

References Career Institute

PRE-MEDICAL : ACHIEVER COURSE (PHASE-I : MAW) 30-03-2013

HAVE CONTROL \longrightarrow HAVE PATIENCE \longrightarrow HAVE CONFIDENCE \Rightarrow 100% SUCCESS

(BEWARE OF NEGATIVE MARKING)

1.

3.

- **1.** Mark out the incorrect option :-
 - (1) Diamagnetism occurs in all materials
 - (2) Diamagnetism results from the partial alignment of permanent magnetic moment
 - (3) Most of the materials are diamagnetic
 - (4) If an external magnetic field imposed in the direction of orbital magnetic moment of electron then orbital magnetic moment of electron will be decreased
- 2. Gravitational potential on the surface of earth is V. Gravitational potential at the centre of earth is :

(1) V (2) $\frac{3}{2}$ V (3) $\frac{2}{3}$ V (4) Zero

- 3. Electromagnets are made of soft iron because soft iron has :-
 - (1) Low permeability, high retentivity and high coercivity
 - (2) Low permeability, high retentivity and low coercivity
 - (3) High permeability, low retentivity and high coercivity
 - (4) High permeability, low retentivity and low coercivity
- 4. Gravitational potential difference between a point on surface of planet and another point 10m above is 4 J/kg. Considering gravitational field to be uniform. How much work is done in moving a mass of 2 kg from the surface to a point 5m above the surface :

(1) 2 J (2) 4 J (3 50 J (4) 100 J

5. Equipotential surfaces due to point charge is according to figure. then :-

- (1) प्रतिचुम्बकत्व सभी पदार्थो में उपस्थित होता है
 - (2) प्रतिचुम्बकत्व परमाणविय चुम्बकीय आघूर्णों के सरेखण का परिणाम है।
 - (3) अधिकांश पदार्थ प्रतिचुम्बकीय होते है

गलत विकल्प का चयन करो :-

- (4) इलेक्ट्रॉन के कक्षीय चुम्बकीय आघूर्ण की दिशा में बाह्य चुम्बकीय क्षेत्र लगाने पर इसका कक्षीय चुम्बकीय आघूर्ण घटता है।
- पृथ्वी की सतह पर गुरूत्वीय विभव V है। पृथ्वी के केन्द्र पर गुरूत्वीय विभव होगा:-

(1) V (2) $\frac{3}{2}$ V (3) $\frac{2}{3}$ V (4) शून्य

वैद्युत चुम्बक, नर्म लोहे की बनायी जाती है क्योंकि नर्म लोहे में होते है।

(1) निम्न चुम्बकशीलता, उच्च धारणशीलता व उच्च निग्राहिता

(2) निम्न चुम्बकशीलता, उच्च धारणशीलता व अल्प निग्राहिता

(3) उच्च चुम्बकशीलता, अल्प धारणशीलता व उच्च निग्राहिता

(4) उच्च चुम्बकशीलता, अल्प धारणशीलता व अल्प निग्राहिता

4. एक ग्रह की सतह पर एक बिन्दु तथा 10m ऊपर अन्य बिन्दु के मध्य गुरूत्वीय विभवान्तर 4 J/kg है। माना गुरूत्वाकर्षण क्षेत्र एक समान है, ग्रह सतह से 2 kg द्रव्यमान को सतह से 5m ऊपर ले जाने में कितना कार्य करना पड़ेगा:-

(1) 2 J
(2) 4 J
(3 50 J
(4) 100 J **5.** किसी बिन्दु आवेश के कारण समविभव पृष्ठ चित्र में दर्शायेनुसार है तो :-

TARGET : PRE-MEDICAL 2013 (NEET-UG)

6.

6. Three heavy bodies each of mass m are placed at the corners of a regular triangle side a (a is much larger than dimensions

of bodies), then escape velocity of a body of mass m, situated at the centre p of triangle is:-

(1)
$$\sqrt{\frac{3\sqrt{5}\text{Gm}}{a}}$$
 (2) $\sqrt{\frac{6\sqrt{3}\text{Gm}}{a}}$
(3) $\sqrt{\frac{7\sqrt{3}\text{Gm}}{a}}$ (4) $\sqrt{\frac{3\text{Gm}}{2a}}$

7. Charges are placed on the vertices of a square as shown. Let E be the electric field and V the potential at the centre. If the charges on A and B are interchanged with those on D and C respectively, then :-

- (1) \vec{E} remains unchanged, V changes
- (2) Both \vec{E} and V change
- (3) \vec{E} and V remains unchanged
- (4) \vec{E} changes, V remains unchanged
- 8. A mass 6×10^{24} kg (= mass of earth) is to be compressed in a sphere in such a way that the escape velocity from its surface is 3×10^8 m/s (equal to that of light). What should be the radius of the sphere ?
 - (1) 6400 km (2) 9 m
 - (3) 9 mm (4) 9 cm
- 9. The adjacent diagram shows a charge +Q on point S and enclosed by a hollow spherical conductor. O represents the centre of the spherical conductor and P is a point such that OP = a and SP = r. The electric field at point P will be :-

(4) None of the above

तीन भारी वस्तुएँ प्रत्येक का द्रव्यमान m है, a भुजा वाली एक नियमित त्रिभुज के कोनों पर रखी गई है, (वस्तुओं की विमाओं की तुलना में a का

MAJOR TEST

30-03-2013

मान बहुत अधिक है), तो त्रिभुज के केन्द्र O पर स्थित m द्रव्यमान की वस्तु का पलायन वेग होगा :-

7. वर्ग के चारों कोनों पर आवेश रखे गये है (जैसा चित्र में दर्शाया गया है) इसके केन्द्र पर वैद्युत क्षेत्र की तीव्रता E एवं विभव V हे। यदि बिन्दु A और B के आवेश क्रमश: बिन्दु D व C के आवेशों के साथ बदल दिये जायें तब :-

- (1) E नियत रहेगी, V बदलेगा
- (2) Ē और V दोनों बदलेगें
- (3) E और V दोनों नियत रहेगें
- (4) Ē बदलेगी, V नियत रहेगा
- 8. एक 6 × 10²⁴ kg द्रव्यमान (पृथ्वी के द्रव्यमान के बराबर) को सम्पीड़ित कर एक गोले में इस प्रकार परिवर्तित किया गया है कि इसकी सतह से पलायन वेग 3 × 10⁸ m/s (प्रकाश के वेग के बराबर) है तो गोले की त्रिज्या होगी:-
 - (1) 6400 km (2) 9 m

 - (3) 9 mm (4) 9 cm (4) 6 cm (4) 7 cm (4
 - संलग्न चित्र में +Q आवेश एक बिन्दु S पर प्रदर्शित है। जो एक खोखले गोलीय चालक के भीतर स्थित है। गोलीय चालक का केन्द्र O है तथा एक बिन्दु P इस प्रकार है कि OP = a तथा SP = r, तब बिन्दु P पर विद्युत क्षेत्र होगा:-

Your Target is to secure Good Rank in Pre-Medical 2013

9.

Path is Succ	CAREER INSTITUTE	PRE-MEDICAL	: ACHIEVER	COU	IRSE (PHA	SE-I : M/	AW)	30-0	3-2013
10.	A satellite wi round the ear more kinetic that it may j	th kinetic energy E_k th in a circular orbit energy should be gi ust escape into oute	1 kinetic energy E_k is revolving 1 in a circular orbit. How much energy should be given to it so st escape into outer space :-			ओर वृत्ताकार र्जा E _k है। इस् अन्तरिक्ष में प	कक्षा में प को कितनी प्लायन कर	रिभ्रमण गतिज : जायेग	कर रहे उपग्रह ऊर्जा और देने ा :-
	(1) $\frac{E_k}{2}$	(2) E _K			(1) $\frac{E_k}{2}$		(2) E	Ϋ́Κ	
	(3) $E_K \sqrt{2}$	(4) $\sqrt{2E_K}$	-		(3) $E_K \sqrt{2}$		(4)	$2E_{K}$	
11.	A solid conduction charge Q is concentric co of radius 2F between the that of the ou V. If the shell the new poten surfaces is :- (1) V (2)	acting sphere of radus surrounded by an inducting hollow sph R let the potential surface of the solid ter surface of the hol Il is now given a cha ntial difference betw 2) 2V (3) 4V	s R having a uncharged herical shell, difference sphere and low shell be arge of $-3Q$, een the two (4) -2V	11.	एक R त्रिज्या चारों और 2R है। ठोस गोले सतह के बीच –3Q आवेश होगा :- (1) V	के ठोस चाल त्रिज्या का अ की सतह और विभवान्तर V दे दिया जाये त (2) 2V	ाक गोले प ानावेशित स र खोखले ग 7 है। अब 7 है। अब 7 तो दोनों सत (3) 41	र Q अ मंकेन्द्रीय गोलीय व यदि गोा हों के बं	विश है, इसके गोलीय कोश कोश की बाह्य लेय कोश को पेच विभवान्तर (4) –2V
12.	The intensity	of the earth's gravit	ational field	12.	गुरूत्वाकर्षण	क्षेत्र की तीव्र	ाता अधिक	तम है :	;-
	is maximum	at :-			(1) पृथ्वी के	केन्द्र पर			
	(1) The centre (2) The equation (2) The equation (2) The equation (2) and (2) the equation (2) the e	tor			(2) विषुवत	रेखा पर			
	(2) The equation (3) The pole:	s			(3) ध्रुवों पर				
	(4) The tropi	ic of capricorn			(4) मकर रेख	वा पर			
13.	Electric field of +y-axis. Elect is 22 volt th B(8, 3) will b	of magnitude 8 N/C is tric potential at poin then electric potentiate the :-	acting along t $A(2, -7)m$ ial at point	13.	किसी स्थान प कार्यरत है। 22 वोल्ट है होगा :-	गर 8 N/C का यदि बिन्दु <i>4</i> ई तो बिन्दु	वैद्युत क्षेत्र A(2, -7) B(8, 3)) +y-अ m पर) पर व	क्ष के अनुदिश वैद्युत विभव वैद्युत विभव
	(1) 118 volt	(2) -118 y $(4) -58$ y (4)	volt		 (1) 118 वोल (3) 58 वोल्ट 	ल्ट !	(2) -1 (4) -5	18 वो 8 वोल	ल्ट
14.	For a planet ha but radius is or escape velocit	(4) -38 vo wing mass equal to magne the fourth of radius of the y for this planet will b	ss of the earth he earth, Then be:-	14.	एक ग्रह जिस की त्रिज्या व होगा:-	का द्रव्यमान पृ की चौथाई है ,	थ्वी के बरा तो ग्रह व	बर परन के लिए	- तु त्रिज्या पृथ्वी पलायन वेग
	(1) 11.2 km/s	s (2) 22.4 1	km/s		(1) 11.2 K (2) 22.4 m	m/s	(2) 2	2.4 Ki	n/s
15.	(3) 22.4 m/s A hollow sp charge '+q' k figure. Let V_A point A, B, C (1) $V_A > V_B >$ (2) $V_A = V_B >$ (3) $V_A > V_B >$ (4) $V_A = V_B =$	(4) 44.8 I pherical conductor tept inside its cavity $V_B, V_C & V_D$ be the $V_C > V_D$ $V_C > V_D$ $V_C > V_D$ $V_C = V_D$ $V_C = V_D$	has a point as shown in e potential at hen:-	15.	(3) 22.4 II fakil larg C a 3rct T V_D T V V_D T V_D T V V_D T V V_D T V V_D T V V_D T V V_D T V V_D T V V_D T V V_D V_D T V V_D V_D T V V V V V V V V	आवेश '+q' व त्रानुसार रखा प बन्दुओं A, B, $_{\rm B} > V_{\rm C} > V$ $_{\rm B} > V_{\rm C} > V$ $_{\rm B} > V_{\rm C} = V$ $_{\rm B} = V_{\rm C} = V$	(+) 4 को एक खें गया है। या , C व D	+.0 Kl रेखले ग दे V _A , पर विभ	ोलीय चालक $V_{\rm B}, V_{\rm C}$ तथा व हो तो :-

3/37

TARGET : PRE-MEDICAL 2013 (NEET-UG)

16. Net resistance of the given circuit between X and Y is :-

17. A metallic shell has a point charge 'q' kept inside its cavity. Which one of the following diagrams correctly represents the electric field lines:-

- **18**. The resistance of conductor at 20° C is 3.15Ω and at 100° C in 3.75Ω . Then resistance of conductor at 0° C will be :-
 - (1) 3.0 Ω (2) 3.5 Ω
 - (3) 3.95Ω (4) 0Ω
- **19.** A uncharged conductor B is brought near to a positively charged conductor A, then the respective changes in charge, electric potential and capacitance of A will be :-
 - (1) Remain unchanged, decreased, incresed
 - (2) Remain unchanged, unchanged, unchanged
 - (3) Remain unchanged, increased, decreased
 - (4) Increased, increased, decreased
- **20**. In the circuit shown below, the current that flows from a to b then the switch S is closed:

16. परिपथ का तुल्य प्रतिरोध बिन्दु X व Y के मध्य होगा :-

MAJOR TEST

30-03-2013

$$X \circ \frac{1\Omega}{2\Omega} \frac{1\Omega}{2\Omega} \frac{1\Omega}{2\Omega} \frac{1\Omega}{2\Omega} \frac{1\Omega}{2\Omega}$$

(1) $\frac{5}{3}\Omega$ (2) 1Ω (3) 3Ω (4) 2Ω

17. किसी बिन्दु आवेश 'q' को एक धात्विक गोलीय कोश के अन्दर रखा गया है। निम्न में से कौनसा चित्र वैद्युत क्षेत्र रेखाओं की सही स्थिति प्रदर्शित करता है:-

- एक चालक तार का प्रतिरोध 20° C पर 3.15 Ω हैं तथा 100° C पर 3.75Ω है, तो 0°C पर प्रतिरोध का मान होगा :-
 - (1) 3.0 Ω (2) 3.5 Ω
 - (3) 3.95 Ω (4) 0 Ω
- 19. किसी धनावेशित चालक A के निकट अन्य अनावेशित चालक B चलाने पर चालक A के आवेश, वैद्युत विभव तथा धारिता में क्रमश: परिवर्तन होगा :-
 - (1) नियत, घटेगा, बढेगी
 - (2) नियत, नियत, नियत
 - (3) नियत, बढेगा, घटेगी
 - (4) बढेगा, बढेगा, घटेगी
- नीचे दिये गये परिपथ में जब स्विच S बंद करते है तो a से
 b पर बहने वाली धारा है:-

(1) -1.5A (2) +1.5A (3) +1.0A (4) -1.0A

PRE-MEDICAL : ACHIEVER COURSE (PHASE-I : MAW) 30-03-2013

- 21. The potential on the surface of a conducting sphere of radius 9 cm is 100 V. If it is covered by a grounded conducting spherical shell of radius 10 cm, then new potential on its surface will be :-
 - (1) 1 V (2) 10 V
 - (3) 90 V (4) 100 V
- **22.** Which of the four resistances generates the greatest amount of heat when a current flows from A to B

- (1) Resistor P will produce maximum heat.
- (2) Resistor Q will produce maximum heat.
- (3) Resistor R will produce maximum heat.
- (4) Resistor S will produce maximum heat.
- **23.** Four charges q_1, q_2, q_3 and

 q_4 are fixed at their positions as shown in Fig. S is a Gaussian surface. The Gauss's law is given by

$$\oint_{S} \vec{E}.d\vec{s} = \frac{q}{\varepsilon_0}$$

Which of the following statements is correct?

