

PRE-MEDICAL : ENTHUSIAST COURSE

HAVE CONTROL \longrightarrow HAVE PATIENCE \longrightarrow HAVE CONFIDENCE \Rightarrow 100% SUCCESS (BEWARE OF NEGATIVE MARKING) एक कण वृत्ताकार पथ के अनुदिश चल रहा है। कण का 1. A particle is moving along a circular path. The 1. angular velocity, linear velocity, angular कोणीय वेग, रेखीय वेग, कोणीय त्वरण एवं अभिकेन्द्रीय त्वरण acceleration and centripetal acceleration of the किसी क्षण क्रमश: \vec{w} , \vec{V} , $\vec{\alpha}$ तथा \vec{a}_{C} है। निम्न में से कौनसा particle at any instant respectively are; \vec{w} , कथन सत्य नही है ? \vec{V} , $\vec{\alpha}$ and $\vec{a}_{\rm C}$. Which of the following relation is not correct? (1) $\vec{w} \perp \vec{V}$ (2) $\vec{w} \perp \vec{a}_C$ (1) $\vec{w} \perp \vec{V}$ (2) $\vec{w} \perp \vec{a}_C$ (4) $\vec{V} \perp \vec{\alpha}$ (3) $\vec{w} \perp \vec{\alpha}$ (4) $\vec{V} \perp \vec{\alpha}$ (3) $\vec{w} \perp \vec{\alpha}$ 256 कम्पन/सेकण्ड आवृत्ति की इंजिन की सीटी आपकी ओर 2. An engine blowing a whistle of 256 vibration/ 2. ध्वनि के वेग के $rac{1}{20}^{ ext{th}}$ वेग से आ रही है। इंजन के आपको second if approaching you with $\frac{1}{20}$ th the velocity पार करने से पूर्व तथा बाद में आपके द्वारा सुने गये स्वरों की of sound. The frequency before and after crossing आवत्ति क्या होगी? of engine as heard by you would be :-(1) 256 Hz, 256 Hz (2) 269.5 Hz, 243.8 Hz (1) 256 Hz, 256 Hz (2) 269.5 Hz, 243.8 Hz (3) 256 Hz, 243.8 Hz (4) 243.8 Hz, 256 Hz (3) 256 Hz, 243.8 Hz (4) 243.8 Hz, 256 Hz एक कण की स्थितिज ऊर्जा $U = 2.5x^2 + 100$ जुल से 3. The potential energy U of a particle is given by 3. दी जाती है। क्या कण की गति सरल आवर्ती है? यदि कण $U = 2.5x^2 + 100$ joule. Is the motion simple का द्रव्यमान 0.2 किग्रा. है तो इसका आवर्तकाल क्या harmonic. If the the mass of the particle is 0.2 होगा:-Kg, what is its time period :-(1) Yes, 2.5 sec. (2) Yes, 1.26 sec. (1) Yes, 2.5 sec. (2) Yes, 1.26 sec. (3) Yes, 5.2 sec. (4) No (3) Yes, 5.2 sec. (4) No एक आर्गन पाइप 47°C पर 320 हटर्ज का मूल स्वर उत्सर्जित 4. An organ pipe produces a fundamental frequency 4. करता है। 27°C पर, पाइप द्वारा उत्सर्जित मूल स्वर की आवृत्ति of 320 Hz at 47°C. At 27°C the fundamental क्या होनी चाहिए :frequency of pipe would be :-(1) 310 Hz (2) 320 Hz (3) 330 Hz (4) 340 Hz (1) 310 Hz (2) 320 Hz (3) 330 Hz (4) 340 Hz एक चकती के न्युनतम जडत्व आघूर्ण के लिए अक्ष होगी :-5. 5. The MI of disc is minimum about an axis :-(1) व्यास के सम्पाती (1) coinciding with the diameter (2) Tangential to the rim and lying in the plane (2) परिधी के स्पर्शरेखीय तथा चकती के तल में स्थित of disc (3) द्रव्यमान केन्द्र से गुजरने वाली तथा चकती के तल के (3) Passing through centre of mass and लम्बवत perpendicular to the plane of the disc (4) द्रव्यमान केन्द्र से परित कोई भी अक्ष (4) Any axis passing through centre of mass दिए गए आरेख के अनुसार आरेख का बिंदु 3 कौनसे क्षेत्र 6. According to the graph point 3 of the curve is 6. में हैlocated in :- $I_{B_5} = 25 \mu A$ $I_{B_5} = 25 \mu A$ I_c I. $I_{\rm B} = 20 \mu A$ $I_{\rm B} = 20 \mu A$ $I_{\rm B} = 15 \mu A$ $I_{B_{2}} = 15 \mu A$ $I_{B_{2}} = 10 \mu A$ $I_{B_{2}} = 10 \mu A$ $I_{B_1} = 5\mu A$ $I_{B_1} = 5 \mu A$ $\frac{3}{4}I_{B}=0A$ $I_{\rm B}=0A$ $\overline{V_{CE,sat}}$ V_{CE.sat} (1) सक्रिय क्षेत्र (2) संतुप्ति क्षेत्र (1) Active region (2) Saturation region (3) कट ऑफ क्षेत्र (4) उपरोक्त में से कोई नहीं (3) Cut off region (4) None of the above

(प्रत्येक प्रश्न को अर्जुन बनकर करो।

TARGET : PRE-MEDICAL 2013 (NEET-UG)

A solid sphere of mass M is rolling with a speed 7. V on a horizontal surface and strikes a massless spring of force constant K. Then the maximum compression of spring is :-

8. For a transistor connected in CE configuration $\beta = 40$ voltage drop across 2K Ω collector resistance is 2V. Calculates emitter current.

