetic friction between the object and rough plane is given by :-		14.	45° झुकाव के खुरदरे नत तल पर किसी वस्तु द्व फिसल कर नीचे जाने में लगा समय, 45° झुकाव चिकने नत तल पर फिसल कर नीचे जाने में लगे स का दो गुना है तो वस्तु तथा नत तल के मध्य घर गुणांक होगा :-		
	(1) $\frac{1}{3}$ (2) $\frac{3}{4}$	(3) $\sqrt{\frac{3}{4}}$ (4) $\sqrt{\frac{4}{3}}$		(1) $\frac{1}{3}$ (2) $\frac{3}{4}$	(3) $\sqrt{\frac{3}{4}}$ (4) $\sqrt{\frac{4}{3}}$	
15.	A particle has initial vel	ocity of $(\hat{i} + \hat{j})$ m/s and	15.	एक कण का प्रारम्भि	क वेग (î+ĵ) m/s तथा	
	an acceleration of $(\hat{i} + \hat{j})$ will be :-	m/s ² . Its speed after 10s		त्वरण ($\hat{i}+\hat{j}$) m/s². है होगी :-	। 10 से. बाद इसकी चाल	
	(1) 11 m/s	(2) 22 m/s		(1) 11 m/s	(2) 22 m/s	
	(3) $2\sqrt{11}$ m/s	(4) $11\sqrt{2}$ m/s		(3) $2\sqrt{11}$ m/s	(4) $11\sqrt{2}$ m/s	
		(कोई भी प्रश्न Key Filling	से गलत	। नहीं होना चाहिए।		

E / H

JEE-MAIN 2013

- 17. A particle moves in east direction with 15 m/sec. for 2 sec. then moves northward with 5 m/sec. for 8 sec. then average velocity of the particle is:-
 - (1) 5 m/sec. due E 37 N
 - (2) 5 m/sec. due N 37 E
 - (3) 7 m/sec. due S 37 W
 - (4) 10 m/sec. due N 37 E
- A car starts from rest and travels with uniform 18. acceleration α for some time and then with uniform retardation β and comes to rest. If the total travel time of the car is 't', the maximum velocity attained by it is given by :

(1)
$$\frac{\alpha\beta}{(\alpha+\beta)}$$
.t (2) $\frac{1}{2}$
(3) $\frac{\alpha\beta}{(\alpha-\beta)}$.t (4) $\frac{1}{2}$

- एक कण 2 सैकण्ड तक 15 m/sec. की चाल से पूर्व दिशा 17. में फिर 8 सैकण्ड तक 5 m/sec. की चाल से उत्तर दिशा में गति करता है। इसका औसत वेग होगा :-
 - (1) 5 m/sec. due E 37 N
 - (2) 5 m/sec. due N 37 E
 - (3) 7 m/sec. due S 37 W
 - (4) 10 m/sec. due N 37 E
- एक कार विरामावस्था से शुरू होकर कुछ समय तक एक 18. समान त्वरण α से फिर एक समान मंदन β से गति करके रूक जाता है। यदि कुल यात्रा का समय t है तो कार द्वारा प्राप्त अधिकतम चाल क्या होगी :-

$$(1) \frac{\alpha\beta}{(\alpha+\beta)} t^{2}$$

$$(1) \frac{\alpha\beta}{(\alpha+\beta)} t^{2}$$

$$(2) \frac{1}{2} \frac{\alpha\beta}{(\alpha+\beta)} t^{2}$$

$$(3) \frac{\alpha\beta}{(\alpha-\beta)} t^{2}$$

$$(2) \frac{1}{2} \frac{\alpha\beta}{(\alpha+\beta)} t^{2}$$

$$(3) \frac{\alpha\beta}{(\alpha-\beta)} t^{2}$$

SPACE FOR ROUGH WORK

Relation between velocity and displacement is 19. $v = x^2$. Find acceleration at x = 3m :-

(1) 6 m/s² (2) 27 m/s² (3) 54 m/s² (4) Zero

20. A ball is thrown vertically upwards from the top of a tower with a velocity u. This ball reaches the ground level with a velocity 4u. The height of the tower is :-

(1)
$$\frac{3u^2}{g}$$
 (2) $\frac{4u^2}{g}$ (3) $\frac{6u^2}{g}$ (4) $\frac{15u^2}{2g}$

21. A body has speed V, 2V and 3V in first 1/3 of distance S, seconds 1/3 of S and third 1/3 of S respectively. Its average speed will be :-

(1) V (2) 2V (3)
$$\frac{18}{11}$$
 V (4) $\frac{11}{18}$ V

ro Ā $\vec{\mathbf{D}}$ and $\vec{\mathbf{C}}$ are shown such that 22

किसी वस्तु की वेग व विस्थापन में सम्बन्ध, v = x². है तो 19. x = 3m पर कण का त्वरण होगा :-

(1) 6 m/s² (2) 27 m/s² (3) 54 m/s² (4) Zero

एक कण का किसी मीनार से ऊपर की ओर u चाल से फेंका 20. जाता है। वस्तु की चाल धरातल पर 4u हो जाती है तो मीनार की ऊँचाई होगी :-

(1)
$$\frac{3u^2}{g}$$
 (2) $\frac{4u^2}{g}$ (3) $\frac{6u^2}{g}$ (4) $\frac{15u^2}{2g}$

एक कण की चाल प्रथम 1/3 दूरी, द्वितीय 1/3 दुरी व तृतीय 21. 1/3 दुरी में क्रमश: V, 2V व 3V हो तो इसकी औसत चाल ज्ञात करो :-

(1) V (2) 2V (3)
$$\frac{18}{11}$$
 V (4) $\frac{11}{18}$ V

22. Three vectors
$$\vec{A}$$
, \vec{B} and \vec{C} are shown such that

$$PR = 2QR \text{ then } \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} \vec{A} + 2\vec{C} = ?$$

$$\vec{P} = 2QR \vec{\Pi} + 2\vec{L} + 2\vec{L} + 2\vec{L} + 2\vec{L} + 2$$

22

SPACE FOR ROUGH WORK

MAJOR TEST 07-03-2013

JEE-MAIN 2013

- Which of the following physical quantities doe 24.
- 24. not have the same dimensions :-
 - (1) Pressure, Yongs modulus, Stress
 - (2) Electromotive force, Voltage, Potential
 - (3) Heat, Work, Energy
 - (4) Electric dipole, Electric field, Flux
- 25. A small disc of radius R/3 is removed from a circular disc of radius R and mass 9M. Then the moment of inertia of the remaining disc about an axis passing through point O and perpendicular to the plane of the disc will be :-

(1) 4 MR² (2)
$$\frac{40}{9}$$
 MR²
(3) 10 MR² (4) $\frac{37}{9}$ MR²

- 26. The given figure shows a wheel of radius 1m which rotates about the axis shown in the figure. A rope is wound on this wheel and a box of mass 4kg is attached to its free end, if the angular acceleration of the wheel is 8 rad/s^2 then the moment of inertia of the wheel will be :-
 - (1) 2 kg- m^2
 - (2) 1 kg- m^2 $(3) 4 \text{ kg-m}^2$

(4) 8 kg-m²

(3) I /2

27. A dancer having moment of inertia I is rotating with constant angular velocity of 20 rad/sec about a vertical axis on a frictionless surface with her hands folded. When she opens up her hands her angular velocity reduces to 10 rad/sec. Then her new moment of inertia will be :-