- (1) $\vec{\mathbf{E}}$ on the LHS of the above equation will have a contribution from q_3 and q_4 while q on the RHS will have a contribution from q_1 and q_2 only.
- (2) E on the LHS of the above equation will have a contribution from all charges while q on the RHS will have a contribution from q₃ and q₄ only.
- (3) $\vec{\mathbf{E}}$ on the LHS of the above equation will have a contribution from all charges while q on the RHS will have a contribution from q_1 and q_2 only.
- (4) Both $\vec{\mathbf{E}}$ on the LHS and q on the RHS will have contributions from q_1 and q_2 only.

- 21. 9 सेमी त्रिज्या के चालक गोले की सतह पर विभव 100 volt है यदि इसे 10 सेमी त्रिज्या के भुसम्पर्कित चालक गोलीय कोश से ढ़क दिया जाये तो इसकी सतह पर विभव होगा :-
 - (1) 1 V (2) 10 V
 - (3) 90 V (4) 100 V
- 22. यदि A से B धारा प्रवाह हो तो कौनसे प्रतिरोध में अधिकतम उष्मा उत्पन्न होती है :-

- (1) प्रतिरोध P में उत्पन्न उष्मा अधिकतम है।
 (2) प्रतिरोध Q में उत्पन्न उष्मा अधिकतम है।
 (3) प्रतिरोध R में उत्पन्न उष्मा अधिकतम है।
 (4) प्रतिरोध S में उत्पन्न उष्मा अधिकतम है।
- चार आवेश q₁, q₂, q₃ तथा q₄
 चित्र में दर्शाए अनुसार अपनी स्थितियों पर स्थिर हैं। S कोई गाउसीय पृष्ठ है। गाउस नियम के अनुसार

$$\oint_{S} \vec{E} \cdot d\vec{s} = \frac{q}{\varepsilon_0}$$

निम्नलिखित में कौनसा प्रकथन सही हैं?

- (1) उपरोक्त समीकरण के बार्यी ओर E में q₃ तथा q₄ का योगदान होगा, जबकि दार्यी ओर q में केवल q₁ तथा q₂ का ही योगदान होगा।
- (2) उपरोक्त समीकरण के बार्यी ओर E में सभी आवेशों का योगदान होगा, जबकि दार्यी ओर q में केवल q₃ तथा q₄ का ही योगदान होगा।
- (3) उपरोक्त समीकरण के बायीं ओर **Ē** में सभी आवेशों का योगदान होगा, जबकि दायीं ओर q में केवल q₁ तथा q₂ का ही योगदान होगा।
- (4) बार्यी और के E तथा दार्यी ओर के q दोनों मे ही केवल q, तथा q, का ही योगदान होगा।

TARGET : PRE-MEDICAL 2013 (NEET-UG)

- 24. A letter A is constructed of a uniform wire with resistance 1.0 Ω per cm. The sides of the letter are 20 cm and the cross piece in the middle is 10 cm long. The apex angle is 60°. The resistance between the ends of the legs is :-
 - (1) 50.0 Ω (2) 26.7 Ω
 - (3) 2.72 Ω (4) 34.0 Ω
- **25.** The figure shows three long straight wire P, Q and R carrying currents normal to the plane of the paper. All three currents have the same magnitude. Which arrow best shows the direction of the resultant force on the wire P :-

(1) A

(3) C

26. The ammeter reading in the following circuit will be

27. In a mass spectrometer used to measuring the masses of ions the ions are initially accelerated by an electric potential V and then made to describe semicircular paths of radius R using a magnetic field B. If V and B are kept constant,

(2) $1/R^2$

proportional :-

- (1) 1/R
- (3) R^2 (4) R

- 24. एक समान तार जिसका प्रतिरोध 1.0 Ω प्रति सेमी हे, से एक अक्षर A का निर्माण करते है। अक्षर की भुजायें 20 cm तथा मध्य में अनुप्रस्थ भाग 10 cm लम्बा है। शीर्ष कोण 60° है। पादो के दोनों सिरो के मध्य प्रतिरोध है:-
 - (1) 50.0 Ω (2) 26.7 Ω
 - (3) 2.72 Ω (4) 34.0 Ω
- 25. चित्र में दिखाये गये तीन लम्बे सीधे धारावाही चालकों P, Q व R में प्रवाहित धारायें कागज तल के अभिलम्बवत् है। सभी तीनों धाराओं के परिमाण समान है। निम्न में से कौनसा तीर तार P पर कार्यरत बल की दिशा हो सही व्यक्त करता है :-

27. आयन के द्रव्यमान को ज्ञात करने में प्रयुक्त द्रव्यमान वर्णक्रममापी में आयनों को विद्युत विभव V द्वारा त्वरित किया जाता है तब यह चुम्बकीय क्षेत्र B द्वारा R त्रिज्या के अर्द्धवृत्तीय पथ को निर्मित करता है। यदि V और B नियत

कोई भी प्रश्न Key Filling से गलत नहीं होना चाहिए।)

PRE-MEDICAL : ACHIEVER COURSE (PHASE-I : MAW) 30-03-2013

28. In a portion of some large electrical network, curents in certain branches are known as shown in figure :-

The value of $V_A - V_C$ is

- (1) 76 V (2) 76 V
- (3) -58 V (4) -52 V
- **29.** A particle having a charge of 10.0μ C and mass 1 µg moves in a circle of radius 10 cm under the influence of a magnetic field of induction 0.1T. When the particle is at a point P, a uniform electric field is switched on so that the particle starts moving along the tangent with a uniform velocity. The electric field is :-

(1) 0.1 V/m (2) 1.0 V/m

(3) 10.0 V/m (4) 100 V/m

- **30.** Copper and silicon is cooled from 300 K to 60K, the specific resistance :-
 - (1) Decrease in copper but increase in silicon
 - (2) Increase in copper but decrease in silicon
 - (3) Increase in both
 - (4) Decrease in both
- **31.** Two parallel long wires carry currents i_1 and i_2 with $i_1 > i_2$. When the currents are in the same direction, the magnetic field midway between the wires is 10µT. When the direction of i_2 is reversed, it becomes 40µT. The ratio i_1/i_2 is :-

(4) 5 : 3

(1) 3 : 4	(2) 11	: 7

(3) 7 : 11

28. कुछ दीर्घ विद्युत नेटवर्क के भाग में निश्चित शाखाओ में धारा चित्रानुसार प्रदर्शित है।

$$A \stackrel{2\Omega}{\xrightarrow{}} 10\Omega$$

$$V_{A} - V_{C}$$
 का मान होगा :-

(1) 76 V (2) – 76 V

(3) -58 V (4) -52 V

29. 10.0µC आवेश तथा 1 µg द्रव्यमान का एक कण 0.1 टेसला के चुम्बकीय क्षेत्र के प्रभाव में 10 cm त्रिज्या के वृत्त में गति करता है। जब कण बिन्दु P पर है तब एकसमान विद्युत क्षेत्र आरोपित किया जाता है, जिससे कण स्पर्श रेखा के अनुदिश एक नियत चाल से गति करना प्रारम्भ करता है। विद्युत क्षेत्र का मान है :-

(1) 3 : 4	(2) 11 : 7
(3) 7 : 11	(4) 5 : 3

Your Target is to secure Good Rank in Pre-Medical 2013

7 / 37

The value of magnetic field at a point which is R/4 distance inside from the surface is 10T. Find the value of magnetic field at point which is 4R distance outside from the surface:-

(1) 4/3 T	(2) 8/3 T
(3) 40/3T	(4) 80/3 T

(Use stop, look and go method in reading the question)

(2) 8/3 T

(4) 80/3 T

8/37

(1) 4/3 T

(3) 40/3T

PRE-MEDICAL : ACHIEVER COURSE (PHASE-I : MAW) 30-03-2013

36. Regarding earth's magnetism consider the following statements.

- (A) the angle of dip in india is greater than dip angle in Britain.
- (B) The vertical component of earth magnetic field is vertically upwards in Australia.
- (1) Both A and B are true
- (2) A is true but B is false
- (3) A is false but B is true
- (4) Both A and B are false
- 37. The length of a bar magnet is large compared to its width and breadth. The time period of its oscillation in a vibration magnetometer is 2 s. The magnet is cut along its length into three equal parts and three parts are then placed on each other with their like poles together. The time period of this combination will be :- (1) 2 s (2) 2/3 s

(3)
$$2\sqrt{3}$$
 s (4) $2/\sqrt{3}$ s

38. Three point charges, each of value q are placed on three vertices of an equilateral triangle of side 'a' m. Calculate the work required to move these charges to the corners of a smaller equilateral triangle of side a/2 m.

(1)
$$\frac{q^2}{4\pi\epsilon_0 a}$$
 (2) $\frac{q^2}{2\pi\epsilon_0 a}$

(3)
$$\frac{3q^2}{4\pi\varepsilon_0 a}$$
 (4) $\frac{3kq^2}{2\pi\varepsilon_0 a}$

39. Two bar magnets with magnetic moments $\sqrt{3}$ M and M are fastened together at right angles to each other at their centres to form a crossed system, which can rotate freely about a vertical axis through the centre. The crossed system sets in earth's magnetic field with magnet having magnetic moment $\sqrt{3}$ M making an angle θ with the magnetic meridian such that :

(1)
$$\theta = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$$
 (2) $\theta = \tan^{-1}\left(\sqrt{3}\right)$

(4) $\theta = \tan^{-1}(2)$

- 36. भुचुम्बकत्व के संदर्भ में निम्न तथ्यों पर विचार करें
 - (A) भारत में नति कोण का मान ब्रिटेन में नति कोण की तुलना में अधिक होता है।
 - (B) ऑस्ट्रेलिया में पृथ्वी के चुम्बकीय क्षेत्र का ऊर्ध्वाधर घटक ऊपर की ओर है
 - (1) A तथा B दोनों सत्य है
 - (2) A सत्य लेकिन B असत्य है
 - (3) A असत्य लेकिन B सत्य है
 - (4) A तथा B दोनों असत्य है
- 37. किसी छड़ चुम्बक की लम्बाई इसकी मोटाई एवं चौड़ाई की तुलना में बहुत अधिक है। दोलन चुम्बकत्वमापी में इस चुम्बक के दोलन के दोलनकाल 2 s है। इस चुम्बक को लम्बाई के लंबवत् तीन बराबर टुकड़ों में तोड़कर तीनों टुकड़ों को एक के ऊपर एक इस प्रकार रखते हैं कि उनके सजातीय ध्रुव साथ-साथ हो। इस संयोजन का दोलनकाल होगा :-

(3)
$$2\sqrt{3}$$
 s (4) $2/\sqrt{3}$ s

38. तीन आवेश जिनमें से प्रत्येक का परिमाण q है 'a' मी. भुजा के समबाहु त्रिभुज के तीन शीर्घो पर स्थित है। इन आवेशों को a/2 मी. भुजा के छोटे समबाहु त्रिभुज के तीन शीर्घो पर लाने में किया गया कार्य ज्ञात करो :-

(1)
$$\frac{q^2}{4\pi\epsilon_0 a}$$
 (2) $\frac{q^2}{2\pi\epsilon_0 a}$

(3)
$$\frac{3q^2}{4\pi\varepsilon_0 a}$$
 (4) $\frac{3kq^2}{2\pi\varepsilon_0 a}$

39. √3 M व M चुम्बकीय आघूर्णो वाले दो छड़ चुम्बकों को एक-दूसरे के लम्बवत् रखकर एक क्रॉस निकाय बनाया गया है, यह क्रॉस निकाय, दोनों चुम्बकों के केन्द्रों से होकर जाने वाले ऊर्ध्वाधर अक्ष के परित: घूर्णन के लिये स्वतंत्र है। पृथ्वी के चुम्बकीय क्षेत्र में यह क्रॉस निकाय इस प्रकार से समंजित होता है कि √3 M चुम्बकीय आधूर्ण वाला चुम्बक, चुम्बकीय याम्योत्तर से 0 कोण बनाता है। तब :

(1)
$$\theta = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$$
 (2) $\theta = \tan^{-1}\left(\sqrt{3}\right)$

(3)
$$\theta = \tan^{-1}\left(\frac{1}{2}\right)$$
 (4) $\theta = \tan^{-1}(2)$

Your Target is to secure Good Rank in Pre-Medical 2013

(3) $\theta = \tan^{-1}\left(\frac{1}{2}\right)$

TARGET : PRE-MEDICAL 2013 (NEET-UG)

40. Three identical bar magnets each of magnetic moment M are placed in the form of an equilateral triangle as shown. The net magnetic moment of the system is :-