(1) 1mA (2)
$$\frac{40}{41}$$
mA

(3) 1.025 mA (4) 2 mA 9. A central charge particle +q is surrounded by a square array of charged particles separated by either distance r or r/2 along the perimeter of the square. Find magnitude of net electrostatic force on the central particle :-

$$\begin{array}{c} +q & 3q & 5q \\ -6q & +4q \\ -6q & +3q \\ -2q & +4q \\ +3q & -6q \\ +4q & +5q \\ +3q & -6q \\ +4q & +5q \\ +3q & -6q \\ +q \end{array}$$
(1)
$$\begin{array}{c} q^{2} \\ 8\pi\epsilon_{0}r^{2} \end{array}$$
 (2)
$$\begin{array}{c} q^{2} \\ 16\pi\epsilon_{0}r^{2} \end{array}$$
 (3)
$$\begin{array}{c} 3q^{2} \\ 4\pi\epsilon_{0}r^{2} \end{array}$$
 (4)
$$\begin{array}{c} q^{2} \\ \pi\epsilon_{0}r^{2} \end{array}$$

- 10. For a CE transistor amplifier which of following parameter governs the operating point of the amplifier.
 - (1) Operating value of V_{CE} and I_{B}
 - (2) Biasing of transistor
 - (3) Both (1) and (2)
 - (4) None of the above
- 11. There is a uniformly charge sphere with total charge +Q and radius R what will be value of electric flux paasing through a imaginary concentric sphere of radius R/2 :-

(1)
$$\frac{Q}{2\varepsilon_0}$$
 (2) $\frac{Q}{4\varepsilon_0}$ (3) $\frac{Q}{8\varepsilon_0}$ (4) Zero

- A force $\vec{F} = (3\hat{i} + 4\hat{j})N$ displaces a particle by 12.
 - $\vec{S} = (3\hat{i} + 4\hat{k}) m$ in 3 sec. find the power :-(1) 4 W (2) 2W (3) 1 W (4) None

M द्रव्यमान का एक ठोस गोला V चाल से क्षैतिज सतह 7. पर लुढक रहा है तथा K बल नियतांक की स्प्रिंग से टकराता है तो स्प्रिंग का अधिकतम संपीडन होगा :-

(4) None of the above

8. CE ट्रांजिस्टर के लिए $\beta = 40$ तथा $2K\Omega$ संग्राहक प्रतिरोध पर 2V विभवान्तर है। प्रवर्धक धारा ज्ञात कीजिए।

(1) 1mA (2)
$$\frac{40}{41}$$
mA

(3) 1.025 mA

9.

+q आवेश के कण को वर्ग के केन्द्र पर रखा गया है। वर्ग की परिधी पर कई आवेश के कण रखे गये हैं। भूजा के अनुदिश कणों के मध्य दूरी r या 2r है। केन्द्रिय आवेश पर कुल वैद्युतांक बल होगा :-

CE ट्रांजिस्टर प्रर्वधक का परिचालन बिंदु कौनसे मापदंडों पर 10. निर्भर करता है।

(1) V_{CE} तथा I_B की परिचालक संख्या पर

- (2) ट्रांजिस्टर की बायसींग पर
- (3) (1) व (2) दोनों
- (4) निम्न में से कोई नहीं
- R त्रिज्या के समरूप आवेशित गोले पर कुल आवेश +Q 11. है। एक काल्पनिक संकेन्द्रीय R/2 त्रिज्या के गोले से पारित वैद्युत फ्लक्स का मान होगा :-

(1)
$$\frac{Q}{2\varepsilon_0}$$
 (2) $\frac{Q}{4\varepsilon_0}$ (3) $\frac{Q}{8\varepsilon_0}$ (4) Zero

12. $\vec{F} = (3\hat{i} + 4\hat{j})N$ का बल 3 sec. में एक कण को $ec{S} = (3\hat{j} + 4\hat{k}) \, m$ तक विस्थापित करता है। शक्ति ज्ञात करो:-(1) 4 W (2) 2W (3) 1 W (4) None

TARGET : PRE-MEDICAL 2013 (NEET-UG)

18. The rate of flow of a liquid through a capillary tube under a constant pressure head is Q. If the diameter of the tube is reduced to half and its length is doubled, then the new rate of flow of liquid will be

(1)
$$\frac{Q}{4}$$
 (2) $\frac{Q}{8}$ (3) 16 Q (4) $\frac{Q}{32}$

19. Find ratio of value of i before and after connecting the switch :-

- 20. What is excess pressure inside the drop of mercury of radius 6.0 mm at room temp. [surface tension = $4.65 \times 10^{-1} \text{ Nm}^{-1}$] latm = $1.01 \times 10^5 \text{ Pa}$ (1) 155 Pa (2) 310 Pa
 - (3) 460 Pa (4) None of these
- **21.** A transparent cube of 0.21 m edge contains a small air bubble. Its apparent distance when viewed through one face of the cube is 0.10 m and when viewed from the opposite face is 0.04 m. The actual distance of the bubble from the second face of the cube is :-

 $(1) \ 0.06m \quad (2) \ 0.17m \quad (3) \ 0.05m \quad (4) \ 0.04m$

22. The volume of a solid at 1 atmosphere pressure is 10^4 cm³. If the pressure is increased to 51 atmosphere then percentage change in its volume will be (K = 10^{12} dyne/cm²) -

(1) 0.001%(2) 0.003%(3) 0.005%(4) 0.05%

- **23.** An unpolarized beam of light is incident on a glass surface at an angle of incidence equal to the polarizing angle of the glass. Read the following statements :-
 - (i) The reflected beam is completely polarized
 - (ii) The refracted beam is partially polarized
 - (iii) The angle between the reflected and the refracted beam is 90° .

Which of the above statements is/are true ?

- (1) (i) only
- (2) (ii) only
- (3) (i) and (iii)
- (4) All the statements are true

- 18. एक नियत दाब शीर्ष के अन्तर्गत किसी केश नली में से द्रव की बहाव की दर Q है। यदि नली का व्यास आधा तथा लम्बाई दुगुनी कर दिया जाये तो द्रव की बहाव की नवीन दर होगी-
 - (1) $\frac{Q}{4}$ (2) $\frac{Q}{8}$ (3) 16 Q (4) $\frac{Q}{32}$
- 19. कुंजी बंद करने के पहले व बाद में i के मान का अनुपात होगा :-