(1) 2 I (2) 3I

- निम्न में से कौनसी भौतिक राशियाँ समान विमाएँ नही रखती है :-
 - (1) दाब, यंग गुणांक, प्रतिबल
 - (2) वैद्यत वाहक बल, वोल्टेज, विभव
 - (3) ऊष्मा, कार्य, ऊर्जा
 - (4) वैद्युत द्विध्रुव, वैद्युत क्षेत्र, फ्लक्स
- R त्रिज्या तथा 9 M द्रव्यमान की एक वृत्तीय चकती से 25. R/3 त्रिज्या की एक छोटी चकती काटी जाती है चकती के तल के लम्बवत् तथा O से गुजरने वाली अक्ष के सापेक्ष शेष चकती का जडत्व आघूर्ण होगा :-

चित्रानुसार 1m त्रिज्या का एक पहिया अपने अक्ष के परित: 26. मुक्त रूप से घुर्णन कर सकता है। एक डोरी को इसकी रिम पर लपेटा गया है तथा इसके मुक्त सिरे पर 4kg द्रव्यमान लटकाया गया है। बल आघूर्ण के कारण इसमें 8 rad/s² का कोणीय त्वरण उत्पन्न होता है। तब पहिये का जडत्व आघुर्ण हे ²) :-

(4) 8 kg- m^2

चिकने फर्श पर नृत्य कर रही एक नर्तकी अपने हाथों को 27. सिकोड़े हुए 20 rad/sec के कोणीय वेग से उर्ध्वाधर अक्ष के सापेक्ष घूर्णन कर रही है। जब वह अपने हाथों को फैला देती है तो घूर्णन चाल घटकर 10 rad/sec हो जाती है। यदि नर्तको का प्रारम्भिक जडत्व आघुर्ण I हो तो नया जडत्व आघुर्ण होगा •-

SPACE FOR R	OUGH WORK			
(4) I /3	(1) 2 I	(2) 3I	(3) I /2	(4) I /3

- $(4) 2MR^2\omega$
- **30.** A rod of length 2L, whose one end is placed on a horizontal surface is inclined at an angle α with the horizontal if the rod rotates about the contact point without slipping, then its angular velocity, when it becomes horizontal will be :-

(1)
$$\omega = \sqrt{\frac{3g\sin\alpha}{L}}$$
 (2) $\omega = \sqrt{\frac{2L}{3g\sin\alpha}}$
(3) $\omega = \sqrt{\frac{6g\sin\alpha}{L}}$ (4) $\omega = \sqrt{\frac{L}{g\sin\alpha}}$

30.

(4) $2MR^2\omega$

होगा :-

(1) $\omega = \sqrt{\frac{3g\sin\alpha}{L}}$

(3) $\omega = \sqrt{\frac{6g\sin\alpha}{L}}$ (4) $\omega = \sqrt{\frac{6g\sin\alpha}{L}}$

एक 2L लम्बाई को एकसमान छड़ का एक सिरा क्षैतिज तल पर है। यह क्षैतिज तल से α कोण पर झकी है।

अब यह संपर्क बिन्दु के सापेक्ष घूमकर बिना फिसले गिर

रही है। क्षैतिज तल में आने पर इसका कोणीय वेग

(2) $\omega = \sqrt{\frac{2L}{3g\sin\alpha}}$

E / H

Patt in Success

JEE-MAIN 2013

07-03-2013

PART B - CHEMISTRY

31.	For a reaction $A_{(s)} + 2$	$2B^{+} \rightarrow A^{2+} + 2B_{(s)}$	31.	अभिक्रिया ${ m A}_{_{(s)}}$ + $2{ m B}^{_+}$ $ ightarrow$	$A^{2+} + 2B_{(s)}$ के लिये साम्य
	$K_{\rm C}$ has been found to b	e 10 ¹² . The E_{cell}° is :-		स्थिरांक (K _C), 10 ¹² के बराव	बर पाया गया, तो E _{cell} होगा?
32.	 (1) 0.354 V (3) 0.0098 V With the help of follo metals A B D and E in 	 (2) 0.708 V (4) 1.36 V wing reactions, arrange decreasing order of their 	32.	 (1) 0.354 वोल्ट (3) 0.0098 वोल्ट निम्नलिखित अभिक्रियाओं कं 	(2) 0.708 वोल्ट (4) 1.36 वोल्ट ो सहायता से धातु A,B,D एवं
	reactivity :-	decreasing order of them		E को उनका क्रियाशालता व कोजिये :-	० वटत हुव क्रम म व्यवास्यत
	(i) $B + ANO_3 \longrightarrow BN$	$IO_3 + A$		(i) $B + ANO_3 \longrightarrow BN$	$O_3 + A$
	(ii) A + HCl \longrightarrow ACl	+ $\frac{1}{2}$ H ₂		(ii) A + HCl \longrightarrow ACl	+ $\frac{1}{2}$ H ₂
	(iii) D + ECl \longrightarrow DCl (iv) D + HNO ₃ \longrightarrow N	l + E o reaction		(iii) D + ECl \longrightarrow DCl (iv) D + HNO ₃ $\longrightarrow \overrightarrow{a}$	+ E ोई अभिक्रिया नहीं
	(1) B > D > E > A	(2) $B > A > D > E$		(1) B > D > E > A	(2) B > A > D > E
33.	(3) $E > D > B > A$ Find E for the follow	(4) None of these	33	(3) E > D > B > A ਰਿਸ਼ਰ ਸ਼ੇਕ ਨਾ E ਤਾਰ ਨੀ	(4) उपराक्त म काइ नहा जिरो
	$Mg_{(s)} Mg^{+2} (0.10 \text{ M}) \ A$	$Ag^{+} (0.001 \text{ M}) Ag_{(s)}$	55.	$Mg_{(s)}Mg^{+2} (0.10 M) \ A$	$Ag^+ (0.001 \text{ M}) Ag_{(s)}$
	Given : $E_{cell}^{\circ} = 3.1$ 2.303 RT	7 V		दिया है : E _{cell} = 3.1 2.303 RT	7 V
	(1) 2 17 V F	= 0.06		F	= 0.06
	(1) 3.17 V (3) 3 32 V	(2) 3.02 V (4) None of these		(1) 3.17 V (3) 3.32 V	(2) 3.02 V (4) दनमें से कोई नहीं
34.	The specific conductant	(\mathbf{K}) of an electrolyte	34.	(3) 3.32 v 0.1 सान्द्रता के एक विद्यत अ	्म) इनम स काइ नहां पंघटय के विलयन के विशिष्ट
	of 0.1 N concentration	is related to equivalent	-	चालकत्व (k) एवं तल्यांकी	चालकता (∧) के निम्न में
	conductance (\wedge_e) by	the following formula :-		से कौनसा सम्बन्ध सही है :-	
	(1) $\wedge_{e} = \kappa$	(2) $\wedge_{\rm e} = 10\kappa$		(1) $\wedge_{e} = \kappa$	(2) $\wedge_{\rm e} = 10\kappa$
	(3) $\wedge_{\rm e} = 100 \kappa$	(4) $\wedge_{e} = 10000 \mathrm{K}$		(3) $\wedge_{\rm e} = 100 \kappa$	(4) $\wedge_{e} = 10000 \kappa$