(1) Zero (2) 2M (3) $M\sqrt{3}$ (4) $\frac{3M}{2}$

- **41.** Two circular loop 1 and 2 are made by the same copper wire but the radius of the 1^{st} loop is twice that of the 2^{nd} loop, what is ratio of potential difference applied across the loops. If the magnetic field produced at their centres is equal (1) 3 (2) 4 (3) 6 (4) 2
- 42. A magnet is parallel to a uniform magnetic field. If it is rotated by 60° , the work done is 0.8 J. How much work done in moving it 30° further :-
 - (1) 0.4 J (2) $0.4\sqrt{3}$ J
 - (3) 0.8J (4) 1.6 J
- **43.** A beam of electrons passes undeflected through mutually perpendicular electric and magnetic fields. If the electric field is switched off, and the same magnetic field is maintained, the electrons move :-
 - (1) along a straight line
 - (2) in an elliptical orbit
 - (3) in a circular orbit
 - (4) along a parabolic path
- 44. The area of hysteresis loop of a material is equivalent to 250 joule/m³. When 10 kg material is magnetised by an alternating field of 50 Hz then energy lost in one hour will be (density of material is $7.5g/cm^3$) :-(1) 6×10^4 J (2) 6×10^4 erg
 - (3) 3×10^2 J (4) 3×10^2 erg
- **45.** A compass needle whose magnetic moment is 60 A-m² pointing geographical north at a certain place, where the horizontal component of earth's magnetic field is 40 μ Wb/m², experiences a torque 1.2 × 10⁻³ N-m. What is the declination at this palce :-

(1) 30° (2) 45° (3) 60° (4) 25°

40. चुम्बकीय आघूर्ण M वाली तीन एकसमान चुम्बकों को चित्र में दिखाये अनुसार एक समबाहु त्रिभुज के रूप में जोड़ा गया है। निकाय का कुल चुम्बकीय आघूर्ण होगा :-

(2) 2M

(1) शून्य

(3) $M\sqrt{3}$ (4) $\frac{3M}{2}$

(4) 2

- 41. दो वृत्तीय लूपों 1 और 2 को एक ही तार से बनाया गया है परन्तु पहले लूप की त्रिज्या दूसरे लूप की त्रिज्या से दुगुनी है। इनके आर–पार वोल्ट में आरोपित विभवान्तरों का अनुपात क्या होगा, जबकि उनके केन्द्रों पर उत्पन्न चुम्बकीय क्षेत्र समान हों।
 - (1) 3 (2) 4
- 42. एक चुम्बक किसी एकसमान चुम्बकीय क्षेत्र के समान्तर है। इसे क्षेत्र से 60° घुमाने में कार्य 0.8 J है। इसे पुन: 30° और घुमाने में कार्य होगा :-

(3) 6

- (1) 0.4 J (2) $0.4\sqrt{3}$ J
- (3) 0.8J (4) 1.6 J
- 43. इलैक्ट्रॉनों का एक किरण समूह परस्पर लम्बवत वैद्युत और चुम्बकीय क्षेत्रों में से अविक्षिप्त चला जाता है। यदि वैद्युत क्षेत्र को बन्द कर दिया जाये और चुम्बकीय क्षेत्र को अपरिवर्तित रखा जाये तो इलेक्टॉनों का चलन होगा :-
 - (1) एक सीधी रेखा में
 - (2) एक दीर्घवृत्तीय कक्षा में
 - (3) एक वृत्तीय कक्षा में
 - (4) एक परवलयिक पथ में
- 44. किसी पदार्थ के शैथिल्य लूप का क्षेत्रफल 250 जूल/मी³ के तुल्य है। यदि 10 kg पदार्थ को 50 Hz के प्रत्यावर्ती क्षेत्र द्वारा चुम्बकित किया जाता है तो 1 घंटे में व्यय ऊर्जा क्या होगी। जबकि पदार्थ का घनत्व 7.5g/cm³ है:-
 - (1) 6×10^4 J (2) 6×10^4 erg (3) 3×10^2 J (4) 3×10^2 erg
- 45. एक कम्पास सुई का चुम्बकीय आघूर्ण 60 A-m² है, एवं किसी स्थान पर यह पृथ्वी के भौगोलिक उत्तर की ओर है। यदि इस स्थान पर पृथ्वी के चुम्बकीय क्षेत्र का क्षैतिज घटक 40 μWb/m², है एवं सुई के द्वारा अनुभव किया गया बल आघूर्ण 1.2 × 10⁻³ N-m है तो इस स्थान पर दिक्पात का कोण होगा:-

(1) 30° (2) 45° (3) 60° (4) 25°

						MAJOR TEST
Path is Suc			MEDICAL : ACHIEVER	r col	JRSE (PHASE-I : MAW)	30-03-2013
46.	Reac CH ₃ -	CH=CH ₂ CH ₃ -C= CH=CH ₂ CH ₃ -C= CH	ds EAR is :- =CH ₂ Ph–CH=CH ₂ I ₃	46.	इलेक्ट्रान स्नेही योगात्मक के प्रति दिजिए :- $CH_3-CH=CH_2 CH_3-C=CH_2$ CH_3	क्रियाशीलता का क्रम Ph–CH=CH ₂
	(1) I (3) I	I) (II) I > I > III II > I > III $A = A = A = \frac{Hg^{+2}/F}{Hg^{+2}/F}$	(III) $(2) III > II > I$ $(4) I > II > III$ $HCN = D c$		(I) (II) (1) II > I > III (2) (3) III > I > II (4) (1) $H_{g^{+2}/H^{\oplus}}$	(III) $III > II > I$ $I > II > III$
47.	(1)	$O C = C - H - H_2O$ $O C H_2 - C H - C N$ $O H$ $O H$	$(2) \bigcirc I \xrightarrow{CN} OH \xrightarrow{CN} OH$	47.	$(1) \bigcirc C \equiv C - H \xrightarrow{B_{2}O} H_{2}O \rightarrow H_$	$A \xrightarrow{\text{ICN}} B ?$ $O \xrightarrow{\text{CN}} C \xrightarrow{\text{CN}} C \xrightarrow{\text{CN}} O $
	(3)	O CH ₂ -CH ₂ -CN	(4) O CH-CH ₃ I CN		(3) O CH ₂ -CH ₂ -CN (4)	CH-CH-CH ₃
48.	CH ₃ -	-CH ₂ -C-O-CH ₃ +	$2CH_3MgBr \longrightarrow A$	48.	CH ₃ -CH ₂ -C-O-CH ₃ + 2CI U	$H_3MgBr \longrightarrow A$
	$\frac{H^{\oplus}}{\Delta}$	\rightarrow B ?			$\xrightarrow{H^{\oplus}} B ?$	
	(1) (CH ₃ -C=CH-CH ₃ CH ₃			(1) CH ₃ -C=CH-CH ₃ I CH ₃	
	(2) (CH ₃ -CH-CH=CH ₂ LH ₃			(2) CH_3 -CH-CH=CH ₂ CH ₃	
	(3) (OH CH ₃ -C-CH ₂ -CH ₃ CH ₃			$\begin{array}{c} OH \\ (3) CH_3 - C - CH_2 - CH_3 \\ CH_3 \end{array}$	
	(4) (CH ₃ -C-CH ₂ -OH CH ₃ -C-CH ₂ -OH CH ₃			(4) $CH_3 = CH_3 = CH_2 = OH CH_3 = CH_3$	
49.	Ph–0	$ \begin{array}{c} C - H \xrightarrow{HCN} A - \\ D \end{array} $	$\xrightarrow{\text{LiAlH}_4} B$	49.	$\begin{array}{c} \text{Ph-C-H} \xrightarrow{\text{HCN}} \text{A} \xrightarrow{\text{LiAl}} \\ \text{O} \end{array}$	$\xrightarrow{\mathrm{H}_4}$ B
	Wha	t is B?			B क्या है?	
	(1) ^I	Ph–CH–OH COOH	(2) Ph–CH–OH I CH ₂ –NH ₂		(1) Ph-CH-OH (2) I COOH	Ph–CH–OH I CH ₂ –NH ₂
	(3) I	Ph-CH-OH CHO	(4) Ph–CH ₂ –CH ₂ –NH ₂		(3) Ph–CH–OH (4)	PhCH ₂ CH ₂ NH ₂
			(Take it Easy ar	d Ma	ke it Easy)	
		Your	Target is to secure Good	l Rank	in Pre-Medical 2013	11/37

Path to Suc		TARGET : PRE-MED		2013 (NEET-UG)	30-03-2013
50.	Correct order of free of following is :-	e radical allylic substitution	50.	मुक्त मूलक एलाइलिक प्रतिर है :-	स्थापन के प्रति सही क्रम
	CH ₃ -CH=CH ₂	CH ₃ –CH–CH=CH ₂ CH ₃		CH ₃ -CH=CH ₂	CH ₃ –CH–CH=CH ₂ CH ₃
	(I) Ph–CH ₂ –CH=CH ₂	(II)		(I) Ph–CH ₂ –CH=CH ₂	(II)
				(III) 2 2	
	(1) I > II > III $(3) III > II > I > I$	(2) III > I > II $(4) I > III > II$		$(1) I > II > III \qquad ($ $(3) III > II > I > I \qquad ($	(2) III > I > II $(4) I > III > II$
51.	Among the followin	g compounds the one that is	51.	निम्न यौगिकों में वह एक, जो इ	लैक्ट्रोफिलिक नाइट्रेशन के
	most reactive toward	ds electrophilic nitration is:		प्रति सर्वाधिक क्रियाशील है, है	:-
	(1) Toluene (3) Benzoic Acid	(2) Benzene (4) Nitrobenzene		(1) टालुईन ((2) बेन्जीन (4) जन्मरोटेन्टीन
52.	Identify A is in give	en reaction :-	52.	(3) बन्जाइक अम्ल (दि गई अभिकिया में A पहचानि	4) नाइट्राबन्जान नेए :-
А	$\xrightarrow{O_3/H_2O} CH_3 - C - OH + \bigcup_{\substack{II \\ O}} OH$	CH_3 -C-COOH + (CH_3) ₂ C=O	A	$\xrightarrow{O_3/H_2O} CH_3 - C - OH + $	С–СООН + (CH ₃) ₂ С=О
	(1) CH ₃ -CH=C-CH L CH ₃	$=C\langle CH_3 \\ CH_3 \rangle$		(1) CH_3 -CH=C-CH=C C	CH ₃ CH ₃
	(2) CH ₃ -CH=C-CH I CH=C	[₃ (CH ₃) ₂		(2) CH ₃ -CH=C-CH ₃ I CH=C(CH ₃)	2
53. 54.	(3) Both of above (4) $(CH_3)_2C=CH-C_2$ Which of following (1) CCl_3 -CHO (3) $(CH_3)_3$ -CHO In which reaction m product :-	H=CH-CH ₃ gives aldol reaction :- (2) H ₂ C=O (4) CD ₃ -CH=O najor product is Hoffman's	53. 54.	(3) उपरोक्त दोनों (4) $(CH_3)_2C=CH-CH=CH$ निम्न में कौन एल्डॉल अभिक्रिय (1) CCl_3-CHO ((3) $(CH_3)_3-CHO$ (निम्न में से किस अभिक्रिया में मुख्य बनता है?	I–CH ₃ ग दर्शाते है :- (2) H ₂ C=O (4) CD ₃ –CH=O य उत्पाद हाफमेन नियमानुसार
	(1) CH ₃ -CH ₂ -CHC	$-CH_3 \xrightarrow{CH_3O^{\Theta}} \Delta$		(1) CH ₃ -CH ₂ -CHCl-CH ₃	$\xrightarrow{\text{CH}_3\text{O}^{\Theta}} \xrightarrow{\Delta}$
	(2) CH ₃ -CH ₂ CHCl-	$-CH_3 \xrightarrow{(CH_3)_3 C - O^{\Theta}, \Delta} \rightarrow$		(2) CH ₃ -CH ₂ CHCl-CH ₃	$\xrightarrow{(CH_3)_3C-O^{\Theta}, \Delta}$
	$\begin{array}{c} CH_{3} \\ \oplus I \\ (3) CH_{3}-N-CH_{3} \\ I \\ CH_{3}-CH-CH_{2}-CH_{3} \end{array}$	$CH_3 \xrightarrow{\Delta}$		$(3) \begin{array}{c} CH_{3} \\ \oplus \\ -N - CH_{3} \\ -N - CH_{3} \\ -CH_{3} - CH_{2} - CH_{3} \end{array}$	$\xrightarrow{\Lambda}$
55.	 (4) 2 & 3 both correction Which of following (1) HCHO & CH₃O iodoform test 	ect statement is incorrect ? CHO can be distinguish by	55.	 (4) 2 व 3 दोनों सही है निम्न में से कौनसा कथन असत (1) HCHO तथा CH₃CHO क विभेद कर सकते है। 	य है? को आयोडोफार्म परीक्षण से
	(2) HCOOH & CH ₃ (Tollen's reagent	COOH can be distinguish by		(2) HCOOH तथा CH ₃ COO विभेद कर सकते है।)H का टालन आभकमक से
	(3) HCHO & HCO Tollen's reagent	OH can be distinguish by		(3) HCHO तथा HCOOH को कर सकते है।	टॉलेन अभिकर्मक से विभेद
	(4) HCHO & CH_3C Fehling's solution	OCH_3 can be distinguish by n		(4) HCHO तथा CH ₃ COCH विभेद कर सकते है।	${ m I}_{_3}$ को फेहलिंग विलयन से
12	/ 37	four Target is to secure Good	l Rank	in Pre-Medical 2013	H