- 20. एक पारे की बूंद की त्रिज्या 6.0 mm है इसमें दाब आधिक्य ज्ञात करों। [पृष्ठ तनाव = $4.65 \times 10^{-1} \text{ Nm}^{-1}$] $1 \text{ atm} = 1.01 \times 10^5 \text{ Pa}$
 - (1) 155 Pa (2) 310 Pa
 - (3) 460 Pa (4) None of these
- 21. 0.21m किनारे वाले पारदर्शी घन में एक छोटा वायु का बुलबुला है। घन के एक पृष्ठ से देखे जाने पर इसकी आभासी दूरी 0.10 m तथा इसके विपरीत पृष्ठ से देखे जाने पर 0.04 m दिखाई देती है। घन के द्वितीय पृष्ठ से बुलबुले की वास्तविक दूरी है:-

 (1) 0.06m
 (2) 0.17m
 (3) 0.05m
 (4) 0.04m
 22. किसी ठोस का वायुमण्डलीय दाब पर आयतन 10⁴ सेमी³ है। यदि दाब 51 वायुमण्डल कर दिया जावे तो आयतन में कितने प्रतिशत परिवर्तन होगा-

- $(K = 10^{12}$ डाइन/सेमी²)
- (1) 0.001% (2) 0.003%
- (3) 0.005% (4) 0.05%
- 23. एक अध्रुवित प्रकाश की किरण पुँज (Unpolarized beam of light) काँच की सतह पर, ध्रुवण कोण के बराबर आपाती कोण पर आपतित होती है। निम्न कथनों को पढ़िये :-
 - (i) परावर्तित किरण पुँज पूर्णत: ध्रुवित है।
 - (ii) अपरिवर्तित किरण पुँज आंशिक रूप से ध्रुवित है।
 - (iii) परावर्तित एवं अपरिवर्तित किरण पुँज के बीच कोण 90° है। उपरोक्त कथनों में कौन-से कथन सही है ?
 - (1) (i) केवल
 - (2) (ii) केवल
 - (3) (i) एवं (iii)
 - (4) सभी कथन सही हैं।

कोई भी प्रश्न Key Filling से गलत नहीं होना चाहिए।

PRE-MEDICAL	:	ENTHUSIAST	COURSE
--------------------	---	-------------------	--------

24. Let V and E be the potential and the field repectively at a point. Which of the following assertions are correct ?

- (1) If V = 0, E must be zero.
- (2) If $V \neq 0$, E cannot be zero.
- (3) If $E \neq 0$, V cannot be zero
- (4) None of these
- **25.** A prism of a certain angle deviates the red and blue rays by 8° and 12° respectively. Another prism of the same angle deviates the red and blue rays by 10° and 14° respectively. The prisms are small angled and made of different materials. The dispersive powers of the materials of the prisms are in the ratio :-
 - (1) 5 : 6 (2) 9 : 11 (3) 6 : 5 (4) 11 : 9
- 26. One kilowatt hour is a unit of :-
 - (1) Energy (2) Power
 - (3) Electric charge (4) Electric current
- 27. The aperture of the largest telescope in the world is 5m. If the separation between the moon and the earth is 4×10^5 km and the wavelength of visible light is 5000 Å, then the minimum separation between the objects on the surface of the moon which can be just resolved is approximately :-

(1) 1m (2) 10m (3) 50m (4) 200m **28.** The potential difference V and the current I flowing through an instrument in an ac circuit of frequency f are given by V = 5 cos ω t volts and I = 2 sin ω t amperes (where $\omega = 2\pi f$). The power dissipated in the instrument is :-(1) Zero (2) 10W (3) 5 W (4) 2.5 W

- 29. A force $\vec{F} = -K(y\hat{i} + x\hat{j})$ (Where K is a positive constant) acts on a particle moving in the xy plane. starting from the origin, the particle is taken along the positive x-axis to the point (a, 0) and then parallel to the y-axis to the point (a, a). The total work done by the force F on the particle is :- (1) $-2Ka^2$ (2) 2 Ka^2 (3) $-Ka^2$ (4) Ka^2
- **30.** The period of oscillation of a bar magnet in a vibration magnetometer is 2 sec. The period of oscillation of a bar magnet whose magnetic moment is 4 times that of 1st magnet is :-

(1) 4 sec. (2) 1 sec. (3) 2 sec. (4) 0.5 sec.

24.	माना V तथा E किसी बिन्दु पर विभव तथा विद्युत क्षेत्र हैं।
	निम्न में से कौनसा कथन सत्य है ?
	(1) यदि V = 0 हो तो, E अवश्य ही शून्य होगा
	(2) यदि V ≠ 0 हो तो, E शून्य नहीं हो सकता

- (3) यदि $E \neq 0$ हो तो, V शून्य नहीं हो सकता
- (4) इनमें से कोई नहीं

25. एक निश्चित कोण का प्रिज्म, लाल तथा नीली किरणों को क्रमश: 8° एवं 12° द्वारा विचलित करता है। उसी कोण का एक अन्य प्रिज्म लाल एवं नीली किरणों को क्रमश: 10° एवं 14° से विचलित करता है। प्रिज्म छोटे कोणों के हैं तथा विभिन्न पदार्थों के बने हैं। प्रिज्म के पदार्थों की विक्षेपण क्षमताएँ अनुपात में होगी :-

(1) 5 : 6 (2) 9 : 11

(3) 6 : 5 (4) 11 : 9

26. किलो वॉट-ऑवर (kwh), मात्रक है :-

(1) ऊर्जा का	(2) शक्ति का
*	\$

(3) वैद्युत आवेश का
(4) वैद्युत धारा का
27. संसार के सबसे बड़े दूरदर्शी का द्वारक 5m है। यदि चन्द्रमा और पृथ्वी के बीच की दूरी 4×10⁵ km तथा दृश्य प्रकाश का तरंगदैर्थ्य 5000 Å हो, तब चन्द्रमा की सतह पर स्थित वस्तुएँ ठीक-ठीक विभेदित होंगी यदि उनके बीच की दूरी हैं :-

(1) 1m (2) 10m (3) 50m (4) 200m

- 28. f आवृत्ति के लिये ac परिपथ में किसी यंत्र के सिरों के मध्य का विभवान्तर V तथा धारा I क्रमश: V = 5 cos ωt volts और I = 2 sin ωt ऐम्पियर है (यहाँ ω = 2πf) तो यंत्र में शक्ति का अपव्यय होता है :-
 - (1) शून्य(2) 10W(3) 5 W(4) 2.5 W
- 29. x-y तल में गतिमान कण पर बल F = -K(yi + xj) (जहाँ K धनात्मक नियतांक) आरोपित है। मूल बिन्दु से आरोपित होकर x-अक्ष पर (a, 0) तक व तत्पश्चात y-अक्ष के समान्तर (a, a) तक गति में F द्वारा किया कुल कार्य :-