SPACE FOR ROUGH WORK

						MAJOR TEST
Parts or Suc		LEADER & ENTH	IUSI	AST COURSE		07–03–2013
35.	An electrolysis cell and has platinum e until 1.6 gm of O_2 h amount of silver d (1) 108 gm (3) 0.8 gm	contains a solution of Ag_2SO_4 lectrodes. A current is passed as been liberated at anode. The eposited at cathode will be:- (2) 1.6 gm (4) 21.60 gm	35.	एक विद्युत अपघटनी से का विलयन उपस्थित किया जाता है जब तक जाये। कैथोड पर प्राप (1) 108 gm (3) 0.8 gm	Iल जिसमें Pt इल है। इसमें विद्युत 5 ऐनोड पर 1.6 त सिल्वर का व (2) 1 (4) 2	नेक्ट्रॉड है, में Ag ₂ SO ₄ धारा तब तक प्रवाहित ग्राम O ₂ गैस प्राप्त हो त्या द्रव्यमान होगा :- .6 gm 1.60 gm
36.	The compound w oxidising as well a (1) SO_2 (3) Al_2O_3	hich could not act both as as reducing agent is :- (2) MnO ₂ (4) CrO	36.	निम्न में से कौन सा यौगि की भाँति व्यवहार नही (1) SO_2 (3) Al_2O_3	गक ऑक्सीकारल ों कर सकता है (2) M (4) C	क एवं अपचायक दोनों :- InO ₂ trO
37.	The co-ordination for $K_3[Cr(C_2O_4)]$ (1) 3 and + 3	number and oxidation state of [] are respectively :- (2) 2 and 0 (4) 4 - 4 - 2	37.	$K_{3}[Cr(C_{2}O_{4})_{3}]$ में C संख्या क्रमश: हैं :- (1) 3 एवं + 3	r को समन्वय सं (2) 2	ांख्या एवं ऑक्सीकरण एवं 0
38.	(3) 6 and + 3 In $[Cr(O_2)(NH_3)_4H$ Cr is + 3, then oxy (1) Dioxo (3) Superoxo	(4) 4 and + 2 ₂ O]Cl ₂ ; oxidation number of ygen will be in the form :- (2) Peroxo (4) Oxo	38.	(3) 6 एव + 3 यौगिक [$Cr(O_2)(NH)$ संख्या + 3 हैं; तो इसमें होगा :- (1) डाइऑक्सो (3) सुपरऑक्सो	(4) 4 3 ₃) ₄ H ₂ O]Cl ₂ ाँ ऑक्सीजन कौन (2) प (4) अ	एव + 2 में Cr की ऑक्सीकरण सी अवस्था में उपस्थित रऑक्सो ॉक्सो
39.	Three solutions of 6 N and 2 N are m 4 N normality. Which ratio is correct for a $(1) 1 : 2 : 6$	HCl having normality 12 N, nixed to obtain a solution of th among the following volume bove three components ? (2) $2: 1:9$	39.	HCl के तीन विलयन की नॉर्मलता 12 N, 6 N तर्श को मिलाने पर 4 N नॉर्मलता का विलयन प्राप्त होता है में से कौनसा तीन अवयव के आयतन के अनुपात के है ?		2 N, 6 N तथा 2 N ग्न प्राप्त होता है। निम्न के अनुपात को बताता • 1 • 0
	(3) 1 : 2 : 4	(4) 1 : 1 : 5 (Take it Easy an	d Ma	(1) 1 : 2 : 6 (3) 1 : 2 : 4 ke it Easy	(4) 1	: 1 : 5

E/H

Path is Sui	CAREER INSTITUTE	JEE-MA	IN 2	2013	07-03-2013
40.	What is molari dissolving 5.5g of the solution	ity of HCl in a solution prepared by g HCl in 200 g ethanol. If the density n is 0.79 g/ml ?	40.	200 g एथेनॉल में 5.5g HCl घोल की मोलरता कितनी होगी। यदि 0.79 g/ml है ?	ने पर विलयन में HCl विलयन का घनत्व
	(1) 0.58 M(3) 0.93 M	(2) 0.21 M (4) 1.7 M		(1) 0.58 M (2) ((3) 0.93 M (4)	0.21 M 1.7 M
41.	Y g of a nor molecular mas Molal elevati Elevation in it	nvolatile organic substance of ss m is dissolved in 250 g benzene. ion constant of benzene is K_{b} . ts boiling point is given by ?	41.	एक अवाष्पशील कार्बनिक पदार्थ वं को 250 g बेन्जीन में घोला जाता है। उन्नयन स्थिरांक K _b है तो इसका क्व किया जाता है ?	र्ने Y g (अणु भार M) यदि बेन्जीन का मोलल थनांक किससे प्रदर्शित
	(1) $\frac{\mathrm{m}}{\mathrm{K}_{\mathrm{b}}\mathrm{Y}}$	(2) $\frac{4K_{b}Y}{m}$		(1) $\frac{\mathrm{m}}{\mathrm{K}_{\mathrm{b}}\mathrm{Y}}$ (2)	$\frac{4K_{b}Y}{m}$
	(3) $\frac{K_b y}{m}$	(4) $\frac{K_{b}y}{4m}$		$(3) \ \frac{K_{b}y}{m} \tag{4}$	$\frac{K_{b}y}{4m}$
42.	pH of a 0.1 M 2. Its osmotic p is ?	monobasic acid is measured to be pressure at a given temperature TK	42.	0.1M एक क्षारकीय अम्ल की pH, 2 परासरण दाब होगा ?	2 है तो T ताप पर इसका
	(1) 0.1 RT	(2) 0.11 RT		(1) 0.1 RT (2) 0	0.11 RT
	(3) 1.1 RT	(4) 0.01 RT		(3) 1.1 RT (4) (0.01 RT
43.	The freezing point depression of 0.001 m $K_x[Fe(CN)_6]$ is 7.10×10^{-3} K. Determine the value of x ? (Given $K_f = 1.86$ K Kg mol ⁻¹ for water)		43.	0.001 m K _x [Fe(CN) ₆] का हिमांक बिन्दु में अवनमन 7.10 × 10 ⁻³ K है तो x का मान होगा। यदि पानी के लिए K = 1.86 K Kg mol ⁻¹ है	
	(1) 3(3) 2	(2) 4(4) None		$\begin{array}{c} (1) \ 3 \\ (3) \ 2 \\ \end{array} \begin{array}{c} (2) \ 4 \\ (4) \ \overline{4} \\ \end{array}$	4 कोई नहीं

11 / 23

MAJOR TEST

MAJOR TEST 07-03-2013

Listed in the table are forward and reverse rate constant for the reaction

2NO(g)		$N_{2(\sigma)}$	+	$O_{2(\sigma)}$
-	`	2A E 1		6A 2 1

	2(6)	2(5)
Temp ^r (K)	k _f	K _b
1400	0.29	1.1×10^{-6}
1500	1.3	1.4×10^{-5}

Select the correct statement ?

- (1) Reaction is exothermic and value of equilibrium constant (K_{ea}) at 1400 K is 3.79 $\times 10^{-6}$
- (2) Reaction is endothermic and value of K_{ea} at 1400 K is 2.63×10^5
- (3) Reaction is exothermic and value of K_{eq} at 1400 K is 2.63×10^5
- (4) Reaction is endothermic and value of K_{eq} at 1500 K is 9.28×10^4 .
- For the complex reaction A $__{K}$ product **45**.
 - $E_{a_2} = 80 \text{ kJ/mole}$ $E_{a_1} = 180 \text{ kJ/mole}$ $E_{a_2} = 50 \text{ kJ/mole}$

Over all rate constant K is related to individual

rate constant by the equation $K = \left(\frac{K_1 K_2}{K_3}\right)^{2/3}$ Activation energy (KJ/mol) for the overall reaction is ?