Sterring PRE-MEDICAL : ACHIEVER COURSE (PHASE-I : MAW) 30-1 56. Which of following gives iodoform test on heating ? 56. निम्न में से कौन गर्म करने पर आयोडोप देता है? 56. निम्न में से कौन गर्म करने पर आयोडोप देता है? 10 CH ₃ -C-OCH ₃ (2) CH ₃ -C-OC ₂ H ₅ (1) CH ₃ -C-OCH ₃ (2) CH ₃ -C-OC ₂ H ₅ (1) CH ₃ -C-OCH ₃ (2) CH ₃ -C-OC ₂ H ₅ (1) CH ₃ -C-OCH ₃ (2) CH ₃ -C (3) Ph-C-O-CH ₃ (4) CH ₃ -C-OPh (3) Ph-C-O-CH ₃ (4) CH ₃ -C-OPh (3) Ph-C-O-CH ₃ (4) CH ₃ -C-OPh)3–2013 कार्म परीक्षण -OC ₂ H ₅ -OPh
56. Which of following gives iodoform test on heating ? 56. निम्न में से कौन गर्म करने पर आयोडोंग देता है ? (1) CH ₃ -C-OCH ₃ (2) CH ₃ -C-OC ₂ H ₅ (1) CH ₃ -C-OCH ₃ (2) CH ₃ -C-OC ₂ H ₅ (3) Ph-C-O-CH ₃ (4) CH ₃ -C-OPh (3) Ph-C-O-CH ₃ (4) CH ₃ -C-OPh	–OC₂H₅ –OC₽H₅
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-OC ₂ H ₅ -OPh
(3) $Ph-C-O-CH_3$ (4) $CH_3-C-OPh$ (3) $Ph-C-O-CH_3$ (4) $CH_3-C-OPh$	-OPh
Ö Ö Ö	
57. \bigcirc + CH ₂ =CH ₂ $\xrightarrow{\text{AlCl}_3}$ 57. \bigcirc + CH ₂ =CH ₂ $\xrightarrow{\text{AlCl}_3}$	
$A \xrightarrow{Cl_2}{h\nu} B \xrightarrow{KNO_2} :$ $A \xrightarrow{Cl_2}{h\nu} B \xrightarrow{KNO_2} :$	-
$(1) \bigcirc -CH_2 - CH_2 - NO_2 \qquad (1) \bigcirc -CH_2 - CH_2 - NO_2$	
(2) \bigcirc $\stackrel{\text{CH-CH}_3}{\underset{\text{NO}_2}{\overset{\text{I}}{\overset{\text{O}}{\overset{\text{CH-CH}_3}{\overset{\text{I}}{\underset{\text{NO}_2}}}}}$ (2) \bigcirc $\stackrel{\text{CH-CH}_3}{\underset{\text{NO}_2}{\overset{\text{I}}{\underset{\text{NO}_2}}}$	
(3) $O^{-CH_2-CH_2-O-N=O}$ (3) $O^{-CH_2-CH_2-O-N=O}$	
$(4) \bigcirc \stackrel{\text{CH-CH}_3}{\stackrel{\text{I}}{\text{ON=O}}} $ $(4) \bigcirc \stackrel{\text{CH-CH}_3}{\stackrel{\text{ON=O}}{\text{ON=O}}}$	
58. $CH_3-CH_2-CH_2-CI + KCN \longrightarrow$ 58. $CH_3-CH_2-CH_2-CI + KCN \longrightarrow$	
$A \xrightarrow{H^{\oplus}} B \xrightarrow{SOCl_{2}} C \xrightarrow{H_{2}/pd} B \xrightarrow{BOCl_{2}} C \xrightarrow{H_{2}/pd} D ? \qquad A \xrightarrow{H^{\oplus}} B \xrightarrow{SOCl_{2}} C \xrightarrow{H} B$	$aso_4 \rightarrow D$?
(1) $CH_3 - CH_2 - CH_$	
(2) CH_3 -CH-CH ₃ (2) CH_3 -CH-CH ₃ (2) CH_3 -CH-CH ₃	
$(3) CH_2-CH_2-CH_2-OH \qquad (3) CH_2-CH_2-CH_2-OH$	
(4) CH_3 - CH - CH_2 - CH_3 (4) CH_3 - CH - CH_2 - CH_3	
он он	
NH_2 (i) CH = COCI	
59. $\bigcup_{(ii) \text{ $	
NH ₂ NHCOCH ₃ NH ₂ NHCO	OCH ₃
$Br \to Br$ $Br \to Br$	
$(1) \qquad (2) \qquad (2) \qquad (1) \qquad (2) \qquad (2) \qquad (1) \qquad (2) $	
NH ₂ OH NH ₂ OH	
$(3) \bigvee_{\text{Br}} (4) \bigvee_{\text{Br}} (3) \bigvee_{\text{Rr}} (4) \bigvee_{\text{R}} (4) \bigvee_{\text{Rr}} ($	
Mour Target is to secure Good Rank in Dre-Medical 2013	13/37

Path in Such		RE-MEDICAL	2013 (NEET-UG)	30-03-2013
60.	$CH_{3} \xrightarrow{-C} -NH \xrightarrow{-CH_{2}} -CH_{3} \xrightarrow{-KOH} A \xrightarrow{-CHC} +Alc. K$	$\xrightarrow{Cl_3} B$? 60.	CH_3 -C-NH-CH ₂ -CH ₃ \xrightarrow{KOH}_{H_2O}	$A \xrightarrow{CHCl_3} B ?$
	(1) CH ₃ -CH ₂ -NC		(1) CH ₃ -CH ₂ -NC	
	(2) CH ₃ -CH ₂ -COOH		(2) CH ₃ –CH ₂ –COOH	
	(3) CH ₃ -CH ₂ -NH-CH ₃		(3) CH_3 - CH_2 - NH - CH_3	
	(4) CH ₃ –NC		(4) CH ₃ –NC	
61.	$\begin{array}{c} CH_{3}-CH-O-CH_{2}-CH_{3} \xrightarrow{HI} A + B \\ I \\ CH_{3} \end{array}$? 61.	CH_3 -CH-O-CH ₂ -CH ₃ \longrightarrow	• A + B ?
	$A \xrightarrow{PCC} C C'$ does not reduce Tolle	n reagent	A— ^{PCC} →C 'C' टालेन अभिकर्म करता है?	क का अपचयन नहीं
	$B \xrightarrow{H_2O} D$ 'D' reduces Tollen reage	ent		
	A, B, C and D are respectively :-		$B \longrightarrow D D D 2 cent and an a b a constant and a constant a constant$	का अपचयन करता ह ?
	(1) CH ₃ -CH-OH, CH ₃ -CH ₂ -I,		A, B, C एव D क्रमश: ह :-	
	ĊH ₃		(1) CH_3 -CH-OH, CH_3 -CH ₂ - CH ₂	-1,
	CH ₃ -C-CH ₃ , CH ₃ -CH ₂ -OH		$CH_3-C-CH_3, CH_3-CH_2-CH_3-CH_3-CH_3-CH_3-CH_3-CH_3-CH_3-CH_3$	ОН
	(2) CH ₃ -CH-I, CH ₃ -CH ₂ -OH, CH ₃		(2) CH ₃ -CH-I, CH ₃ -CH ₂ -O	H,
	CH ₃ -CH-CH ₃ , CH ₃ -CHO		CH ₃ –CH–CH ₃ , CH ₃ –CHO)
	(3) CH ₃ -CH-OH, CH ₃ -CH ₂ -I, CH ₃		(3) CH ₃ -CH-OH, CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₂ -CH ₃ -C	-I,
	CH ₃ -C-CH ₃ , CH ₃ -CHO		CH ₃ -C-CH ₃ , CH ₃ -CHO O	
	(4) CH ₃ -CH ₂ -I, CH ₃ -CH-CH ₃ , OH		(4) CH ₃ -CH ₂ -I, CH ₃ -CH-Cl OH	H ₃ ,
	CH ₃ -C-CH ₃ , CH ₃ -CH ₂ -OH		CH_3 -C-CH ₃ , CH_3 -CH ₂ -	ОН
62.	$CH_{3}-CH=CH_{2}\xrightarrow{Br_{2}} A\xrightarrow{aq. Na_{2}CO_{3}} A$	B ? 62.	$CH_{3}-CH=CH_{2}\xrightarrow{Br_{2}}A\xrightarrow{aq}$	$ \xrightarrow{Na_2CO_3} B ? $
	(1) CH_3 - CH - CH_2 OH OH OH OH O	CH ₃	(1) CH_3 - CH - CH_2 H (2) OH OH OH	CH ₃ -C-CH ₃ O
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-CH ₂ OH	$\begin{array}{c} (3) CH_3-CH-CH_2 \\ OH Br \end{array} \tag{4}$	CH ₃ CHCH ₂ Br OH
14/	37 Nour Target is to s	ecure Good Rank	in Pre-Medical 2013	

15/37

				MAJOR TEST
Palk in Succes		: PRE-MEDICAL	2013 (NEET-UG)	30-03-2013
68.	$ \bigcup_{\substack{\to \\ +HCl}}^{O=C-CH_3} \xrightarrow{Zn-Hg} A \xrightarrow{Cl_2} B $	68.	$ \overset{O=C-CH_3}{\underbrace{\qquad}} \xrightarrow{Zn-Hg} A \xrightarrow{Cl_2} hv $	→ B
	$\xrightarrow{\text{Alc.}} C $	^{−HCI} → D	Alc. KOH	$\rightarrow C \xrightarrow{HCI} D$
	(1) \bigcirc CH ₂ -CH ₂ -Cl (2) \bigcirc	-CH–CH ₃ Cl	(1) CH_2-CH_2-Cl (2)	CH-CH ₃
	(3) CH=CH-Cl (4) O	-CH–CH ₂ I I Cl Cl	(3) CH=CH-Cl (4)	CH-CH ₂ CI CI
69.	$\begin{array}{c} \mathrm{CH}_2 \mathrm{C} \mathrm{CH}_2 \mathrm{CH} \mathrm{CH}_3 \xrightarrow{\mathrm{HIO}_4} ?\\ \mathrm{I} & \mathrm{I} & \mathrm{OH} & \mathrm{OH} \end{array}$	69.	$\begin{array}{c} CH_2\text{-}C\text{-}CH_2\text{-}CH\text{-}CH_3 \underline{ HIO_4}\\ I & I \\ OH & O \\ OH \end{array}$	→ ?
	(1) CH_3 -CHO + CH_3 -C-CH ₃ O		(1) CH_3 -CHO + CH_3 -C-CH O	3
	(2) HCHO + HOOC–CH ₂ –CH–CH I OH	3	(2) HCHO + HOOC- CH_2 - CH_2	H–CH ₃ H
	(3) H–CHO + CH_3 –CHO + CH_3 –	СНО	(3) H–CHO + CH_3 –CHO +	CH ₃ –CHO
	(4) HCOOH + HOOC- CH_2 - $C-CH_2$ O	3	(4) HCOOH + HOOC– CH_2 –	C–CH ₃ O
70.	$Ph-Cl + NaOH \longrightarrow A \xrightarrow{CH_3-Cl} A$	→B 70.	$Ph-Cl + NaOH \longrightarrow A \longrightarrow$	$\xrightarrow{H_3-Cl} B$
	A and B are :-		A एवं B है :-	
	(1) PhONa, Ph–O–CH ₃		(1) PhONa, Ph–O–CH ₃	
	(2) Ph–OH, Ph–O–CH ₃		(2) Ph–OH, Ph–O–CH ₃	
	(3) Ph–O–Ph		(3) Ph–O–Ph	
	(4) Ph–CH ₂ –Ph		(4) Ph–CH ₂ –Ph	
71.	$CH_{3}-CH_{2}-C\equiv N \xrightarrow{(i) CH_{3}MgBr}{(ii) H_{3}O^{\oplus}} ?$	71.	$CH_3-CH_2-C\equiv N \xrightarrow{(i) CH_3MgBr}_{(ii) H_3O^{\oplus}}$	→ ?
	(1) CH_3 - CH_2 - C - CH_3		(1) CH_3 - CH_2 - C - CH_3 O	
	(2) $CH_3-CH_2-C-CH_2-CH_3$		(2) CH_3 - CH_2 - C - CH_2 - CH_3	
	(3) CH ₃ -CH ₂ -CH=NH		(3) CH_3 - CH_2 - CH = NH	
	(4) CH_3 - CH_2 - C =NH CH_3		(4) CH_3 - CH_2 - C =NH CH ₃	

17/37

TARGET : PRE-MEDICAL 2013 (NEET-UG)

MAJOR TEST 30-03-2013

87.
$$CH_3-C-O-CH=CH-CH_3 \xrightarrow{H^{\oplus}}_{H_2O}$$
?
(1) $CH_3-C-OH + CH_3-C-CH_3$
(2) $CH_3-C-OH + CH_3-CH=CH-OH$
(3) $CH_3-COOH + CH_3-CH_2-CHO$
(4) $CH_3-C-O-CH_3 + CH_3-CHO$

88. For the following :

(a) I^- (b) CI^- (c) Br^-

The increasing order of nucleophilicity would be:

- (1) $Br^{-} < Cl^{-} < I^{-}$
- (2) $I^- < Br^- < Cl^-$
- (3) Cl⁻ < Br⁻ < l⁻
- (4) $I^- < Cl^- < Br^-$
- **89.** Which is aromatic heterocyclic :-

- 90. $CH_3-CH=CH_2 + HCl \longrightarrow A \xrightarrow{Na} B$ 'B' is also obtained in :-(1) $CH_3-CH-Cl \xrightarrow{Zn+HCl}$ L CH_3
 - (2) CH_3 -CH-COONa $\xrightarrow{electrolysis}$ I_CH_3 (3) $(CH_3)_2CH$ -COONa $\xrightarrow{NaOH}{+CaO}$

87. $CH_3-C-O-CH=CH-CH_3 \xrightarrow{H^{\oplus}}_{H_2O} ?$ (1) $CH_3-C-OH + CH_3-C-CH_3$ (1) $CH_3-C-OH + CH_3-CH=CH-OH_3$ (2) $CH_3-C-OH + CH_3-CH=CH-OH_3$ (3) $CH_3-COOH + CH_3-CH_2-CHO$ (4) $CH_3-C-O-CH_3 + CH_3-CHO$ 88. निम्नलिखित की