(1) $-2Ka^2$ (2) 2 Ka^2 (3) $-Ka^2$ (4) Ka^2

30. दोलन चुम्बकत्वमापी में दण्ड चुम्बक का दोलनकाल 2 सेकण्ड है। उस दण्ड चुम्बक का दोलनकाल जिसका चुम्बकीय आघूर्ण पहले चुम्बक के आघूर्ण से 4 गुना है :(1) 4 सेकण्ड
(2) 1 सेकण्ड

(3) 2	सेकण्ड	(4)	0.5	सेकण्ड

TARGET : PRE-MEDICAL 2013 (NEET-UG)

31. A uniform chain of length ℓ and mass m overhangs

> from a smooth table so that $\frac{2}{3}$ rd part of it is on the table then velocity of chain when it completely

slips off the table :-

(1)
$$\sqrt{2g\ell}$$
 (2) $\frac{2}{3}\sqrt{2g\ell}$
(3) $\sqrt{\frac{2}{3}g\ell}$ (4) None

- 32. Identify the paramagnetic substance :-
 - (2) Aluminium (1) Iron
 - (3) Nickel (4) Hydrogen
- 33. In a children's park, there is a slide which has a total length of 10 m and a heigyht of 8 m. A vertical ladder is provided to reach the top. A boy weighing 200 N climbs up the ladder to the top of the slide and slides down to the ground. The average friction offered by the slide is three tenth of his weight. The work done by the friction on th boy as he comes down is :-
 - (1) 0 J(2) +600 J (3) -600 J (4) +1600 J
- Lenz's law is consistent with law of conservation 34. of :-
 - (1) Current (2) emf
 - (3) Energy (4) All of the above
- 35. Amount of work done to carry a block from A to B will be (Assume friction coefficient μ)
 - (1) mgh
 - (2) $\mu mg \sqrt{\ell^2 + h^2}$ (3) $\mu mg(\ell + h)$

(4) mg(h + $\mu \ell$)

- 36. A flux of 1 mWb passes through a strip having an area $A = 0.02 \text{ m}^2$. The plane of the strip is at an angle of 60° to the direction of a uniform field B. The value of B is :-
 - (1) 0.1 T
 - (2) 0.058 T
 - (3) 4.0 mT
 - (4) None of the above

 ℓ लम्बाई की एक समान चेन का द्रव्यमान m है। इसका 31. 2/3 rd भाग टेबल पर है। जब यह टेबल पर पूरी तरह फिसले तब इसकी चाल :-

(1)
$$\sqrt{2g\ell}$$
 (2) $\frac{2}{3}\sqrt{2g\ell}$

(3)
$$\sqrt{\frac{2}{3}g\ell}$$
 (4) कोई नहीं

- अनुचुम्बकीय पदार्थ को पहचानो :-32.
 - (1) लोहा (2) एल्यूमिनियम (3) निकल
 - (4) हाइड्रोजन
- किसी children's park में फिसलन तल है जिसकी 33. कुल लम्बाई 10 m तथा ऊँचाई 8 m है। एक उर्ध्वाधर सीढी शीर्ष पर रखी जाती है। 200 N भार वाला एक लडका तल के शीर्ष पर सीढी से चढता है तथा जमीन पर नीचे की ओर फिसलता है। फिसलन के द्वारा प्राप्त औसत घर्षण उसके भार का 3/10 है। लडके पर घर्षण द्वारा किया गया कार्य क्या होगा जब वह नीचे आता है :-

(1) 0	J			(2) +6	00 J
(3) –	600 J			(4) +1	600 J
~	~	~	~	、 ・	~

34. लेन्ज का नियम किस नियम के संरक्षण के तुल्य है :-

- (2) वि. वा. बल (1) धारा
- (3) ऊर्जा
- (4) उपरोक्त सभी
- A से B तक किसी पिण्ड को ले जाने में किये गये कार्य 35. की मात्रा होगी (माना कि घर्षण गुणांक μ है।)
 - (1) mgh

(3) $\mu mg(\ell + h)$

(4) mg(h + $\mu \ell$)

(2) $\mu mg \sqrt{\ell^2 + h^2}$

- 1 mWb का फ्लक्स A = 0.02 m^2 क्षेत्रफल वाली पट्टिका 36. से गुजरता है। पट्टिका का तल समचुम्बकीय क्षेत्र B से 60° का कोण बनाता है, B का मान होगा :-
 - (1) 0.1 T
 - (2) 0.058 T
 - (3) 4.0 mT
 - (4) उपरोक्त में से कोई नहीं

Use stop, look and go method in reading the question)

MAJOR TEST

Path to Success

PRE-MEDICAL : ENTHUSIAST COURSE

E 18–02–2013

37. For the position (x) - time (t) graph shown of particle in one dimensional motion. Choose the incorrect alternatives from below :-

- (1) Particle was released from rest at t = 0
- (2) At C particle will reverse its direction of motion.
- (3) Average velocity for motion between B and D is positive
- (4) At E, velocity = 0 and acceleration > 0
- **38.** There is a black spot on a body. If the body is heated and carried in dark room then it glows more. This can be explained on the basis of:-
 - (1) Newton's law of cooling
 - (2) Wein's law
 - (3) Kirchhoff's law
 - (4) Stefan's law
- **39.** Which of the following statement is incorrect about friction ?
 - (1) Limiting static friction is independent of area of contact.
 - (2) Kinetic friction is independent of area of contact.
 - (3) Kinetic friction is nearly independent of velocity of bodies.
 - (4) Kinetic friction is self adjusting
- **40.** PV versus T graph of equal masses of H_2 , He and O_2 is shown in fig. Choose the correct alternative:-

- (1) C corresponds to He, B to H_2 and A to O_2
- (2) A corresponds to He, B to H_2 and C to O_2
- (3) A corresponds to He, B to O₂ and C to H₂
- (4) A corresponds to O_2 , B to He and C to H_2

37. एक विमीय गति करते हुए एक कण का स्थिति (x) - समय
(t) ग्राफ प्रदर्शित है। निम्न में से गलत विकल्प का चयन कीजिए ?