- (1) 150(2) 140
- (3) 100 (4) None of these

निम्न सारणी में निम्न अभिक्रिया के लिए अग्र तथा पश्च वेग 44. स्थिरांक दिया गया है $2NO(g) \xrightarrow{} N_{2(g)} + O_{2(g)}$

Temp^r(K)

$$k_f$$
 K_b

 1400
 0.29
 1.1×10^{-6}

 1500
 1.3
 1.4×10^{-5}

सही कथन का चुनाव करें ?

AST COURSE

- (1) 1400 K पर अभिक्रिया उष्माक्षेपी तथा साम्य स्थिरांक का मान 3.79 × 10⁻⁶ है।
- (2) 1400 K पर अभिक्रिया उष्माशोषी तथा K_{eq} का मान 2.63 × 10⁵ है।
- (3) 1400 K पर अभिक्रिया उष्माक्षेपी तथा K an मान 2.63 × 10⁵ है।
- (4) 1500 K पर अभिक्रिया उष्माशोषी तथा K_{eq} का मान 9.28 × 10⁴ है।

45. एक जटिल अभिक्रिया A __K→ उत्पाद

$$E_{a_1} = 180 \text{ kJ/mole}$$
 $E_{a_2} = 80 \text{ kJ/mole}$
 $E_{a_3} = 50 \text{ kJ/mole}$

अभिक्रिया का कुल वेग स्थिरांक $\mathbf{K} = \left(\frac{\mathbf{K}_1 \mathbf{K}_2}{\mathbf{K}_2}\right)^{2/3}$ के द्वारा दिया जाता है तो अभिक्रिया की कुल संक्रियण ऊर्जा (KJ/mol) में होगी ? (1) 150

(2) 140

(4) इनमें से कोई नहीं

किसी प्रश्न पर देर तक रूको नहीं **SPACE FOR ROUGH WORK**

(3) 100

				MAJOR TEST
Path is Succe		AIN 2	2013	07-03-2013
46.	Rate constant K = 2.303 min ⁻¹ for a particular reaction. The initial concentration of the reaction is 1 mol/litre then rate of reaction after 1 minute is ? (1) 2.303 M min ⁻¹ (2) 0.2303 M min ⁻¹	46.	एक निश्चित अभिक्रिया का वेग स्थिरांक यदि अभिक्रिया की प्रारम्भिक सान्द्र अभिक्रिया का वेग 1 मिनट बाद कि (1) 2.303 M min ⁻¹ (2) 0	K = 2.303 min ⁻¹ है। ता 1 mol/litre है तो तना होगा ? 0.2303 M min ⁻¹
47.	(3) 0.1 M min ⁻¹ (4) None of these Two first order reaction have half lives in th ratio 8 : 1. Calculate the ratio of time interva $t_1 : t_2$. The time t_1 and t_2 are the time period for (1/4) th and (3/4) th completion ?	47.	(3) 0.1 M min ⁻¹ (4) Ξ दो प्रथम कोटि अभिक्रिया की अर्द्ध 8 : 1 है। समय अन्तराल $t_1 : t_2$ का Ξ t_1 तथा t_2 समय अन्तराल क्रमश: (1/4) होने में लगा समय है ?	नमें से कोई नहीं आयुकाल का अनुपात भनुपात ज्ञात करो। यदि भवीं तथा (3/4)वीं पूर्ण
48.	(1) 1 : 0.0301 (2) 0.125 : 0.602 (3) 1 : 0.602 (4) None of these What is the concentration of Pb ⁺² when PbSC (Ksp = 1.8×10^{-8}) begins to precipitate from solution that is 0.0045 M in SO ₄ ⁻² ? (1) 4 × 10 ⁻⁸ M (2) 1 × 10 ⁻⁶ M	4 8.	(1) 1: 0.0301 (2) 0 (3) 1: 0.602 (4) इ एक विलयन जिसमें 0.0045 PbSO ₄ (Ksp = 1.8×10^{-8}) का के लिए Pb ⁺² की सान्द्रता कितनी हो (1) 4 :: 10^{-8} M	0.125 : 0.602 (नमें से कोई नहीं 5 M SO_4^{-2} से अवक्षेपण प्रारम्भ करने गी ?
49.	 (3) 2 × 10⁻⁸ M (4) 4 × 10⁻⁶ M Which of the following is a buffer solution ? (1) 500 ml of 0.1 N CH₃COOH + 500 ml of 0.1 N NaOH. (2) 500 ml of 0.1 N CH₃COOH + 500 ml of 0.1 N HCl. 	49.	 (1) 4 × 10⁻ M (2) 1 (3) 2 × 10⁻⁸ M (4) 4 निम्न में से कौनसा बफर विलयन है (1) 0.1 N CH₃COOH का 500 m (2) 0.1 N CH₃COOH का 500 m (3) 0.1 N CH₃COOH का 500 m 	x 10 ⁻⁶ M ? ml + 0.1 N NaOH nl + 0.1 N HCl का ml + 0.2 N NaOH
	(3) 500 ml of 0.1 N $CH_3COOH + 500$ ml o 0.2 N NaOH. (4) 500 ml of 0.2 N $CH_3COOH + 500$ ml o 0.1 N NaOH.	Ē	का 500 ml. (4) 0.2 N CH ₃ COOH का 500 ml. का 500 ml.	ml + 0.1 N NaOH

				MAJOR TEST
Path to Suc		HUSI	AST COURSE	07-03-2013
50.	 For the equibrium CH₃COOH_(eq.) + H₂O(ℓ) → CH₃COO⁻(aq.) + H₃O⁺ (aq) ? K_a = 1.70 × 10⁻⁴ at 298 K. What is the effect on the pH of adding 50 ml of 0.01 M CH₃COONa to the solution. (1) pH value decreases. (2) pH value increases. (3) pH will unchanged. (4) Can not find out. HCN is weak acid (Ka = 4.0 × 10⁻⁴). Which statements is not true for an aqueous solution of hydrocyanic acid ? (1) Its precent dissociation increases as solutions are made more dillute. (2) In a 1 M solution of HCN, the HCN is approximately 2 % dissociated. (3) The ionisation constant K_a varies dramatically over a change of concentration of HCN. (4) None of these 	50.	साम्य के लिए $CH_3COOH_{(eq.)}$ $CH_3COO^-(aq.) + H_3O^+(aq)$ पर विलयन में 0.01 M CH_3COONa pH पर क्या प्रभाव पड़ेगा। (1) pH मान घटेगा। (2) pH मान बढ़ेगा (3) pH अपरिवर्तित होगा (4) ज्ञात नहीं कर सकते। HCN दुर्बल अम्ल है (Ka = 4.0 × अम्ल के विलयन के लिए कौनसा क (1) विलयन को अधिक तनु करने प (2) 1 M HCN के विलयन की वि (लगभग) है। (3) HCN की सान्द्रता को परिवर्तित क K_a परिवर्तित होता है। (4) इनमें से कोई नहीं	+ H ₂ O(ℓ) → Ka=1.70×10 ⁴ है। का 50 ml मिलाने पर 50 ml मिलाने पर 10 ⁻⁴) हाइड्रोसायनिक फथन सही नहीं है ? 1र आयनन बढ़ता है। योजन की मात्रा 2 % रने पर आयतन स्थिरांक
52.	 The dissociation of ammonium carbomate may be represented by the equation NH₄COONH_{2(s)} → 2NH_{3(g)} + CO_{2(g)} The equilibrium will shift from left to right if there is ? (1) decreases in pressure. (2) decreases in temperature. (3) increase in concentration of ammonia. (4) increase in concentration of carbon dioxide. 	52.	आमोनिया कार्बोमेट का वियोजन निम्न किया जाता है NH ₄ COONH _{2(s)} 2NI किसके परिवर्तित से साम्य बांयी से दांद है ? (1) दाब में कमी (2) ताप में कमी (3) अमोनिया की सान्द्रता में वृद्धि (4) कार्बन डाई ऑक्साइड की सान्द्र	न समीकरण से प्रदर्शित H _{3(g)} + CO _{2(g)} यो ओर विस्थापित होता ता में वृद्धि