(a) I⁻
(b) Cl⁻
(c) Br⁻
(l) Br⁻ < Cl⁻ < l⁻

$$(2) I^- < Br^- < Cl^-$$

$$(3) \operatorname{Cl}^{-} < \operatorname{Br}^{-} < \operatorname{I}$$

 $(4) I^- < Cl^- < Br^-$

89. कौन एरोमैटिक विषमचक्रीय है :-

90. CH₃-CH=CH₂ + HCl → A $\xrightarrow{Na}_{dry \text{ ether}}$ B 'B' निम्न में भी प्राप्त होता है :-

(1)
$$CH_3$$
-CH-Cl $\xrightarrow{Zn+HCl}$
 H_{CH_3}

(2)
$$CH_3$$
-CH-COONa $\xrightarrow{electrolysis}$

(4) All

				MAJOR TEST
Path is Suit	PRE-MEDICAL : AC	HIEVER COU	JRSE (PHASE-I : MAW)	30-03-2013
91.	Read the following statement :-	91.	निम्न कथनों को पढ़िये-	
	(A) Banana and Bamboo is a perenial pl	ant but	(A) बॉस और केला बहुवर्षीय पाद	प है। लेकिन उनमें पुष्पन
	flowering and fruiting take place one	ce	और फलन एक बार ही होता	है।
	(B) In biennial plant flowering and fruiting	ng take	(B) द्विवर्षीय पादप में पष्पन तथा (और फलन एक बार होत
	place once		्र) रद्ध र स र स र र यु र र स स है।	
	(C) Flower is a modified stem		ए। (C) प्रधा क्रागंतरित तना है।	
	(D) Androecium and gynoecium is kno	own as		$\frac{1}{1}$
	essential whorl of flower		(D) पुमग आर जायांग पुष्प क उ िन्ने न्यून न्यू के	१।वश्यक चक्र हात ह।
	How many statements are incorrect :-		कितन कथन गलत ह-	
	(1) 1 (2) 2 (3) 3 (4)	4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$) 3 (4) 4
92.	In which of the following both drum stick	and y- 92.	निम्न में से किसमें ड्रम स्टिक व y	-स्पॉट दोनों पाये जाते हैं:-
	spot are present : -		(1) टर्नर सिन्ड्रोम	
	(1) Turner's syndrome		(2) क्लाइन फेल्टर सिन्ड्रोम	
	(2) Klinefelter's syndrome(3) Jacob's syndrome		(3) जेकब सिन्ड्रोम	
	(4) Super female		(4) सुपर फिमेल	
93.	In angiosperms generally anther is :-	93.	एंजियोस्पर्म में सामान्यतया परागक	गेश होता है–
	(A) Bilobed (B) Dithecous		(A) द्विपालित (B) द्विकोष्ठकी
	(C) Tetrasporangiate (D) Monotheco	us	(C) टेट्रास्पोरेन्जियट (D) एक कोष्ठकीय
	(1) A and B (2) A, B and C		(1) A और B (2)	A, B तथा C
	(3) A, B, C, D (4) A, C, D		(3) A, B, C, D (4)	A, C, D
94.	Select out the odd one : -	94.	विषम का चयन कोजियें : -	
	(1) TDF		(1) TDF	
	(2) Porcupine skin		(2) पॉरक्यूपाइन त्वचा	
	(3) Pattern baldness		(3) प्रारूपिय गंजापन	
~ -	(4) Hyper trichosis		(4) रोमातिवृद्धि	
95.	Which one of the following is correct with	respect 95.	ानम्नालाखत म स कान सा एक पाल	तनाकट क सन्दभ म सहा
	to pollen kitt ?	6.1	हे?	N
	(A) It protect pollen grain from the n	armful	(A) ये परागकणों को हानिकारक परा	बेंगनी विकिरणों से बचाती
	(B) Its sticky surface halps pollen grain to	attach	है।	
	with the insect		(B) इसका चिकना सतह परागका में मनगन करनी है।	गा का काटा स ।चपकन
	(C) Pollen kitt is present in the poll	ens of	म सहायता फरता ह। (C) कोट प्रगणित पाटणें के प्राणत	न्मों पर पोलेन किन्ट दोती
	entomophilous plant		्ट) पगट गरागरा भाषभा पर गरागप हे	
	(1) A, B and C (2) A and B		(1) A, B तथा C (2)	A तथा B
	(3) B and C (4) A and C		(3) B तथा C (4)	A तथा C
96.	If a cross is performed between heterox	zygous 96.	यदि विषमयुग्मको पीली त्वचा वाले	ो चूहों का संकरण कराया
	yellow skin mice, what would be phenotypi	c ratio-	जाता है तो संतती का लक्षण प्रारू	प निम्न में से होगा : -
	(1) 3 : 1 (2) 1 : 2		(1) 3 : 1 (2)	01:2
	(3) 2 : 1 (4) 1 : 2 : 1		(3) 2:1 (4)	1:2:1
97.	Select out the wrong match :-	97.	गलत मिलान का चयन कोजिए–	0
	(1) Mango - Single ovule		(1) आम - एक	त्र बाजाण्ड
	(2) Paddy - Single ovule		(2) 비타 - एक (2) 한* - -	े बाजाण्ड के सम्ब
	(3) Wheat - Many ovule		(3) गहू - कइ	्बाजाण्ड जीनगण्ड
	(4) Papaya - Many ovule		(4) पंपाता - केइ	્ બાગાગ્ડ

Path to Succ		PRE-MEDICA	. 2013 (NEET-U	G)	30-03-2013
98.	During the DNA fingerprinting process, the ste performed after blotting is : - (1) Autoradiography (2) Hybridisation (3) Denaturation	s, the step 98	DNA फिंगर प्रिनि चरण सम्पादित हो (1) ऑटोरेडियो ग्र (2) संकरण (3) विकृतिकरण	टग के दौरान ब्लॉर्गि ता है : - 11फि	टेंग के उपरान्त कौनसा
99.	 (4) Digestion In flowering plant, what will be the ploidy of the cell of the nucellus, megaspore mother cell, the functional megaspore and female gametophyterespectively :- (1) 2n, 2n, n, n (2) 2n, 2n, n, 2n 	idy of the r cell, the netophyte , 2n	(4) पाचन (विघट पुष्पीय पादपों में क्रियात्मक गुरूबी गुणिता क्रमश: क्य (1) 2n, 2n, n, n	.न) बीजाण्डकाय, गुरू जाणु तथा मादा युग ग होगी– n (2) 2	बीजाणु मातृकोशिका, मोद्भिद कोशिका की n, 2n, n, 2n
100.	 (3) 2n, 2n, 2n n (4) n, n, n, n Which of the following is not the use of DNA finger printing analysis : - (1) Application in forensic science (2) Determination of population diversity (3) Determination of genetic diversity (4) Determination of various classes of satellity 	e of DNA 1 (sity of satellite	 (3) 2n, 2n, 2n (3) 2n, 2n, 2n (4) 20, 20 (5) 20, 20 (6) 20 (7) 20 (7) 20 (8) 20 (7) 20	n (4) n रंग विश्लेषण का उप र : - (फोरोन्सिक) विज्ञा धता का निर्धारण वैविधता का निर्धार	ı, n, n n ग्योग निम्न में से किसमें न ण
101.	DNA If 2n = 40, the number of chromosome in nucellu egg cell, integument, synergid, embryosac woul be :- (1) 40, 20, 40, 20, 60 (2) 40, 20, 40, 20, 20 (3) 40, 20, 20, 40, 60	n nucellus 10 sac would	 (4) सटलाइट DN यदि 2n = 40 तो ¹ सहायक कोशिका त होगी - (1) 40, 20, 40, (2) 40, 20, 40, (3) 40, 20, 20, 	A क ावावध वग बीाजाण्डकाय, अण् तथा भ्रूणकोष में गुण 20, 60 20, 20 40, 60	िका निधारण डकोशिका, अध्यावरण सूत्रों की संख्या कितनी
102.	 (4) 20, 20, 20, 40, 60 Any Allelic sequence variation has traditionall been described as DNA polymorphism if mor than one allele at a locus show : - (1) Frequency greater than 0.01 (2) Frequency less than 0.01 (3) Frequency less than 0.01% 	ditionally 10 n if more	 (4) 20, 20, 20, (4) 20, 20, 20, (2) 6कसी एलील अनुव्र तब माना जाता है र दर्शाते है : - (1) 0.01 से अधि (2) 0.01 से कम (3) 1.0 से अधिव (4) 0.01% से क 	40, 60 हम को परम्परागत र जब एक लॉकस पर क आवृति की बहुरू हम आवृति की बहुरू कम आवृति की बहुरू	रूप से DNA बहुरूपता १ एक से ज्यादा एलील हुरूपता पता रूपता इरूपता
103.	 Read the following statement carefully :- (A) In angiosperm both type of gametes are motil (B) In angiosperm generally pollination of polle grain occurs at 2 celled stage (C) Egg apparatus consists of two synergids an one egg cell (D) Group of three cell are at the micorpylar en are called the antipodal How many statement is correct and incorrect:- (1) 3 correct - 1 incorrect (2) 2 correct - 2 incorrect (3) 4 correct - 0 incorrect 	y :- 10 are motile a of pollen ergids and rpylar end ncorrect:-	 निम्न कथनों को ध (A) आवृत्तबीजी (B) आवृत्तबीजी कोशिकीय अ (C) अण्ड अपकर कोशिका उपी (D) बीजाण्ड द्वारी प्रतिमुखी को कितने कथन सही (1) 3 सही - 1 ग (2) 2 सही - 2 ग (3) 4 सही - 0 ग (4) 1 सही- 3 गत 	ज्यान पूर्वक पढ़िये- में दोनों प्रकार के में परागकण का प वस्था में होता है। ण में दो सहायक क स्थित होते है। य क्षेत्र पर तीन को शिका कहा जाता है और गलत है- लित लित लित	युग्मक चल होते हैं। गरागण सामान्यतया दो ोशिका और एक अण्ड शिकाओं के समूह को

				MAJOR TEST
Path to Succe		ER COL	JRSE (PHASE-I : MAW)	30-03-2013
104.	(A) DNA of same cell show high degree of	104.	(A) एक ही कोशिका का DNA उ दर्शाता है	च्च श्रेणी की बहुरूपता
	(B) Every tissue from an individual show same		(B) एक व्यक्ति का प्रत्येक ऊतक स	मान आवत्ति की DNA
	degree of polymorphism		बहरूपिता दर्शाता है	
	(C) Every offspring of same parents show same		(C) समान पैतक की सभी संततियों में	समान प्रकार की DNA
	degree of DNA polymorphism		बहरूपिता पाई जाती है	
	(D) All organisms of same species show variable		(D) एक ही जाति के सभी जीवों में	ं विविध प्रकार DNA
	degree of DNA polymorphisms		बहुरूपिता पाई जाती है	
	How many statements are correct		् निम्न में से कितने कथन सत्य है।	
	(1) Four (2) Three (3) Two (4) One		(1) चार (2) तीन (3) उ	दो (4) एक
105.	Cleistogamous flower are :-	105.	अनन्मील्य परागणी पष्प होते हैं-	
	(A) Do not open at all	1000	(A) कभी अनावत नहीं होते हैं	
	(B) Bisexual		(B) द्विलिंगी	
	(C) Always Show autogamy		(C) हमेशा स्वयग्मन पटर्शित करते	충
	(D) Ecologically show cross pollination		(D) इकोलोजिकली प्राप्तामण दर्शा	ੇ ਰੇ ਤੋ
	(1) A, B and C correct		(1) A B तथा C सही	
	(2) A, B, C, D all correct		(1) A, B, C, D सभी सही	
	(3) A, B, correct		(3) A, B, सही	
	(4) A, C, D correct		(4) A, C, D सही	
106.	Classification of satellite DNA into many	106.	सेटेलाइट DNA का विविध श्रेणियों	ं में वर्गीकरण निम्न में
	categories is based on : -		से किस पर आधारित है : -	
	(1) Base composition		(1) क्षार संयोजन	
	(2) Length of DNA Segment		(2) DNA खण्डों की लम्बाई	
	(3) Number of repetitive units		(3) पुनरावर्त इकाईयों की संख्या	
	(4) all the above		(4) उपरोक्त सभी	
107.	Select out correct statement with respect to	107.	वायु परागण के संदर्भ में सही कथन	1 का चुनाव करो-
	Anemophily :-		(A) परागकण छोटा और हल्का होन्	ना चाहिए
	(A) Pollen grain should be small and light		(B) वायु परागित पुष्प में अण्डाशय में	सामान्यत: एक बीजाण्ड
	(B) Anemophilous flowers are generally have		होते हैं	
	single ovule in each ovary		(C) घासों में परागण वाय द्वारा होत	। है
	(C) In grasses pollination occurs through air		(1) एक सही है	
	(1) One is correct		(1) रो मही है	
	(2) Two is correct			
	(3) Two is correct and one is wrong		(3) दा सहा एक गलत ह	
100	(4) All are correct		(4) सभी सही है	~ ~ ~ ~ ~
108.	At 1.4 million locations in numan genome there is presence of variation with respect to single base	108.	मानव जानीम में 1.4 मिलियन स्थल	ऐसे हैं जहाँ केवल एक
	these variations are called : -		क्षार की विविधता पाई जाती है, ये	स्थल कहलाते है : -
	(1) ORF (2) LITE (3) SNPs (4) VNTR		(1) ORF (2) UTR (3) S	SNPs (4) VNTR
109.	In angiosperm entire part of the nucellus is utilized	109.	अधिकांश एन्जियोस्पर्म में बीजाएड	काय का सम्पर्ण भाग
1071	by developing embryosac but in some	107.	विकसित होते हुए भ्रुणकोष द्वारा उप	योग में ले लिया जाता
	angiosperm some part of nucellus remain inside		है। परन्त कुछ एन्जियोस्पर्म में बीज	ण्डकाय का कुछ भाग
	the ovule that part of nucellus present in side the		बीजाण्ड में शेष रह जाता है जो कि	बीज में उपस्थित रहता
	seed known as :-		है जिसे कहा जाता है-	
	(1) Aril (2) Perisperm		(1) एरिल (2)	परिभ्रूणपोष
	(3) Pseudoembryosac (4) Sarcotesta		(3) आभासी भ्रणकोष (4)	सारकोटेस्टा
			(-)	