- (1) t = 0 पर कण को स्थिरावस्था से छोड़ा गया था।
- (2) कण C पर अपनी गति की दिशा को उल्टेगा।
- (3) B से D के मध्य की गति के लिए औसत वेग धनात्मक है।
- (4) E पर, वेग = 0 तथा त्वरण > 0
- 38. किसी वस्तु पर एक काला धब्बा है। यदि वस्तु को गर्म करें तथा इसको अंधकारयुक्त कमरे में ले जाए तो यह अधिक चमकता है। इसको किस नियम के आधार पर समझाया जा सकता है।
 - (1) न्यूटन के शीतलन नियम
 - (2) वीन का नियम
 - (3) किरचॉफ का नियम
 - (4) स्टीफन का नियम
- 39. घर्षण के बारे में निम्न में से कौन सा कथन असत्य है ?
 - (1) सीमान्त स्थैतिक घर्षण, सम्पर्क क्षेत्रफल पर निर्भर नहीं
 करता है।
 - (2) गतिक घर्षण, सम्पर्क क्षेत्रफल पर निर्भर नहीं करता है।
 - (3) गतिक घर्षण, वस्तुओं के वेग से लगभग स्वतंत्र होता है।
 - (4) गतिक घर्षण स्वतः समायोजित होता है।
- **40.** H₂,He एवं O₂ की समान मात्रा के लिए PV-T ग्राफों को दर्शाया गया है। सही विकल्प चुनें

- (1) He के लिए C, H_2 के लिए B, एवं O_2 के लिए A
- (2) He के लिए A, H_2 के लिए B, एवं O_2 के लिए C
- (3) He के लिए A, O, के लिए B, एवं H, के लिए C
- (4) O, के लिए A, He के लिए B, एवं H, के लिए C

TARGET : PRE-MEDICAL 2013 (NEET-UG)

- **41**. If the given graph is possible in realistic situations, then y and x variables may represent respectively :-
 - (1) acceleration and time
 - (2) velocity and time
 - (3) velocity and displacement

- (4) displacement and time
- 42. A Carnot's engine used first an ideal monoatomic gas then an ideal diatomic gas. if the source and sink temperature are 411°C and 69°C respectivelly and the engine extracts 1000 J of heat in each cycle, then area enclosed by the PV diagram is

(4) 700 J (1) 100 J (2) 300 J (3) 500 J

If the coefficient of kinetic friction between the 43. trolley and surface is 0.1, then tension in the string connecting masses is -

[Take $g = 10 \text{ m/s}^2$]?

(1) 48 N (3) 53 N (2) 51 N (4) 55 N

- A perfect gas goes from state A to another state **44**. B by absorbing 8×10^5 J of heat and doing 6.5×10^5 J of external work. It is now transferred between the same two states in another process in which it absorbs 10^5 J of heat. Then in the second process
 - (1) Work done on the gas is 0.5×10^5 J
 - (2) Work done by gas is 0.5×10^5 J
 - (3) Work done on gas is 10^5 J
 - (4) Work done by gas is 10^5 J
- Position-time graph of a body of mass 0.5 kg is 45. shown. Time interval between two consecutive impulses and the magnitude of that impulse is ?

- यदि दिया गया ग्राफ वास्तविक परिस्थितियों में सम्भव हो, तो 41. y तथा x राशियाँ क्रमश: प्रदर्शित कर सकती है :-
 - (1) त्वरण तथा समय
 - (2) वेग तथा समय
 - (3) वेग तथा विस्थापन

एक कार्नो इंजन में पहले एक परमाणुक गैस एवं बाद में 42. द्विपरमाणुक गैस को प्रयुक्त किया जाता है। यदि स्त्रोत एवं सिंक के ताप क्रमश: 411°C एवं 69°C है, एवं इंजन प्रत्येक चक्र में 1000 J ऊष्मा अवशोषित करता है, तब PV वक्र का क्षेत्रफल होगा

> (1) 100 J (2) 300 J (3) 500 J (4) 700 J

यदि टॉली तथा सतह के मध्य गतिक घर्षण गणांक 0.1 है. 43. तो द्रव्यमानों को जोडने वाली डोरी में तनाव है -

 $[g = 10 \text{ m/s}^2]?$

(3) 53 N (1) 48 N (2) 51 N (4) 55 N

- एक आदर्श गैस एक अवस्था (A) से दुसरी अवस्था (B) में **44**. जाती है तो 8×10^5 J ऊष्मा अवशोषित करती है, एवं 6.5×10^5 J बाहय कार्य करती है। इसे अब दूसरे प्रक्रम द्वारा अवस्था (A) से अवस्था (B) में ले जाया जाता है इसमें यह गैस $10^5~{
 m J}$ ऊष्मा अवशोषित करती है, तब दूसरे प्रक्रम में
 - (1) गैस पर किया गया कार्य $0.5 \times 10^5 \text{ J}$
 - (2) गैस द्वारा किया गया कार्य 0.5×10^5 J है
 - (3) गैस पर किया गया कार्य 10^5 J है
 - (4) गैस द्वारा किया गया कार्य 10^5 J है
- 45. 0.5 kg द्रव्यमान को एक वस्तु का स्थिति-समय ग्रााफ प्रदर्शित है। दो क्रमागत आवेगों के मध्य का समयान्तराल तथा उन आवेगों का परिमाण है ?