E/H

JEE-MAIN 2013

53. Calculate equilibrium concentration ratio of
$$CO_{(g)}$$

and $CO_{2(g)}$. If only CO and H_2O are present initially
at concentration of 0.1 M each?

 $CO_{(g)} + H_2O_{(g)} \xrightarrow{} CO_{2(g)} + H_{2(g)}K_C = 4.24$ (1) $\sqrt{K_C}$ (2) $\frac{1}{\sqrt{K_C}}$

(3)
$$\frac{1}{\sqrt{K_{P}}}$$
 (4) 2 and 3 both

54. From seprate solution of four sodium salt NaW, NaX, NaY and NaZ are having the pH 7, 9, 10 and 11 respectively. When each solution was 0.1 M the strongest acid is ?

(1) HW (2) HX (3) HY (4) HZ

55. Consider the reactions ?

 $2 \operatorname{CO}_{(g)} + 2 \operatorname{H}_2 \operatorname{O}_{(g)} \rightleftharpoons 2 \operatorname{CO}_{2(g)} + 2\operatorname{H}_{2(g)} \operatorname{K}_1$ $\operatorname{CH}_{4(g)} + \operatorname{H}_2 \operatorname{O}_{(g)} \rightleftharpoons \operatorname{CO}_{(g)} + 3\operatorname{H}_{2(g)} \operatorname{K}_2$ $\operatorname{CH}_{4(g)} + 2 \operatorname{H}_2 \operatorname{O}_{(g)} \rightleftharpoons \operatorname{CO}_{2(g)} + 4 \operatorname{H}_{2(g)} \operatorname{K}_3$ Which of the following reaction is correct ?

- (1) $K_3 = K_1 K_2$ (2) $K_3 = \sqrt{K_1} K_2$ (3) $K_3 = K_1/K_2$ (4) $K_3 = K_1^2/K_2^2$
- **56.** Calorific value of H_2 gas is x kJ/gm what is heat of formation of H_2O ?
 - (1) x kJ (2) 2x kJ (2) x kJ (2) x kJ
 - (3) x/2 kJ (4) 18 x kJ
- CO((a) तथा CO(2(a) की साम्य सान्द्रता का अनुपात कितना होगा 53. यदि CO तथा H₂O की प्रारम्भिक सान्द्रता 0.1 M है ? $CO_{(g)} + H_2O_{(g)} \xrightarrow{} CO_{2(g)} + H_{2(g)}K_C = 4.24$ (2) $\frac{1}{\sqrt{K_c}}$ (1) $\sqrt{K_{c}}$ (3) $\frac{1}{\sqrt{K_{p}}}$ (4) 2 तथा 3 दोनों 54. सोडियम लवण के चार पृथक विलयन NaW, NaX, NaY तथा NaZ की pH 7, 9, 10 तथा 11 है। यदि प्रत्येक विलयन के 0.1 M हो तो प्रबल अम्ल होगा ? (1) HW (2) HX (3) HY (4) HZ निम्न अभिक्रिया के लिए ? 55. $2 \operatorname{CO}_{(g)} + 2 \operatorname{H}_2 \operatorname{O}_{(g)} \xrightarrow{} 2 \operatorname{CO}_{2(g)} + 2 \operatorname{H}_{2(g)} \operatorname{K}_1$ $CH_{4(g)} + H_2O_{(g)} \xrightarrow{} CO_{(g)} + 3H_{2(g)}$ Κ, $CH_{4(g)} + 2 H_2O_{(g)} \longrightarrow CO_{2(g)} + 4 H_{2(g)}$ K., निम्न में से कौनसा सम्बन्ध सही है ? (1) $K_3 = K_1 K_2$ (2) $K_3 = \sqrt{K_1} K_2$ (3) $K_3 = K_1/K_2$ (4) $K_3 = K_1^2/K_2^2$ H, गैस का कैलोरीमान x kJ/gm है तो H,O के बनने 56. (संभवन) की उष्मा कितनी होगी ? (1) x kJ (2) 2x kJ

(4) 18 x kJ

SPACE FOR ROUGH WORK

(3) x/2 kJ

15/23

							MAJOR TEST	
Path is Succ		LEADER &	ENTHU	JSIA	AST COURSE		07–03–2013]
57.	ΔH° and ΔS° value of 30.96 kJ/mol and 90 J/mol that ΔH and ΔS do not val boiling point of bromine is ? (1) 344 K (3) 2.90 K	f $Br_2(\ell) \rightarrow Br_2(g)$ ol K respectively as ry with temperature from the following (2) 344°C (4) 0.334 K	g) are 5 ssume e. The g data	57.	Br ₂ (ℓ) → Br ₂ (g) के ΔH° mol तथा 90 J/mole K है उ ताप के साथ परिवर्तित नहीं होत पर ब्रोमीन का क्वथनांक होग (1) 344 K (3) 2.90 K	तथा ΔS यह मानते ता है तो नि ∏ ? (2) 3 (4) 0	S° क्रमश: 30.96 kJ ो हुए कि ΔH तथा ΔS तम्न में से किस आँकड़ 44°C 0.334 K	-7 5 1
58.	Entropy change for a process is ? (1) Positive (3) Negative	n adiabatic reven (2) Zero (4) Infinity	rsible 5	58.	रूद्वोष्म उत्क्रमणीय प्रक्रम के (1) धनात्मक (3) ऋणात्मक	लिए ए (2) श् (4) 3	न्ट्रोपी परिवर्तन होगा ' गून्य भनन्त	?
59.	 Which of the following about internal energy ? (1) The absolute value of be determined. (2) Internal energy is ex (3) The measurment of reaction by bomcald internal energy char (4) The internal energy of is same at any temp 	g statement is inco f internal energy c atensive property. f heat change dur primeter is equal to age. f one mole of a subs perature and pressu	ering a to the stance ure.	59.	निम्न में से कौनसा कथन अ है ? (1) आन्तरिक ऊर्जा का पर है। (2) आन्तरिक ऊर्जा मात्रात्म (3) बम कैलीरीमोटर में उष्म परिवर्तन के बराबर होत (4) एक पदार्थ के एक मोल तथा दाब पर समान होत	ान्तरिक एम मान क गुणध । में परिव । है। की आग ही है।	ऊर्जा के लिए असत्य ज्ञात नहीं कर सकते र्म है। वर्तन आन्तरिक उर्जा गं त्तरिक ऊर्जा सभी ताप	य ते प
60.	At 27°C, 1 mol gas reversibly and adiabatemperature of the syst $C_v = 2.5$ J/ mol k then (1) - 2000 J/mol (3) - 500 J/mol	is allowed to ex- tically then the em becomes 100 calculate ΔE for (2) - 2500 J/mc (4) zero	pand 6 final K. If this ?	50.	27°C पर 1 मोल गैस को उ प्रसारित होती है। तथा तंत्र क $C_v = 2.5 \text{ J/ mol k है तो}$ (1) – 2000 J/mol (3) – 500 J/mol	त्क्रमणीय । अन्तिम [•] ΔE क (2) - (4) श्	य तथा रूद्धोष्म रूप रं । ताप 100 K है। यति । मान होगा ? - 2500 J/mol गून्य	ते दे
		(स्वस्थ रहो, मस्	त रहो तथा '	पढाई	में व्यस्त रहो ।)			