23 / 37

Path to Succ	ALLEN TARGET : PRE-MEDICAL 2013 (NEET-UG)				30-03-2	013	
110.	Which of the following during sequencing of h (1) Sequence annotatio (2) Expressed sequence	approach/aproaches used uman genome : - n e tags	110.	 मानव जीनोम की अनुक्रम बनाने के दौरान निम्न में से प्रक्रम प्रयोग की जाती है : - (1) व्यक्त अनुक्रम घुँड़ी (सिक्वेंस एनोटेशन) (2) अनुक्रम टिप्पण 			
111.	 (3) Southen blotting (4) Both (1) & (2) Match the column I with correct answer : 	n column II and select the	111.	(3) सदर्न-ब्लॉटिंग (4) (1) व (2) दोनों स्तम्भ I और स्तम्भ II मिल कोजिप-	ान कर	सही उत्तर का	चुनाव
	Column I (A) Ovule (B) Ovary (C) Egg cell (D) Inner integument	Column II(i)Fruit(ii)Seed(iii)Embryo(iv)Tegmen		स्तम्भ I (A) बीजाण्ड (B) अण्डाशय (C) अण्ड कोशिका	(i) (ii) (iii)	स्तम्भ II फल बीज भ्रूण	
l	 (E) Outer integument (1) A-iii, B-i, C-ii, D-i (2) A-iii, B-ii, C-i, D-v (3) A-ii, B-i, C-iii, D-i 	(v) Testa v, E-v v, E,iv v, E-v		 (D) आन्तरिक अध्यावरण (E) बाह्यअध्यावरण (1) A-iii, B-i, C-ii, D-iv (2) A-iii, B-ii, C-i, D-v (3) A-ii, B-i, C-iii, D-iv 	(iv) (v) v, E-v , E,iv v, E-v	टेगमन टेस्टा	
112.	 (4) A-i, B-iii, C-ii, D-v The accessibility of prokaryotic DNA is in the inter action of prote (1) Promoter (2) Parabase 	 F, E-iv promoter regions of many cases regulated by eins with : - (2) Operator 	112.	 (4) A-i, B-iii, C-ii, D-v, E-iv असीमकेन्द्रकी DNA में उन्नायक (प्रोमोटर) स्थल उपलब्धता निम्न में से किसके साथ प्रोटीन की विशेष श्रृंखल की अन्योन्य क्रिया द्वारा निर्धारित होती है। : - (1) उन्नायक (प्रमोटर) (2) प्रचालक (ऑपरेट 			
113.	(3) Regulator Castor, coconut whe out of the given examp endospermic seed :-	(4) Structural gene eat, pea, Bean, Maize ples, how many are non	113.	(3) नियन्त्रक अरण्ड, नारियल, गेहूं, मटर, दिये गये उदाहरणों में से कित	(4) र सेम, म ाने अभ्र्	सरचनात्मक जा किका [णपोषी बीज है 3 (1)	- - 1
114.	 (1) 1 (2) 2 Which of the following serespect to operon? (1) Single promoter for (2) Polycistronic m-RN (3) Glucose results in i 	(3) 3 (4) 4 statement is incorrect with three structural genes IA formation	114.	 (1) 1 (2) 2 ऑपेरोन के सन्दर्भ में असत्य (1) तीन संरचनात्मक जीन वं (2) पॉलीसिस्ट्रोनिक m-RN. (3) ग्लुकोज Lac ओपेरॉन व 	(3) . कथन ते लिए A का 1 का प्रेरण	का चयन कोरि एक प्रोमोटर निर्माण ा करता है	। जये : -
115.	 (4) Repressor shows need (4) Repressor shows need (5) Egg apparatus always (6) Egg apparatus always (7) Egg apparatus always (8) Egg apparatus always 	egative control nt :- ays occurs at micropylar	115.	(4) निरोधक ऋणात्मक निय सही कथन का चुनाव कोजि (A) अण्ड उपकरण हमेशा बी है।	न्त्रण दः ए– जाण्डद्व	र्शाता है गरीय छोर पर पार	या जाता
	 (B) Formation of function megaspore moth megagametogenesi (C) Formation of em megaspore (1) Only A and B (3) Ony A and C 	(4) All A, B, and C		 (B) गुरूबीजाणु मातृ कोशिक बनने की प्रक्रिया गुरू र (C) भ्रूणकोष का निर्माण गुर (1) केवल A और B (3) केवल A और C 	ा से क्रि पुग्मकज ब्बीजाए (2) व (4) 4	ज्यात्मक गुरूबीच ननन कहलाती है गु के द्वारा होता केवल B और (A, B तथा C स	नाणु के हे है टु नभी

PRE-MEDICAL : ACHIEVER COURSE (PHASE-I : MAW)

- **116.** Main level of regulation of gene expression in prokaryotes is : -
 - (1) Translational
 - (2) Transcriptional
 - (3) Processing RNA
 - (4) Post transcriptional
- 117.

Which condition is shown in above diagram ?

- (1) Multicarpellary, syncarpous pistil of papaver
- (2) Multicarpellary, apocarpous pistil of papaver
- (3) Multicarpellary, syncarpous pistil of michelia
- (4) Multicarpellary, apocarpous pistil of michelia

For given pedigee the gene responsible for the disease can be : -

- (1) Autosomal recessive
- (2) Auto somal dominant
- (3) Sex linked recessive
- (4) Both (1) & (3)
- **119**. Chronic myloid leukemia [CML] disease is an example of :-
 - (1) Simple translocation
 - (2) Shift translocation
 - (3) Reciprocal translocation
 - (4) Monosomy

- 116. प्रोकेरियोटिक जीवों में जीन का नियन्त्रण मुख्यतया किस स्तर पर होता है : -
 - (1) अनुवाद
 - (2) अनुलेखन
 - (3) RNA की प्रोसेसिंग
 - (4) उत्तर अनुलेखन स्तर पर

उपरोक्त चित्र में कौन सी स्थिति दर्शाई गई है?

- (1) पेपेवर का बहुअण्डपी, युक्ताण्डपी स्त्रीकेसर
- (2) पेपेवर का बहुअण्डपी, वियुक्ताण्डपी स्त्रीकेसर
- (3) माइचेलिया का बहुअण्डपी, युक्ताण्डपी स्त्रीकेसर
- (4) माइचेलिया का बहुअण्डपी, वियुक्ताण्डपी स्त्रीकेसर

दी गई वंशावली में, बिमारी के लिए उत्तरदायी जीन निम्न में से हो सकता है : -

- (1) अलिंगी अप्रभावी
- (2) अलिंगी प्रभावी
- (3) लिंग सहलग्न अप्रभावी
- (4) (1) व (3) दोनों
- 119. 'क्रोनिक माइलोइड ल्यूकेमीया ' [CML] रोग निम्न का उदाहरण है :-
 - (1) सरल स्थानान्तरण
 - (2) शिफ्ट स्थानान्तरण
 - (3) व्युत्क्रम स्थानान्तरण
 - (4) मोनोसोमी

😳 हमेशा मुस्कराते रहें ।

25 / 37

					MAJOR TEST
Path is Succe		GET : PRE-MEDIC	AL 2	013 (NEET-UG)	30-03-2013
120.	Which of the following is corresex linked inheritance : -	ct with respect to 1	120.	लिंग सहलग्न वंशागति के सन्दर्भ में जि सत्य है : -	नम्न में से कौनसा कथन
	(1) Mother passes the sex linked	trait to sons only		(1) माता केवल पुत्र को लिंग सहल	न जीन प्रदान करती है
	(2) Dominant sex linked alleles males	express more in		(2) प्रभावी लिंग संहलग्न जीन नर मे	ं ज्यादा प्रदर्शित होते है
	(3) Sex linked allele can transm to son	itted from father		(3) लिंग सहलग्न जीन पिता से पुत्र है	में प्रवाहित हो सकता
	(4) Shows similar results for re-	eciprocal crosses		(4) व्युत्क्रम संकरण में समान परिण	ाम
121.	In human-evolution the first agriculture :-	man who started 1	121.	मानव के उद्विकास में उत्पन्न पूर्वज प्रारम्भ की :-	जिसने प्रथम बार कृषि
	(1) Cromagnon man			(1) क्रॉमेग्नॉन मानव	
	(2) Neanderthal man			(2) नीएन्डरथल मानव	
	(3) Homo sapiens sapiens			(3) होमो सेपियन्स सेपियन्स	
	(4) Peking man			(4) पेकोंग मानव	
122.	The wheat grain colour is control of polygenes. What proportion	olled by two pairs of progeny in F_2	122.	गेहूँ में दानों का रंग पोलीजीन्स नियन्त्रित होता है। F_2 पीढी में ति	। के दो युग्मों द्वारा केतने प्रतिशत संतती
	$\begin{array}{c} \text{generation show parental phen} \\ (1) 2/16 \\ (2) 0/ \end{array}$	16		पैतृक लक्षण प्रारूप दर्शाती है :	-
	$(3) \frac{4}{16} \qquad (4) 1($)/16		(1) 2/16 (2) 9	9/16
123.	Find out unmatched :-	1	123	(3) 4/10 (4) 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3	10/16
	(1) Chemical mutagen \rightarrow Must (2) Antibiotics \rightarrow Neomycin a (3) Aneuploidy \rightarrow Change in s	ard gas & HNO ₂ nd streptomycin structure of	123.	(1) रासायनिक उत्परिवर्तन \rightarrow मस्ट (2) प्रतिजैविक \rightarrow निओमाइसिन एव	ई गैस एवं HNO2 वं स्ट्रेप्टोमाइसिन
	chromosome (4) Autotriploid plants $\rightarrow Cyan$	s nodon and rose		 (3) असुगुणिता → गुणसूत्र की सरग (4) स्वत्रिगुणित पादप → <i>दूबघास</i> 	वना में परिवर्तन एवं गुलाब
124.	Linkage is unexceptionally abse (1) Two gene present on homelogous pair of abrom	nt between : - 1 same arms of	124.	सहलग्नता निरपवाद रूप से जि अनुपस्थित होती है: -	नम्न में से किसमें
	(2) Two gene present on di	fferent arms of		(1) एक समजात गुणसुत्राय युग्म का वाले जीन्स	समान भुजा म पाय जान
	homologous pair of chrome	osomes		(2) एक समजात गुणसुत्रीय युग्म क में पाये जाने वाले जीन्स	ो भिन्न-भिन्न भुजाओं
	of non homologous chrome	osomes		(3) दो असमजात गुणसूत्रीय युग्मों क जाने वाले दो जीन्स	ो लम्बी भुजाओं में पाये
	(4) All the above			(4) उपरोक्त सभी	
125.	Male moths recognize females of sensing chemical signals called p is an example of –	of their species by 1 pheromones. This	125.	नर मॉथ उनकी जाति की मादा मॉथ संकेतों, जिन्हें फीरोमोन्स कहते है, द्वारा प है —	को संवेदी रासायनिक ग्हचानता है, यह उदाहरण
	(1) Gametic isolation			(1) युग्मकीय पृथक्करण का	
	(2) Habitat isolation			(2) आवासीय पृथक्करण का	
	(3) Behavioural isolation			(3) व्यावहारिक पृथक्करण का	
	(4) Mechanical isolation			(4) यांत्रिक पृथक्करण का	

				MAJOR TEST
Parts to Succe		DICAL	2013 (NEET-UG)	30-03-2013
127.	Find out unmatched –	127.	असंगत को छाँटिये –	
	(A) Australopithecus \longrightarrow Bipadal locomotion		(४) ऑस्ट्रेलोपिथिकम 📥 दिपाट	गमन
	(B) Pithecanthropus eractus \longrightarrow Erect Ape man			र्तन कि मानन
	(C) Proconsul \longrightarrow Orthognathus Jaw		(D) पिथिकन्स्रापस इरक्टस → जव	य काप मागय
	(D) Homo erectus Pekinensis \rightarrow Less develop		(C) प्राकान्सल → आथाग्नथस जब	
	(E) Chromagnon man — Started domestication		(D) होमो इरैक्टस पीकनीन्सस → अल्प	विकसित ठोड़ी उपस्थित
	of animals		(E) क्रोमेग्नन मानव →जन्तुओं क	ो पालना प्रारम्भ किया
	(1) A and C (2) B and C		(1) A तथा C (2)	3 तथा C
	(3) B and E (4) C and D		(3) B तथा E (4)	C तथा D
128.	The factors influencing crossing over include all	128.	निम्न में से किसके सिवाय शेष सभी जी	न विनिमय को प्रभावित
	except : -		करते है : -	
	(1) The physical distance between two genes		(1) दो जोन के बोच भौतिक दूरी	
	(2) Age $\alpha = \frac{1}{1}$		(2) आय ∝ <u>1</u>	
	deg ree of crossin g over		र् जीन विनिमय की आवृति	
	(3) Amount of heterochromatin		(3) हेटेरोक्रोमेटीन की मात्रा	
	(4) Size of non homologous chromosomes		(4) असमजात गुणसूत्रों को आमाप	
129.	In prokaryotes frequency of mutation is high as	129.	प्रोकेरियोट्स में उत्परिवर्तन की आवृति	यूकेरियोट्स की तुलना
	compared to eukaryotes, why :-		में अधिक होती है, क्यों :-	
	(1) Due to the presence of 70 ribosomes		(1) 70 राइबासाम का उपस्थित के	कारण
	(2) Due to the absence of chloroplast		(2) क्लाराप्लास्ट का अनुपास्थात क	कारण
	(3) Due to the presence of naked DNA			्रण
130.	Calvin Bridges stated that instead of XY	130	(4) नग्न DNA का जनुपास्थात क केल्विन बीज ने कहा की XY गण	फारण सत्र की बजाय जेनिक
2000	chromosomes, sex is determined by the genic	100	संतलन दारा लिंग का निर्धारण हो	जुन मा निगम नगर गहै। XX + 3A व
	balance. What would be the sex of drosophila		$XV \pm 3A$ के केरियोटाइप वाले डोग	गेफिला का लिंग निम्न
	having XX + 3A & XY + 3A karyotype		AT + 5A के कार्यालय कारा जुल	
	(1) Inter sex & Metafemale		म स होगा (1) इन्टरमेक्स व मेटाफिमेल	
	(2) Metafemale & Intersex		(2) मेटाफिमेल व इन्टरसेक्स	
	(3) Intersex & Normal male		(3) इन्टरसेक्स व सामान्य नर	
121	(4) Intersex & Meta male	1.21	(4) इन्टरसेक्स व मेटामेल	->
131.	nitrogenous base by another nitrogenous base is	131.	DNA का सामान्य सरचना म एक नाइ चाटरोजची से विस्वार्गांच 'A' कटलाता है	ट्राजना क्षारक का अन्य एतं एटीनीन का ग्लानीन
	called as 'A' and replacement of adenine by		नाइट्राजना स विस्थापन A फहलाता ह	९५ ९७। नान का ग्यानान
	guanine is called as 'B'. In the above statement A		द्वारा जिस्यायन \mathbf{D} फर्रुलाता हा उपरोक्त कथन में Δ एवं \mathbf{B} पर्यक्त ह	ਧ <u>है</u>
	(1) A \rightarrow Substitution B \rightarrow Transition		(1) A \rightarrow yfrælur	 २ २ २ - B → सक्रांति
	(1) A \rightarrow Point mutation B \rightarrow Transversion		(2) $A \rightarrow \overline{arg}$ 3ryRad	$B \rightarrow 33$ नपथन
	(3) A \rightarrow Frame shift mutation B \rightarrow Transversion		(3) A → फ्रेम शिफ्ट उत्परिवर्तन	$B \rightarrow 3$ अनुपथन
	(4) Both (2) and (3)		(4) (2) व (3) दोनों	~
132.	A women carrier for albinism as well as	132.	एक महिला के रंजकहीनता तथा वर्णान	धता के विषय में वाहक
	colourblindness will produce how many types of		है तो वह कितने प्रकार के युग्मक पै	दा करेगी : -
	gametes: - (1) Two (2) Three (3) Four (4) One		(1) दो (2) तीन (3) ⁻	वार (4) एक
	(1) 1 wo (2) 1 mee (3) 1 0 m (4) 0 m		(1) = (2) (11) (3)	ייג (ד) איי