PRE-MEDICAL : ENTHUSIAST COURSE

- **46.** Which is incorrect statement :-
 - (1) Formic acid gives fehling's test but acetic acid does not give.
 - (2) Chloral reacts with water but acetone does not react.
 - (3) Ethyl alcohol gives iodoform test but does not give DNP test.
 - (4) Nitrobenzene is meta-directing towards sodamide.
- **47.** The correct order of the O–O bond length in O_2, H_2O_2 and O_3 is :

(1)
$$O_2 > O_3 > H_2O_2$$
 (2) $O_3 > H_2O_2 > O_2$

(3) $O_2 > H_2O_2 > O_3$ (4) $H_2O_2 > O_3 > O_2$

- **48.** Which is correct statement :-
 - (1) Benzyl amine is more basic than acetanilide
 - (2) Nitrobenzene is purified by steam-distillation method
 - (3) Aniline does not prepare from Gabriel phthalimide reaction but it gives Hoffmann's isocyanide test
 - (4) All the above
- 49. Match list-I with list-II and select the correct answer:-

	List-I (species)	List-II(O–N–O angle)				
(A)	NO_2^+	(i)	180°			
(B)	NO ₂	(ii)	132°			
(C)	NO_2^{-}	(iii)	120°			
(D)	NO_3^{-}	(iv)	115°			
	2	(v)	109°			
A	A B	С	D			
(1) v	iv iv	iii	ii			
(2) v	/ ii	iv	iii			
(3) i	ii	iv	iii			
(4) i	iv	iii	ii			

50. Which of the following reaction shows incorrect product :-

- 46. कौनसा कथन गलत है :-
 - (1) फॉर्मिक एसिड फेहलिंग परीक्षण देता है जबकि एसिटिक एसिड नहीं देता है।
 - (2) क्लोरेल जल से क्रिया करता है जबकि एसीटोन नहीं करता।
 - (3) एथिल एल्कोहॉल आयोडोफॉर्म परीक्षण देता है जबकि DNP परीक्षण नहीं देता।
 - (4) नाइट्रोबेंजीन सोडामाइड के प्रति मेटा-निर्देशी होता है।

(1) $O_2 > O_3 > H_2O_2$ (2) $O_3 > H_2O_2 > O_2$

(3)
$$O_2 > H_2O_2 > O_3$$
 (4) $H_2O_2 > O_3 > O_2$

- 48. कौनसा कथन सही है :-
 - (1) बैंजिल ऐमीन, एसीटेनिलाईड से अधिक क्षारीय है
 - (2) नाइट्रोबैंजीन का शुद्धिकरण भाप-आसवन विधि से किया जाता है
 - (3) एनिलीन को गेब्रिल थेलिमाईड अभिक्रियाँ से नहीं बनाया जाता परन्तु यह हॉफमेन आइसोसायनाईड परीक्षण दर्शाता है।
 - (4) उपरोक्त सभी
- 49. सुमेलित कीजिये -

List-I (species)			List-II(O–N–O angle)			
(A)	NO ₂ ⁺		(i)	180°		
(B)	NO ₂		(ii)	132°		
(C)	NO ₂ ⁻		(iii)	120°		
(D)	NO ₃ ⁻		(iv)	115°		
	5		(v)	109°		
Ā	A B		С	D		
(1) v	/ iv	7	iii	ii		
(2) v	/ ii		iv	iii		
(3) i	ii		iv	iii		
(4) i	iv	7	iii	ii		

50. निम्न में से किस अभिक्रिया का उत्पाद सही नहीं है :-

						MAJOR TEST	
Path to Succ		TARGET : PR	E-MEDICA	AL	2013 (NEET-UG)	18-02-2013	
51.	Correct order of dipo	ole moment is :-	5	1.	द्विध्रुव आघूर्ण का सही क्रम है-		
	$(\mathbf{I}) \underbrace{\bigcirc}^{\mathrm{OH}}_{\mathbf{V}} \mathrm{NO}_2$	(II) O ^{Cl}			$(I) \bigcup^{OH} NO_2 $ (II)	CI CI	
	(III) CH ₃ CH ₃				(III) CH ₃ CH ₃		
	(1) $I = II = III$ (3) $I > II > III$	(2) I < II < II (4) II < III <	I I		(1) $I = II = III$ (2) I (3) $I > II > III$ (4) I	I < II < III II < III < I	
52.	$(CH_3)_2CH-C-NH_2 - O$	$\xrightarrow{\text{NaOH}} A \xrightarrow{\text{COCl}_2} A$	→ B 52	2.	$\begin{array}{ccc} (CH_3)_2 CH - \underbrace{C}_{H} - NH_2 & \xrightarrow{NaOH}_{Br_2} \\ O & & \\ \end{array}$	$A \xrightarrow{\text{COCl}_2} B$	
	B is :-				B है :-		
	(1) $(CH_3)_2CH-N=C=$	0			(1) (CH ₃) ₂ CH–N=C=O		
	(2) CH_3 -CH-CH ₃ NH ₂				(2) CH_3 -CH-CH ₃ NH ₂		
	$(3) (CH_3)_2 CH - NH - C$	COCH ₃			$(3) (CH_3)_2 CH-NH-COCH_3$		
	(4) CH_3 - CH_2 - $NHCC$	OCH ₃			(4) CH ₃ -CH ₂ -NHCOCH ₃		
53.	Which of the following	molecules or ions is n	ot linear? 5	3.	निम्न में से कौनसे अणु ओर आयन	रेखीय नहीं है :-	
	(1) BeCl_2 (2) ICl_2^-	(3) CS_2 (4)	4) ICl ₂ ⁺		(1) BeCl_2 (2) ICl_2^- (3) (CS_2 (4) ICl_2^+	
54.	Which of the followi reaction ?	ng is Borodine Hu	nsdieker 54	4.	निम्न अभिक्रिया में कौनसी बोराडाई है ?	न हुंस्डीकर अभिक्रिया	
	(1) $C_2H_5Br + KI$	$\xrightarrow{\text{Acetone}} C_2 H_5 I + K$	Br		(1) $C_2H_5Br + KI \longrightarrow 0$	$C_2H_5I + KBr$	
	(2) $2C_2H_5Cl + Hg_2F_2$	$\longrightarrow 2C_2H_5F + H_5$	lg ₂ Cl ₂		(2) $2C_2H_5Cl + Hg_2F_2 \longrightarrow 2C_5H_5Cl + Hg_2$	$C_2H_5F + Hg_2Cl_2$	
	(3) $C_2 H_5 ONa + CH_3$	$I \longrightarrow C_2 H_5 OCH_3$	+ NaI		$(3) C_2H_5ONa + CH_3I \longrightarrow C$	$_{2}H_{5}OCH_{3} + NaI$	
	(4) $CH_3COOAg+Br_2$	$\xrightarrow{\text{CCl}_4}$ CH ₃ Br+CO ₂	+ AgBr		(4) CH ₃ COOAg+Br ₂ $\xrightarrow{\text{CCl}_4}$ CH	¹ ₃ Br+CO ₂ + AgBr	
55.	General electronic co	onfiguration of lan	thanides 5	5.	लेन्थेनाइट का सामान्य इलेक्ट्रॉनिक	विन्यास क्या है-	
	15 (1) $(n - 2) f^{1-14}(n - 1)$) $s^2 n^6 d^{0-1} n s^2$			(1) $(n-2) f^{1-14}(n-1)s^2p^6d^{0-1}$	ns ²	
	(1) (n 2) 1 (n 1) (2) $(n - 2)f^{0-14}(n - 1)d^{10}$	$d^{0-1}ns^{1-2}$			(2) $(n-2)f^{0-14}(n-1)d^{0-1}ns^2$		
	(3) $(n-2)f^{0-14}(n-1)$	$d^{10}ns^2$			(3) $(n-2)f^{0-14}(n-1)d^{10}ns^2$		
	(4) $(n-2)d^{0-1}(n-1)$	$f^{1-14}ns^2$			$(4) (n-2)d^{0-1}(n-1)f^{1-14}ns^2$		
56.	An example of antip	yretic is :-	50	6.	दर्द निवारक का उदाहरण है :-		
	(1) Luminal				(1) लूमिनल		
	(2) Paracetamol				(2) परासिटामाल		
	(3) Terpineol (4) Iodoform				(<i>э)</i> टरपानाल (4) आयोडोफार्म		
	(😳 हमेशा मुस्कराते रहें ।)						