E / H

JEE-MAIN 2013

PART C - MATHEMATICS

61. A and B are two matrices with 32 and 40 elements respectively, then the probability that (A × B) is possible is :-

(1)
$$\frac{1}{12}$$
 (2) $\frac{1}{11}$ (3) $\frac{1}{14}$ (4) $\frac{1}{9}$

62. 5 different games are to be distributed among 4 children randomly. The probability that each child gets atleast one games is :-

(1)
$$\frac{1}{4}$$
 (2) $\frac{15}{64}$ (3) $\frac{21}{64}$ (4) None

- **63.** How many 7 digit numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd place :-
 - (1) 18 (2) 12
 - (3) 16 (4) None
- **64.** A five digit number with distinct digits is formed by using the digits 0, 1, 2, 3, 4, 5. The probability that the number is divisible by 3 is:-
 - (1) $\frac{{}^{6}P_{5}}{6^{5}}$ (2) $\frac{9}{25}$ (3) $\frac{{}^{6}C_{5}}{6^{5}}$ (4) None
- 65. The number of integral solution of the equation x + y + z = 0, with $x \ge -5$, $y \ge -5$, $z \ge -5$ is:-(1) 136 (2) 126 (3) 153 (4) None

61. A तथा B दो मेट्रिक्स है जिनमें क्रमश: 32 तथा 40 अवयव है तब प्रायिकता ज्ञात करो कि एक (A × B) सम्भव हो :-

(1)
$$\frac{1}{12}$$
 (2) $\frac{1}{11}$ (3) $\frac{1}{14}$ (4) $\frac{1}{9}$

62. 5 विभिन्न खेलों को 4 बच्चों में वितरित करना है, प्रायिकता ज्ञात करो जबकि प्रत्येक बच्चे को कम से कम एक खेल अवश्य मिले :-

(1)
$$\frac{1}{4}$$
 (2) $\frac{15}{64}$ (3) $\frac{21}{64}$ (4) कोई नहीं

63. अंकों 1, 2, 3, 4, 3, 2, 1 से 7 अंकों की कितनी संख्याऐं बनाई जा सकती हैं, यदि विषम अंक हमेशा विषम स्थान पर ही आये :-

- (3) 16
 (4) कोई नहीं
- 64. अंक 0, 1, 2, 3, 4, 5 की सहायता से 5 अंकों की संख्याऐं बनाई गई इन संख्याओं के 3 से विभाजित होने की प्रायिकता होगी :-

(1)
$$\frac{{}^{6}P_{5}}{6^{5}}$$
 (2) $\frac{9}{25}$
(3) $\frac{{}^{6}C_{5}}{6^{5}}$ (4) कोई नहीं

- **65.** समीकरण x + y + z = 0 के पूर्णाकीय हलों की संख्या होगी यदि $x \ge -5$, $y \ge -5$, $z \ge -5$ हो :-
 - (1) 136(2) 126(3) 153(4) कोई नहीं

SPACE FOR ROUGH WORK

🙂 हमेशा मुस्कराते रहें ।

			MAJOR TEST
Path to Succ		HUSI	AST COURSE 07-03-2013
66.	The number of even divisors of the number	66.	N = 12600 के समविभाजकों की संख्या होगी :-
	N = 12600 is :-		(1) 72 (2) 54
	(1) 72 (2) 54 (3) 18 (4) None		(3) 18(4) कोई नहीं
67.	If roots of $x^2 - (a - 3) x + a = 0$, are such that	67.	समीकरण $x^2 - (a - 3) x + a = 0$ का कम से कम ए
	at least one of them is greater than 2, then :-		मूल 2 से बड़ा हो तो :-
	(1) $a \in [7, 9]$ (2) $a \in [7, \infty)$		(1) $a \in [7, 9]$ (2) $a \in [7, \infty)$
	(3) $a \in [9, \infty)$ (4) $a \in [7, 9)$		$(3) a \in [9, \infty) \qquad (4) a \in [7, 9)$
68.	It both roots of the equation $ax^2 + x + c - a =$	68.	यदि समीकरण $\mathrm{ax^2} + \mathrm{x} + \mathrm{c} - \mathrm{a} = 0$ के दोनों मूल काल्पनि
	0 are imaginary and $c > -1$, then :-		हो तथा c > -1 हो तो :-
	(1) $4c + 2 > 3a$ (2) $4c + 2 < 3a$		(1) $4c + 2 > 3a$ (2) $4c + 2 < 3a$
	(3) $c < a$ (4) None		(3) c < a (4) कोई नहीं
69.	If A, B, C are three sets, then A – (B \cup C) is	69.	यदि A, B, C तीन समुच्चय हो तो A – (B \cup C) बराब
	equal to :-		होगा :-
	(1) $A \cap (B \cup C)$ (2) $A \cap (\overline{B} \cap \overline{C})$		$(1) A \cap (B \cup C) \qquad (2) A \cap (\overline{B} \cap \overline{C})$
	(3) $\overline{A} \cap (B \cup C)$ (4) None		(3) $\overline{\mathrm{A}} \cap (\mathrm{B} \cup \mathrm{C})$ (4) कोई नहीं
70.	x_1 and x_2 are the roots of equation	70.	यदि x_1, x_2 समीकरण $ax^2 + bx + c = 0$ (जहाँ a, b,
	$ax^2 + bx + c = 0$ (Where a, b, $c \in R$) and		$\in \mathbf{R})$ के मूल हो तथा $\mathbf{x}_1\mathbf{x}_2 < 0$ हो तो समीकरण
	$x_1x_2 < 0$, then roots of the equation		$x_1(x - x_2)^2 + x_2(x - x_1)^2 = 0$
	$x_1(x - x_2)^2 + x_2(x - x_1)^2 = 0$ are :-		के मूल होंगे :-
	(1) Real and of opposite sign		(1) वास्तविक तथा विपरीत चिन्ह के
	(2) Negative		(2) ऋणात्मक
	(3) Positive		(3) धनात्मक
	(4) Non-real		(4) काल्पनिक
71.	The value of b for which the equations	71.	यदि समीकरण $x^2 + bx + 1 = 0, x^2 + x + b = 0$ व
	$x^{2} + bx + 1 = 0$, $x^{2} + x + b = 0$ have one root		एक मल उभयनिष्ठ हो तो h का मान होगा :-
	in common is :-		
	(1) $-\sqrt{2}$ (2) $-i\sqrt{3}$ (3) $\sqrt{2}$ (4) $\sqrt{3}$		(1) $-\sqrt{2}$ (2) $-i\sqrt{3}$ (3) $\sqrt{2}$ (4) $\sqrt{3}$
72.	If $x^2 - 3x + 1 = 0$, then value of expression	72.	यदि $x^2 - 3x + 1 = 0$, हो तो व्यंजक
	$x^9 + x^7 + x^{-9} + x^{-7}$ is equal to :-		x ⁹ + x ⁷ + x ⁻⁹ + x ⁻⁷ का मान होगा :-
	(1) 4 (2) 2207 (3) 6621 (4) 4414		(1) 4 (2) 2207 (3) 6621 (4) 441