28 / 37

			MAJOR TEST
Path is Succe	ALLEN TARGET : PRE-ME	DICAL	2013 (NEET-UG) 30–03–2013
141. 141. 142. 143.	 Near about the carboniferous period all the presenday continents formed a single large land mass called:- Alligators Pangaea Country Two non allelic genes located on single chromosome can show : - Dominant-recessive relation Segregation Independent assortment Linkage Which statement is correct regarding human fosslis :- Fossils of homo neanderthalensis is obtain recently from South Africa Neanderthal & cro-magnon man lived together for sometime on the earth Fossils of Austrapithecus are obtain from Australia Homo erectus erectus evolved before homohabilis Choose the incorrect statement with respect to chromosomal sex determination : - In some insects male & female have different number of chromosome All insects show sex determination similar to human beings 	141. 142. 143. 144.	 कार्बोनिफेरस पीरियड के लगभग समीप समय में आज के विभिन्न भौगोलिक क्षेत्र एक साथ एक ही बड़े भाग पर स्थित थे, इसे क्या कहते हैं :- पडीयाल प्रिमण्डल पेन्जीया पेन्जीया पेन्जीया पेन्जीया पेन्जीया पेन्जीया पेन्जीया पेत्री एक ही गुण सूत्र पर पाये जाने वाले दो नॉन एलीलिक जीन्स निम्न में से क्या दर्शा सकते है : - प्रभावी-अप्रभावी सम्बन्ध पृथक्करण स्वतन्त्र अपव्यूहन सिहलग्नता मानव जीवाश्म के संबंध में कौनसा कथन सही है :- निएन्डरथल मानव के जीवाश्म अभी हाल ही दक्षिण अफ्रीका से प्राप्त किये गये (2) निएन्डरथल तथा क्रोमेग्नन मानव पृथ्वी पर कुछ समय साथ-साथ रहे (3) आस्ट्रेलोपिथेकस के जीवाश्म आस्ट्रेलिया से प्राप्त किये गये समी होमोइरेक्टस इरेक्टस का विकास होमोहेबिलस से पूर्व हुआ गुणसुत्रीय लिंग निर्धारण में असत्य कथन का चयन कीजिये : - (1) कीटों के एन्ड्रोस्पर्म में आइडियोसोम अनुपस्थित होता है (2) कुछ कीटों में नर व मादा में गुणसूत्रों की संख्या भिन्न-भिन्न होती है (3) सभी कीटों का लिंग निर्धारण मनुर्प्यों के समान होता है
145.	 (4) In birds both male and female have the same number of chromosomes A = Natural selection B = Variations & their inheritance C = Survival of fittest 	145.	 (4) पक्षियों में नर व मादा में समान संख्या में गुणसूत्र पाये जाते है A = प्राकृतिक वरण B = विभिन्नताऐ व उनकी वंशागति C = योग्यतम की उत्तरजीवीता
146.	D = Struggle for existence correct sequence, according to darwinism, are : (1) B, C, A, D (2) D, B, C, A (3) C, D, A, B (4) D, A, C, B For the monohybrid Mendelian cross select ou the incorrect statement : - (1) There is reappearance of that trait which wa not expressed in F_1 (2) F_2 traits were identical to their parental type (3) F_2 traits did not show any blending (4) offsprings show inheritance of two genes	146.	$D = 3\pi x$ जीवीता के लिये संघर्ष डार्विनवाद के अनुसार सही क्रम होगा :- (1) B, C, A, D (2) D, B, C, A (3) C, D, A, B (4) D, A, C, B एक संकर मेण्डेलियन संकरण के सन्दर्भ में असत्य कथन का चयन कीजिये : - (1) F_1 संतति में जो लक्षण प्रकट नहीं होता है उसका पुर्न प्रदर्शित होना (2) F_2 पीढी के लक्षण का किसी भी पैतृक के समान होना (3) F_2 लक्षणों का परस्पर ब्लेंड (मिश्रित) न होना (4) संतती दो जीन्स की वंशागति दर्शाती है

148.

PRE-MEDICAL : ACHIEVER COURSE (PHASE-I : MAW)

148.

- 147. Which statement is not a false statement:-
 - (1) Earth was formed about 4.6 million years ago
 - (2) Life was originated in mesozoic era
 - (3) Homologous organs show divergent evolution
 - (4) First living form in primitive oceans was coacervates

Character	Dominant trait	Recessive trait
Seed shape	Round	() Wrinkled
Α	Yellow	Green
Flower colour	Violet	White
Pod shape	В	С
Pod colour	Green	Yellow
Flower position	D	Е
Stem height	Tall	Dwarf

In given table of seven pairs of contrasting trait, match the column : -

	(A)	(B)	(C)	(D)	(E)
(1)	Seedcoat colour	Full	Constricted	Axial	Terminal
(2)	Cotyledon colour	Full	Constricted	Terminal	Axial
(3)	Seed colour	Full	Constricted	Axial	Terminal
(4)	Seedcoat colour	Constricted	Full	Axial	Terminal

- 147. कौनसा कथन असत्य कथन नहीं है:-
 - (1) पृथ्वी की उत्पत्ति 4.6 million वर्ष पहले हुयी थी।
 - (2) जीवन की उत्पत्ति मीसोजोइक महाकल्प में हुयी थी।
 - (3) समजात अंग अपसारित उद्विकास प्रदर्शित करते हैं।
 - (4) आदि सागर में उत्पन्न प्रथम जीवन-प्रारूप कोजरवेट्स थे।

Character	Dominant trait	Recessive trait
Seed shape	Round	Wrinkled
Α	Yellow	Green
Flower colour	Violet	D White
Pod shape	В	С
Pod colour	Green	Yellow
Flower position	D	Е
Stem height		
	Tall	Dwarf

सात प्रकार के विपर्यासी लक्षणों के युग्मों की तालिका में मिलान कीजिये : -

	(A)	(B)	(C)	(D)	(E)
(1)	बीज चोल रंग	पूर्ण	पिचकी	कक्षस्थ	शीर्षस्थ
(2)	बीज पत्र का रंग	पूर्ण	पिचकी	शीर्षस्थ	कक्षस्थ
(3)	बीज का रंग	पूर्ण	पिचकी	कक्षस्थ	शीर्षस्थ
(4)	बीज चोल का रंग	पिचकी	पूर्ण	कक्षस्थ	शीर्षस्थ

Path to Succe		TARGET : PRE-MED	ICAL 2	2013 (NEET-UG)		30-03-2013
149.	Phylogeny ter	rm represent :-	149.	फाइलोजेनी शब्द निरूपित क	रता है	:
	(1) Life histor	ry (2) Group of phyla		(1) जीवन इतिहास	(2)	फाइलम का समृह
	(3) Evolutiona	ry history (4) Group of species		(3) उद्विकासीय इतिहास	(4)	जातियों का समूह
150.	For the cross	$AaBbCc \times aabbcc$	150.	AaBbCc × aabbcc संक	रण में	कौन-कौन से कथन
	Which of the fe	ollowing statements is/are incorrect:		असत्य है : -		
	(1) Phenotypi	c & genotypic ratio is same		(1) लक्षणप्रारूप व जीव प्रार	ज्पीय अ	अनुपात समान होता है।
	(2) Type of ga	ametes and genotype are produced		(2) युग्मक के प्रकार व जीन	प्रारूप	समान संख्या में प्राप्त
	in same n	umber		होते है।		
	(3) Proportion	n of each gamete formed is 12.5%		(3) प्रत्येक प्रकार के युग्मक व	ही प्रति	शतता 12.5% होती है।
	(4) Such type	of cross is generally carried out to		(4) इस प्रकार के संकरण का	। प्रयोग	प्राय: केवल F ₁ संतति
	know abo	ut genotype of only F_1 generation		के जीन प्रारूप को जान	ने के लि	लए किया जाता है।
151.	Which statem	ent is true –	151.	कौनसा कथन सत्य है –		
	(1) Coacervat	es has lipid membrane arround it		(1) कोजरवेट्स के चारों तरफ	⁵ लिपि	ड झिल्ली उपस्थित थी
	(2) During eve	olution protein form before glucose		(2) उद्विकास के देरान प्रोटीन का	निर्माण र	लूकोज से पहले हुआ था।
	(3) Coacervat	es term given by oparin		(3) कोजरवेट्स शब्द ओपेरि	न ने वि	रया था।
	(4) First autor	trophs are photoautotrophs		(4) प्रथम स्वपोषी प्रकाशीक	स्वपोग	त्री थे।
152.	A cross is per	formed between heterozygous pea	152.	मटर में मण्ड कणों की आमाप	के सन्द	र्भ में समयुग्मजी प्रभावी
	plant for star	ch grain size with homozygous		मटर का संकरण विषमयुग्मर्ज	ो मटर	के साथ कराया जाता है
	dominant pe	ea plant. How many types of		तो संतती में कितने प्रकार के	लक्षण	प्रारूप प्राप्त होंगे : -
	phenotypes ar	re produced in progeny : -		(1) एक	(2)	दो
	(1) One (3) Three	(2) IWO $(4) Four$		(3) तीन	(4)	नार
153	(J) The most wr	(4) Four	153	्रीमार्कताट का माला गलत ((न) सेटान्त	элх Эл
155.	(1) Internal v	ital force	155.	(1) आंतरिक जैव बल		
	(1) Internal $\sqrt{2}$	environment		(1) जातांत्वरण जन परा(2) वातांवरण का प्रभाव		
	(3) Use and d	lisuse of organs		(3) अंगों का उपयोग व अन	पयोग	
	(4) Inheritance	e of acquired character		(4) उपार्जित लक्षणों की वंश	। गागति	
154.	Which of the f	ollowing is the basis of heredity : -	154.	निम्न में से कौन वंशागति (हे	 रेडिटी) का आधार है : -
10 10	(1) Inheritanc	e (2) Variations	10.0	(1) वंशानगतता (इनहेरीटेन्स)	$(2)^{\dagger}$	विविधता
	(3) Genetics	(4) Both (1) & (2)		(1) आनवांशिकी	(4)	(1) a (2) दोनों
155.	Statement 1 -	\rightarrow Coacervates was surrounded by	155.	aver $1 \rightarrow $ and $3 \rightarrow $	रों तरफ	र से लिपिड झिल्ली से
	a lipid membr	ane		घिरे हए थे।		
	Statement 2	$2 \rightarrow$ Evolution is a slow and		कथन ? → उदिकास एक उ	सतत व	। धीमी पकिया है।
	continuous pro	ocess		(1) कथन 1 मना है पान कथ	ਅਜ ੨ .੨	ग्रात्य है।
	(1) Statement 1	is true but statement 2 is false		(1) फपना 1 साथ ह परन्तु फर	-1°1∠ ⊂ \$¥	
	(2) Statement	1 and 2 both are true		(2) कथन 1 व 2 दाना हा सत	य ह।	*
	(3) Statement	1 is false but statement 2 is true		(3) कथन 1 असत्य ह किन्तु	कथन 🛛	2 सत्य ह।
	(4) Statement	1 and 2 both are false		(4) कथन 1 व 2 दोनों ही अर	तत्य हैं।	
156.	In a female un	dergoing hysterectomy, which one	156.	एक स्त्री जिसमें हिस्ट्रेक्टोमी	कर दि	या गया है, निम्न में से
	of the followi	ng event will not occur?		कौनसी एक घटना नहीं होगी	?	
	(1) Formation	n of Graafian follicle		(1) ग्राफी पुटक का निर्माण		
	(2) Ovulation	1		(2) अण्डोत्सर्ग		
	(3) Menstrua	tion		(3) रजोधर्म		
	(4) Completi	on of meiosis-I and formation of		(४) प्रियोग्रिय । न्द्रा पार्ण रोग न	शा निनी	राक आहरक का निर्णण
	secondary	y oocyte.		(-) เป็นแขน-1 สม ทั้ง 6เป (เ	ના છે(নন্য অং ও প্য প্য। । । শ াণ
		Time Management	is Life	Management		