Path to Sud		: ENTHU	SIAST COURSE	18-02-2013
57.	For the process	57.	सही कथन है–	
	$X(g) + e^{-} \rightarrow X^{-}(g), \qquad \Delta H = x$		$X(g) + e^- \rightarrow X^-(g), \qquad \Delta H$	$\mathbf{x} = \mathbf{x}$
	and $X^{-}(g) \rightarrow X(g) + e^{-}$, $\Delta H = y$		and $X^{-}(g) \rightarrow X(g) + e^{-}, \Delta H$	l = y
	Select correct alternate :-		सही विकल्प चुनिए	
	(1) ionisation energy of X ⁻ (g) is y		(1) X⁻(g) का आयनन विभव y है	
	(2) electron affinity of X(g) is x		(2) X(g) की इलेक्ट्रॉन बंधुता x है	2
	(3) electron affinity of X(g) is -y		(3) X(g) की इलेक्ट्रोन बंधुता –y	है
	(4) all are correct statements		(4) सभी कथन सत्य है	
58.	When compound X is oxidised by acidi potassium dichromate, compound Y is form Compound Y on reduction with LiAlH_4 , give (X) and (Y) respectively are :-	ified 58. med. es X.	जब यौगिक X को अम्लीय पोटेशियम करते हैं तो यौगिक Y बनता है। य अपचयन पर X देता है। X तथा Y	डाईक्रोमेट से ऑक्सीकृत गिक Y, LiAlH ₄ से क्रमश: है :-
	(1) C,H,OH, CH,COOH		$(1) C_2 \Pi_5 O \Pi_1 O \Pi_2 O O \Pi_1 O O O \Pi_1 O O O \Pi_1 O O O O \Pi_1 O O O O O O O O O O O O O O O O O O O$	
	(2) CH ₃ COCH ₄ , CH ₃ COOH		(3) C H OH CH COCH	
	(3) C_2H_5OH , CH_3COCH_3		$(3) C_2 \Pi_5 O\Pi, C\Pi_3 COCH_3$	
50	(4) CH ₃ CHO, CH ₃ COCH ₃		(4) CH ₃ CHO, CH ₃ COCH ₃ कौनमा जलीय विलयन में मबसे ब	टा है_
59.	which is largest in size in aqueous solutio (1) Li^+ (2) Na^+	n ? 5 7.	(1) Li^+ (2)	Na⁺
	(3) Cs^+ (4) Rb^+		(3) Cs^+ (4)	Rb⁺
60.	In the following sequence of reactions -	60.	दी गई अभिक्रिया क्रम में –	
	$CH_{3}CH_{2}-OH \xrightarrow{P+I_{2}} A \xrightarrow{Mg} B \xrightarrow{HCHO} C \xrightarrow{H_{2}O} A$	D,	$CH_3CH_2 - OH \xrightarrow{P+I_2} A \xrightarrow{Mg} B$	$\xrightarrow{\text{HCHO}} C \xrightarrow{\text{H}_2\text{O}} D,$
	the compound D is :-		यौगिक D है :-	
	(1) Butanal		(1) ब्यूटेनेल	
	(3) n–Propyl alcohol		(2) n-ब्यूटिल एल्काहल	
	(4) Propanal		(3) II-प्रापिल एल्फोहल (4) प्रोपेनेल	
61.	Carbogen is :-	61.	कार्बोजन है-	
	(1) mixture of $CO + CO_2$		(1) CO + CO ₂ का मिश्रण	
	(2) mixture of $O_2 + CO_2$		(2) O ₂ +CO ₂ का मिश्रण	
	(3) Pure form of carbon		(3) कार्बन का शुद्ध रूप	
	(4) unsaturated organic compound		(4) असंतृप्त कार्बनिक यौगिक	
62.	Glucose $CH_2OH-(CHOH)_4$ -CHO, on oxida with HIO_4 gives :-	ation 62.	ग्लूकोज $CH_2OH-(CHOH)_4-C$ HIO_4 से कराने पर बनता है :-	HO का ऑक्सीकरण
	(1) Six moles of HCOOH		 (1) HCOOH के 6 मोल 	
	(2) Five moles of HCOOH + one mole of HC	СНО	(2) HCOOH के 5 मोल + HCH	IO का एक मोल
	(3) Four moles of HCOOH + two moles of HC	СНО	(3) HCOOH के 4 मोल + HCH	IO के 2 मोल
	(4) Six moles of HCHO		(4) HCHO के 6 मोल	