E/H

Path to Suc	CAREER INSTITUTE	JEE-M/	AIN 2	2013	07–03–2013		
73.	$f: R \rightarrow R, f(x) =$	$= \frac{3x^2 + mx + n}{x^2 + 1}$. If the range of	73.	$f: R \rightarrow R, f(x) = \frac{3x^2 + m}{x^2 + m}$	<u>x + n</u> , तथा f(x) का परिसर		
	this function is [-4, 3), Then find the value of		[-4, 3) हो तो m + n बराब	त्रर होगा :-		
	m + n is :-			(1) 4	(2) 3		
	(1) 4 (2) 3	3 (3) 7 (4) None		(3) 7	(4) कोई नहीं		
74.	One hundred	Identical coins each with	74.	100 एक समान सिक्कों को उ	छाला जाता है, यदि P सिक्के		
	probability P of	showing up heads are tossed		पर चित्त आने की प्रायिकता हो	(जहाँ 0 < P < 1) तथा ठीक		
	once. It $0 < P <$	< 1 and probability of heads		50 सिक्कों पर चित्त आने की प्र	ायिकता. ठीक 51 सिक्को पर		
	showing on 50	coins is equal that of heads					
	showing on 51 c	coins, then the value of P is :-		ाचत्त आने का प्रायिकता के सं	માન હા તા P બા માન હાંગા :-		
	(1) $\frac{1}{2}$ (2)	$\frac{49}{101}$ (3) $\frac{50}{101}$ (4) $\frac{51}{101}$		(1) $\frac{1}{2}$ (2) $\frac{49}{101}$	(3) $\frac{50}{101}$ (4) $\frac{51}{101}$		
75	- The number of fi	ive digit numbers that contains	75	पाँच अंकों से बनने वाली कल संग्र	गागं जिनमें अंक 7 का प्रयोग टीक		
13.	digit 7 exactly on	ice is if digits may be repeated)	13.	एक बार होता हो, होगी (यदि अंब	कों की पनरावत्ति सम्भव हो तो)		
	(1) (41) (9^3)	$(2) (37)(9^3)$		(1) (41) (9^3)	(2) $(37)(9^3)$		
	(1) (11) (2) (3) (7) (9^4)	(2) (37)(37) $(4) (41)(9^4)$		(3) (7) (9^4)	$(4) (41)(9^4)$		
76.	The number of	4 digit numbers of the form	76.	N = abcd के रूप में 4 अंकों	की बनने वाली कुल संख्याएं		
	N = abcd which	satisfy the following condition		(यदि अंकों) की पुनरावृत्ति सम	भव हो) जो निम्न तीन शर्तीं को		
	(i) 4000 < N <	6000		सन्तुष्ट करती हों, होगी :-			
	(ii) N is divisible	e by 5		(i) $4000 < N < 6000$			
	(iii) $3 \le b < c \le$	6		(ii) N, 5 से विभाजित हो			
	If digits may be	repeated		$(iii)3 \le b < c \le 6$			
	(1) 24	(2) 20		(1) 24	(2) 20		
	(3) 23	(4) None		(3) 23	(4) कोई नहीं		
77.	Rank of word St	UCCESS is :-	77.	शब्द SUCCESS की रेंक हो	गी :-		
	(1) 330	(2) 331		(1) 330	(2) 331		
	(3) 511	(4) None		(3) 511	(4) कोई नहीं		
		अपनी क्षमता को पूरा र	<u>।</u> त्रसूलने	का प्रयास करें।)			
	SPACE FOR BOUGH WORK						

19/23

MAJOR TEST

MAJOR TEST 07-03-2013 LEADER & ENTHUSIAST COURSE यदि किसी स.श्रे. के m एवं n पदों के योग का अनुपात If the ratio of the sum of m and n terms of an 78. 78. A.P. is $m^2 : n^2$, then the ratio of its m^{th} and n^{th} m^2 : n^2 हो तो इसके m वें एवं n वें पदों का अनुपात होगा :terms is :-(1) (m - 1) : (n - 1)(1) (m - 1) : (n - 1)(2) (2m + 1) : (2n + 1)(2) (2m + 1) : (2n + 1)(3) (2m - 1) : (2n - 1)(3) (2m - 1) : (2n - 1)(4) कोई नहीं (4) None यदि किन्ही दो संख्याओं के बीच दो समान्तर माध्य A_1 एवं **79.** Two AM's A_1 and A_2 , two GM's G_1 and G_2 and 79. two HM's H_1 and H_2 are inserted between any $A_2^{},$ दो गुणोत्तर माध्य $G_1^{}$ एवं $G_2^{}$ तथा दो हरात्मक माध्य H_1 एवं H_2 प्रविष्ट किये गये हो तो $H_1^{-1} + H_2^{-1}$ बराबर है:two numbers then $H_1^{-1} + H_2^{-1}$ equals :-(1) $A_1^{-1} + A_2^{-1}$ (2) $G_1^{-1} + G_2^{-1}$ (2) $G_1^{-1} + G_2^{-1}$ (1) $A_1^{-1} + A_2^{-1}$ (3) $\frac{G_1G_2}{A_1 + A_2}$ (4) $\frac{(A_1 + A_2)}{G_1G_2}$ (3) $\frac{G_1G_2}{A_1 + A_2}$ (4) $\frac{(A_1 + A_2)}{G_1G_2}$ यदि तीन धनात्मक वास्तविक संख्याएं a, b, c स. श्रे. में हो 80. If three positive real numbers a, b, c are in A.P. 80. जहाँ abc = 64 तो b का न्यूनतम मान होगा :-(1) 4 (2) 3 (3) 2 (4) 1/2 with abc = 64 then minimum value of b is :-(1) 4(2) 3 (3) 2(4) 1/2श्रेणी $\frac{1}{1.2.3.4} + \frac{1}{2.3.4.5} + \frac{1}{3.4.5.6} + \dots$ के n पदों का 81. The sum of n terms of the series 81. $\frac{1}{1.2.3.4} + \frac{1}{2.3.4.5} + \frac{1}{3.4.5.6} + \dots$ is :-योग है ·-(1) $\frac{n^3+6}{18(n+1)(n+2)(n+3)}$ (1) $\frac{n^3+6}{18(n+1)(n+2)(n+3)}$ (2) $\frac{n(n^2 + 6n + 11)}{18(n+1)(n+2)(n+3)}$ (2) $\frac{n(n^2 + 6n + 11)}{18(n+1)(n+2)(n+3)}$ (3) $\frac{n(n^2 + 8n + 15)}{18(n+4)(n+5)(n+6)}$ (3) $\frac{n(n^2 + 8n + 15)}{18(n+4)(n+5)(n+6)}$ (4) इनमें से कोई नहीं (4) None of these