32 / 37

Your Target is to secure Good Rank in Pre-Medical 2013

ALLEN **PRE-MEDICAL : ACHIEVER COURSE (PHASE-I : MAW)** 30-03-2013 157. Resistance of insects to DDT represents which कीटों की DDT के लिये प्रतिरोधकता किस प्रकार के प्राकृतिक 157. type of natural selection :-वरण को निरूपित करती है :-(1) स्थायित्व वरण (2) दिशात्मक वरण (1) Stabilising selection (2) Directional selection (3) विचलित वरण (4) उपरोक्त में से कोई नहीं (3) Disruptive selection (4) None 158. रिक्त स्थानों को भरें तथा सही उत्तर का चयन करें-''एक पीला 158. Fill in the blanks and find out the correct answer-"A yellowish structure called the A संरचना जिसे ____A___ कहते है, ____B____ का secretes ____B___ during the ____C__ phase स्रावण मासिक चक्र के C प्रावस्था के दौरान करता of the menstrual cycle". है:-С В А A В C (1)Corpus Estrogen Secretory कार्पस एस्ट्रोजन स्रावी (1)albicans एल्बीकेन्स (2)Corpus Progesterone Follicular कार्पस प्रोजेस्टीरॉन (2)पुटक luteum ल्युटियम (3) Corpus Progesterone Secretory कार्पस प्रोजेस्टीरॉन स्रावी (3) luteum ल्युटियम (4)Graafian Estrogen Luteal follicle ग्राफी पुटक पीत (4)एस्ट्रोजन 159. Stanley Miller took which compounds in his 159. स्टेनले मिलर ने अपने प्रयोग में कौनसे यौगिकों का उपयोग experiment :-किया था :-(1) NH_{3} , H_{2} , CH_{4} , O_{2} (2) H₂S, NH₂, CH₄, H₂ (1) NH_3 , H_2 , CH_4 , O_2 (2) H₂S, NH₃, CH₄, H₂ (3) CH_4 , O_2 , H_2O , NH_3 (4) CH_4 , NH_3 , H_2 , H_2O (3) CH_4 , O_2 , H_2O , NH_3 (4) CH_4 , NH_3 , H_2 , H_2O 160. Match the following and choose the correct answer:-उपरोक्त का मिलान करें एवं सही उत्तर का चयन करें :-160. (A) Spermatogenesis (i) Ovary (A) शक्रजनन (i) अण्डाशय (B) Folliculogenesis (B) फॉलीक्यूलोजेनेसिस (ii) योनि (ii) Vagina (C) योग्यतार्जन (C) Capacitation (iii) Epididymis (iii) अधिवृषण (iv) Seminiferous (D) Maturation of (D) शुक्राणुओं का परिपक्वन (iv) शुक्रजनन sperms tubules नलिकाऐं (1) A - (iv), B - (i), C - (iii), D - (ii) (1) A - (iv), B - (i), C - (iii), D - (ii) (2) A - (iii), B - (ii), C - (iv), D - (i) (2) A - (iii), B - (ii), C - (iv), D - (i) (3) A - (iv), B - (i), C - (ii), D - (iii) (3) A - (iv), B - (i), C - (ii). D - (iii) (4) A - (iii), B - (iv), C - (i), D - (ii) (4) A - (iii), B - (iv), C - (i), D - (ii) 161. The first cellular form of life originated before 161. जीवन के प्रथम कोशिकीय स्वरूप की उत्पत्ति कितने वर्ष पहले how many years :-हयी थी :-(1) 3 billion year before (1) 3 बिलियन वर्ष पहले (2) 4 billion year before (2) 4 बिलियन वर्ष पहले (3) 2000 million year before (3) 2000 मिलीयन वर्ष पहले (4) 5 million year before (4) 5 मिलीयन वर्ष पहले 162. Which of the following is incorrectly paired with 162. उपरोक्त में से कौनसा अपने कार्य के साथ सही मिलान नही its function. किया गया है -→ स्टेरॉयड हार्मोन का निर्माण व (1) अण्डाशय (1) Ovary \rightarrow Synthesis and secrete स्त्रवण करना। steroid hormones. (2) निषेचन नलिका → अण्डोत्सर्ग के बाद अण्डे को (2) Fallopian tube \rightarrow Collection of the ovum पकडना after ovulation. → शर्करा युक्त तरल का स्रावण (3) Seminal vesicle \rightarrow Produces a sugar (3) शुक्राशय तथा शुक्राणुओं को पोषण प्रदान containing fluid to करना। nourish sperm. (4) बार्थोलिन ग्रंथि → क्षारीय द्रव का स्रावण करना जो (4) Bartholin glands \rightarrow Secrete alkaline fluid मूत्रमार्ग की अम्लीयता को नष्ट to destroys the acidity

Your Target is to secure Good Rank in Pre-Medical 2013

of the urethra.

करता है।

Path in Succe	TARGET : PRE-MEDICAL 2013 (NEET-UG)					30-03-2013		
163.	According to dary	win, the founder of theory of	163.	डार्विन, जो प्राकृतिक वर	ण के सिद्धान्त	के जनक है, के अनुसार		
	natural selection,	fitness refers to :-		योग्यता है :-				
	(1) Built in variati	ion		(1) उपस्थित विभिन्नता	<u></u>			
	(2) Reproductive	fitness		(2) जननिक उपयुक्तता				
	(3) Struggle			(3) संघर्ष				
	(4) Physical fitnes	S		(4) शारीरिक उपयुक्तत	1			
164.	Match the column	-A with column-B :-	164.	• कॉलम-A का कॉलम-B के साथ मिलान कीजिए :-				
	Column-A	Column-B		कॉलम-A	-B			
	(i) Lippes loop	(a) Copper releasing IUDs		(i) Lippes loop	(a) ताँबा म	ोचक IUDs		
	(ii) LNG-20	(b) Hormone releasing IUDs		(ii) LNG-20	(b) हार्मोन	मोचक IUDs		
	(iii) Multiload 375	5 (c) Non-medicated IUDs		(iii) Multiload 375	(c) औषधि	रहित IUDs		
	(1) (i)-b, (ii)-c, (ii	i)-a		(1) (i)-b, (ii)-c, (iii)	-a			
	(2) (i)-a, (ii)-c, (iii	i)-b		(2) (i)-a, (ii)-c, (iii)	-b			
	(3) (i)-c, (ii)-b, (ii	i)-a		(3) (i)-c, (ii)-b, (iii)	-a			
	(4) (i)-c, (ii)-a, (iii	i)-b		(4) (i)-c, (ii)-a, (iii)	-b			
165.	Which of the follo	owing statement is incorrect:-	165.	निम्न में से कौनसा कथ	न असत्य है	:-		
	(1) Any populati	on has built in variation in		 (1) प्रत्येक समष्टि में लक्षणों की विभिन्नताए निहित है (2) प्राकृतिक वरण, उद्विकास की एक क्रिया विधी 				
	characteristics							
	(2) Natural selection	on is a mechanism of evolution						
	(3) The geological	nistory of earth never correlates		(3) पृथ्वी का भूवैज्ञानिक इतिहास पृथ्वी के जीव वैज्ञ इतिहास से कभी नही जुडा होता है (4) टार्विन के अनगए उपराक्तर केवल जननिक राग				
	(4) According to	Darwin, the fitness refers						
	ultimately and	only to reproductive fitness		(म) आपने प्रजीतुशार से संबंधित है।	01.9.0701 47			
166.	Fill in the blanks	in following :-	166.	उपरोक्त में रिक्त स्थानों	की पूर्ति करे	t:-		
	The unde	ergoes cyclical changes during		आर्तव चक्र के दौरान गर्भा	शय के	में चक्रीय परिवर्तन		
	menstrual cycle wh	ile the exhibits strong		होते है, जबकि गर्भाशय के	<u></u>	में प्रसव के समय काफी		
	(1) Derimetrium	delivery of the baby.		तेज संकुचन होते है।	~			
	(1) Fernneurum, F (2) Myometrium	Endometrium		(1) पैरमिट्रियम, मार्यामे	ट्रियम			
	(3) Perimetrium, F	Endometrium		(2) मार्यामेट्रियम, एण्डो	मेट्रियम			
	(4) Endometrium	Myometrium		(3) पैरीमेट्रियम, एण्डोमे	ट्रियम			
167	Before the indust	rial revolution in England in	167	(4) एण्डामाट्रयम, माया १९५० में औट्योगिक र	माट्रयम कांति से सट	ले टंग्लेगट में किंग		
1071	1850, which type	of Biston betularia present in	107.	1850 में आधार्गक गुकुए के 'तिस्टन तिर	क्रमात स पर् लोगीया ' अधि	ल इंग्लाण्ड न फिस स्र मात्रा में राम्थित		
	more amount :-	1		प्रकार के । बस्टन बिटुलराया आधक मात्रा में उपा ले				
	(1) White winged	(2) Dark winged		भ (1) श्रुवेन पंग्वी	(2) Т	ाटरे पंग्ली		
	(3) Red winged	(4) All of the above		(1) रपत पंखा (3) लाल पंखी	(2) • (4) •	ाहर पखा उपरोक्त सभी		
168.	Which of the follow	wing embryonic structures give	168.	उपरोक्त में से कौनसी	भ्रूणीय संरच	ना मादा की सहायक		
	rise to the female a	accesory ducts (fallopian tube,		नलिकाओं (निषेचन र्ना	लेका, गर्भाश	ाय, योनि) को उत्पन्न		
	uterus, vagina)?			करती है?				
	(1) Wolffian duct	(2) Mullerian duct		(1) ऊलफियन नलिका	(2) •	गूलेरियन नलिका स्टोन्ट सें से नरेर्ग - १		
	(3) Primordian du	ct (4) None of these		(3) आदि जनन काशिव	hIए (4) उ	पराक्त म स काइ नहां		

PRE-MEDICAL : ACHIEVER COURSE (PHASE-I : MAW)

- 169. Select the incorrect statement :-
 - (1) Lichens can be used as industrial pollution indicators
 - (2) Evolution is a directed process in the sense of determinism
 - (3) Evolution is a stochastic process based on chance event in nature and chance mutation in the organisms
 - (4) Similarities in proteins and genes performing a given function among diverse organisms give clues to common ancestory
- 170. Cells of corona radiata disperse just :-
 - (1) After fertilization
 - (2) Before implantation
 - (3) At the time of coming in contact with sperm
 - (4) After cleavage
- **171.** Which of the following is good example of adaptive radiation :-
 - (1) Darwin's finches (2) Australian marsupial
 - (3) Both of them (4) None of the above
- **172.** The villi of human placenta arise from :-
 - (1) Yolksac (2) Chorion
- (3) Both chorion and allantois (4) Allantois
- **173.** Select the incorrect statements :-
 - (A) The essence of Darwinian theory of evolution is natural selection
 - (B) Evolution is a directed process in the sense of determinism
 - (C) The geological history of earth is not related with the biological history of earth
 - (D) During evolution the rate of appearance of new forms is linked to the life cycle
 - (1) A and B (2) B and C
 - (3) A and D (4) B and D
- **174.** A late gastrula stage show these primary germ layer :-
 - (1) Ectoderm and mesoderm
 - (2) Ectoderm, mesoderm and endoderm
 - (3) Ectoderm only
 - (4) Endoderm only

175. What is the main key concept of Darwinian theory of evolution :-

(A) Natural selection
(B) Branching descent
(C) Mutation
(D) Genetic variation
(1) A, C, D
(2) A, B
(3) A, B, C, D
(4) A, D

- 169. असत्य कथन का चयन कीजिये :-
 - (1) लाइकेन को ओद्योगिक प्रदूषण के सूचक के रूप में उपयोग किया जा सकता है।
 - (2) निश्चयवाद के संदर्भ में उद्विकास एक प्रत्यक्ष प्रक्रिया है।
 - (3) उद्विकास एक प्रसंभाव्य प्रक्रम है, जो प्रकृति के संयोग, अवसरवादी घटना और जीवों में संयोगजन्य उत्परिवर्तन पर आधारित है।
 - (4) विविध जीवों में प्रोटीन एवं जीनों की कार्यदक्षता की समानताऐं एक सामान्य पुर्वज परम्परा का संकेत देती है।
- 170. कोरोना रेडिऐटा की कोशिकाऐं घुल जाती है :-
 - (1) निषेचन के तुरन्त बाद
 - (2) आरोपण से तुरन्त पहले
 - (3) शुक्राणु के सम्पर्क के समय
 - (4) विदलन के तुरन्त बाद
- 171. निम्न में से अनुकूली विकीरण का अच्छा उदाहरण है:-
 - (1) डार्विन की चिड़ियाऐं (2) आस्ट्रेलियन मार्सुपियल
 - (3) उपरोक्त दोनों (4) उपरोक्त में से कोई नहीं
- 172. मनुष्य के अपरा के रसांकुर उत्पन्न होते है :-
 - (1) योकसेक से (2) कोरियोन से
 - (3) कोरियोन एवं ऐलेन्टोईस दोनों से (4) ऐलेन्टोईस से
- 173. असत्य कथन का चयन किजिये :-
 - (A) डार्विन के उद्विकास के सिद्धान्त का मूल तत्व प्राकृतिक वरण है।
 - (B) उद्विकास निश्चयवाद के संदर्भ में एक प्रत्यक्ष प्रक्रिया नही है।
 - (C) पृथ्वी का भौगोलिक इतिहास, पृथ्वी के जैविकिय इतिहास से संबंधीत नही है।
 - (D) उद्विकास के दौरान नये स्वरूपो के उत्पत्ती की दर जीवन चक्र से संबधित होती है।
 - (1) A और B (2) B और C
 - (3) A और D
 (4) B और D
- 174. अन्तिम गैस्ट्रूला अवस्था में कौनसे प्राथमिक जननिक स्तर प्रदर्शित होंगे :-
 - (1) एक्टोडर्म और मीजोडर्म
 - (2) एक्टोडर्म, मीजोडर्म और एण्डोडर्म
 - (3) केवल एक्टोडर्म
 - (4) केवल एण्डोडर्म
- 175. डार्विन के उद्विकास के सिद्धान्त के मुख्य बिन्दू क्या है :-
 - (A) प्राकृतिक वरण
 (B) शाखनी अवरोहण

 (C) उत्परिवर्तन
 (D) जननिक विभिन्नताऐं

 (1) A, C, D
 (2) A, B

 (3) A, B, C, D
 (4) A, D

PRE-MEDICAL : ACHIEVER COURSE (PHASE-I : MAW)

SPACE FOR ROUGH WORK / रफ कार्य के लिये जगह

Your moral duty is to prove that **ALLEN** is **ALLEN**