SPACE FOR ROUGH WORK

E / H

Path in Succe		JEE-M/	AIN 2	2013	07-03-2013
82.	In the expanse of coefficient	ion of $(1 + x + y + z)^4$ the ratio t of x^2y , xy^2z , xyz are:-	82.	(1 + x + y + z) ⁴ के प्रसार में का अनुपात होगा:-	x ² y, xy ² z, xyz के गुणांकों
83. 84.	(1) 1 : 1 : 2 (3) 1 : 2 : 1 The number $(\sqrt[4]{9} + \sqrt[6]{8})^{500}$ (1) 501 (2) If $(1 - x + x^2)$ then $a_0 + a_2$	(2) 2 : 1 : 1 (4) Not defined of terms in the expansion of which are integers is:- (2) 251 (3) 42 (4) 41 ⁿ = $a_0 + a_1x + a_2x^2 + \dots + a_{2n}x^{2n}$, + $a_4 + \dots + a_{2n}$ is equal to:-	83. 84.	(1) 1: 1: 2 (4 (3) 1: 2: 1 (4 $(\sqrt[4]{9} + \sqrt[6]{8})^{500}$ के प्रसार मे होगी:- (1) 501 (4 (3) 42 (4 यदि $(1 - x + x^2)^n = a_0 + a_1x$ हो तो $a_0 + a_2 + a_4 + \dots$	2) 2 : 1 : 1 4) अपरिभाषित पूर्णाकीय पदों की संख्या 2) 251 4) 41 $x + a_2 x^2 + \dots + a_{2n} x^{2n},$ $+ a_{2n}$ बराबर होगा:-
85.	(1) $\frac{1}{2}(3^{n}+1)$ (3) $\frac{1}{2}(1-3^{n})$ If $a^{3} + b^{6} = 2$ term independent	(2) $\frac{1}{2}(3^n - 1)$ (4) $\frac{1}{2} + 3^n$ (5, then the maximum value of the indent of x in the expansion of	85.	$(1) \frac{1}{2} (3^{n} + 1) \qquad (1)$ $(3) \frac{1}{2} (1 - 3^{n}) \qquad (4)$ $(3) \frac{1}{2} (1 - 3^{n}) \qquad (4)$ (4) (4) (3) (3) (3) (4) (4) (4) (4) (4) (4) (5) (4) (5)	2) $\frac{1}{2}(3^{n}-1)$ 4) $\frac{1}{2}+3^{n}$ $+bx^{\frac{-1}{6}})^{9}$ के प्रसार में x से बेगा जहाँ (a > 0, b > 0):-
86.	$\left(\frac{1}{ax^3 + bx^{-1}}\right)^9$ (1) 42 (3) 84 If a, b, c are equations (a - (c - 1) z = x - ab + bc + ca (1) a + b + c	is, where $(a > 0, b > 0)$. (2) 68 (4) 148 non-zero real numbers and if the (2) $a = y + z$, $(b - 1)y = z + x$, (3) $a = y + z$, $(b - 1)y = z + x$, (4) $a = y + z$, $(b - 1)y = z + x$, (5) $a = y + z$, $(b - 1)y = z + x$, (6) $a = y + z$, $(b - 1)y = z + x$, (7) $a = y + z$, $(b - 1)y = z + x$, (8) $a = y + z$, $(b - 1)y = z + x$, (9) $a = y + z$, (9)	86.	(1) 42 (((3) 84 (4) 3^{2}	2) 68 4) 148 रंख्याएँ हो तथा यदि समीकरण z, (b – 1)y = z + x, नेरर्थक हल विद्यमान हो तो 2) abc
	(3) 1	(4) None of these		(3) 1 (4)	-) उन्हें 4) इनमें से कोई नहीं

MAJOR TEST

						MAJOR TEST		
Path to Succ		LEADER & ENTH	IUSI	AST COURSE		07-03-2013		
87.	If $0 \le [x] < 2$, - where [·] denotes t then the maximum $[x]+1$ [y] [z] $[x]$ $[y]+1$ [z] $[x]$ $[y]$ $[x]$ $[y]$	$1 \le [y] < 1 \text{ and } 1 \le [z] < 3$ he greatest integer function, n value of the determinant $2 \end{bmatrix}$ $2 \end{bmatrix} \text{ is } 2 + 1 $	87.	यदि $0 \le [x] < 2$, जहाँ [·] महत्तम पूर्णांक [x]+1 [y] [x] [y]+1 [x] [y] (1) 2 (3) 6	$-1 \le [y] <$ weights when the set of the se	1 तथा 1 ≤ [z] < 3 क्त करता है तो सारणिक धिकतम मान होगा		
	(1) 2 (2) 4	(3) 6 (4) 8			(4) 8			
88.	Let $\begin{vmatrix} x & 2 & x \\ x^2 & x & 6 \\ x & x & 6 \end{vmatrix} = .$	$Ax^4 + Bx^3 + Cx^2 + Dx + E$	88.	$\begin{aligned} \overline{\mathrm{afg}} \begin{vmatrix} x & 2 & x \\ x^2 & x & 6 \\ x & x & 6 \end{vmatrix} = \end{aligned}$	$Ax^4 + Bx^3 -$	+ Cx^2 + Dx + E तो		
	then the value of $5A + 4B + 3C + 2D + E$ is equal to (1) - 17 $(2) - 14$ $(3) - 11$ $(4) - 8$			5A + 4B + 3C +	2D + E का	मान होगा		
				(1) - 17 (2) -	14 (3) -	11 (4) – 8		
89.	If A = $\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$	then	89.	यदि A = $\begin{bmatrix} 3 & -3 \\ 2 & -3 \\ 0 & -1 \end{bmatrix}$	4 4 1] तो			
	(1) Adj (Adj A) = I (2) $ Adj(AdjA) = 1$			(1) Adj (Adj A) :	= I (2) A	$\operatorname{Adj}(\operatorname{Adj}A) = 1$		
	(3) AdjA = A	(4) All of these		(3) AdjA = A	(4) उप	रोक्त सभी		
90.	If I = $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ & B	$= \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ then $(\mathbf{I} + \mathbf{B})^{50}$ is:-	90.	यदि I = $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ तथ	$\Pi \mathbf{B} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$) तो (I + B) ⁵⁰ होगा:-		
	$(1)\begin{bmatrix}50 & 0\\1 & 50\end{bmatrix}$	$(2) \begin{bmatrix} 1 & 0 \\ 1275 & 1 \end{bmatrix}$		$(1)\begin{bmatrix}50&0\\1&50\end{bmatrix}$	(2)	$\begin{bmatrix} 1 & 0 \\ 1275 & 1 \end{bmatrix}$		
	$(3)\begin{bmatrix}50 & 0\\50 & 50\end{bmatrix}$	$(4) \begin{bmatrix} 1 & 0\\ 50 & 1 \end{bmatrix}$		$(3)\begin{bmatrix}50 & 0\\50 & 50\end{bmatrix}$	(4)	$\begin{bmatrix} 1 & 0 \\ 50 & 1 \end{bmatrix}$		
Your moral duty is that to prove ALLEN is ALLEN								
		SDACE FOD D	OUCE	IWOBK				

E/H

Path is Success

JEE-MAIN 2013

MAJOR TEST

07-03-2013

SPACE FOR ROUGH WORK / रफ कार्य के लिये जगह