अपनी क्षमता को पूरा वसूलने का प्रयास करें।

Your Target is to secure Good Rank in Pre-Medical 2013

11/32

Parte co Sua		ТА	RGET : PRE-ME	DICAL	2013 (NEET-U	IG)	18-02-2013
63.	Which one of truly represen (1) $Br_2 < Cl_2$ (2) $Br < Cl <$	the following the properties $< F_2 : Oxi < F : Electr$	ng arrangement does no rty indicated against it dising power onegativity	t 63.	कौनसा गुण सुमेलित न (1) Br ₂ < Cl ₂ < F ₂ (2) Br < Cl < F : 1	ाहीं है- : Oxidising Electronega	g power ativity
	(3) Br < F < (4) Br ₂ < Cl ₂	Cl : Electr < F ₂ : Bor	on affinity d energy		 (3) Br < F < Cl : 1 (4) Br₂ < Cl₂ < F₂ 	Electron af	finity ergy
64.	Which amon pollutant :- (1) Lead comp (3) Domestic	g the follo pounds wastes	 (2) Pesticides (4) Mercuric salts 	e 64.	निम्न में से कौनसा जैव (1) लेड यौगिक (3) घरेलु अपशिष्ट	अवशिष्ट प्रदृ (2) र (4) भ	्षक है :- कीटनाशक मरक्यूरिक लवण
65.	A solution of (1) strongly r (2) blue in co (3) good cond (4) all of the	f sodium m reducing blour ductor above	etal in liquid NH ₃ is:-	65.	सोडियम धातु तथा द्रव (1) प्रबल अपचायक (2) नीले रंग का (3) अच्छा चालक (4) उपरोक्त सभी	अमोनिया क	ग विलयन होता है-
66.	$CH_{3}NH_{2} + CH_{3}CH_{3} + CH_{$	$HCl_{3} + KC$ $KCl + H_{2}C$ $Hcl_{3} + KC$ $Hcl_{4} + KC$ $Hcl_$	DH \longrightarrow Pungent sme D. pund is :- (2) CH ₃ -NH-CH ₃ (4) CH ₃ - $\overset{\oplus}{N} = \overset{\oplus}{C}$	1 66.	CH ₃ NH ₂ + CHCl ₃ + + KCl + H ₂ O, दुर्गन (1) CH ₃ -C≡N (3) CH ₃ - $\overset{\Theta}{N} = \overset{\Theta}{C}$	+ KOH — ध युक्त यौगि (2) ((4)	→ दुर्गन्ध युक्त यॉगिक क है :- CH ₃ –NH–CH ₃ CH ₃ – [®] ≡ [©]
67.	When orthoboresidue is :	oric acid is	s heated to red heat th	e 67.	यदि आर्थोबोरिक अम्ल तो अवशेष होगा –	ा को रक्त तप	त तक गर्म किया जाये
	(1) boron				(1) बोरोन		
	(2) boron ses	quioxide			(2) बोरोन सेसक्युऑक	साइड	
	(3) metaboric	e acid			(3) मेटाबोरिक अम्ल		
68.	 (4) pyroboric Which of followith NaHCO (1) HCOOH (2) 2, 4, 6–Tr (3) Both (1) 4 (4) None of t 	acid owing give solution : rinitrophene & (2) these	s effervescences of CC - ol	² 68.	 (4) पायरोबोरिक अम्ल निम्न में से कौन NaHC देता है :- (1) HCOOH (2) 2, 4, 6–ट्राई नाइट (3) (1) तथा (2) दोनों (4) उपरोक्त में से कोई 	ि. (O ₃ के साथ ())फिनाल - - - -	CO ₂ के साथ बुदबुदाहट
69.	Which is not of with H_2O :- (1) $Al_4C_3 + H_2$ (2) $CaC_2 + H_2$ (3) $Mg_4C_3 + H_2$	obtained w $H_2O \rightarrow CH_2$ $I_2O \rightarrow CH \equiv$ $H_2O \rightarrow CH$	hen metal carbides read ₃−CH₂−CH₃ CH I₃C≡CH	t 69.	धातु कार्बाइड के जल (1) $Al_4C_3 + H_2O -$ (2) $CaC_2 + H_2O \rightarrow$ (3) $Mg_4C_3 + H_2O -$	अपघटन से \rightarrow CH ₃ –CH CH=CH \rightarrow CH ₃ C=0	कौनसा नहीं बनता- ₂ -CH ₃ CH
	(4) $Be_2C + H$	$I_2O \rightarrow CH_4$			(4) $\operatorname{Be}_2 C + H_2 O \rightarrow$	→ CH ₄	
			(Time Manageme	nt is Lif	e Management)	

12/32

Your Target is to secure Good Rank in Pre-Medical 2013

H

Path to Sue	CAREER INSTITUTE	PRE-MEDICAL : EN	ITHU	SIAST COURSE		18-02-2013
70.	Match list-I and list-II and then select the correct			सूची-I तथा सूची-II	को सुमेल	न कोजिए तथा नीचे दिये
r	answer from the co	odes given below the lists :		गये कूटों के आधार पर सही उत्तर दीजिए :		
	List-I	List-II		सूची-I	-	सूची-II
	$[A] C_6 H_5 CHO$ [B] CH_COCHO	[a] Mesitylene [b] Paraldehyde		[A] C ₆ H ₅ CHO	[a] ⁻	मैसिटिलीन
	[C] CH ₃ COCH ₃	[c] Iodoform reaction		[B] CH ₃ COCHO	[b]	पैराल्डिहाइड
	[D] CH ₃ CHO	[d] Cannizzaro reaction		[C] CH ₃ COCH ₃		आयाडाफाम आभाक्रया कैनिजगरो अभिकिरग
-	Codes :			Codes ·	լսյ	
	ABCD	ABCD		ABCD		ABCD
	(1) d c b a	(2) d b c a		(1) d c b a	(2)	dbca
	(3) a c b d	(4) d c a b		(3) a c b d	(4)	d c a b
71.	Which cannot be u	sed to generate H ₂ ?	71.	कौनसा H ₂ बनाने में प्र	युक्त नहीं	होता-
	(1) Al + NaOH	(2) Zn + NaOH		(1) Al + NaOH	(2	2) Zn + NaOH
	(3) Mg + NaOH	(4) LiH + H_2O		(3) Mg + NaOH	(4	4) LiH + H_2O
72.	Formaldehyde rea urotropine. The for	acts with ammonia to give rmula of urotropine is :	72.	फॉर्मेल्डिहाइड अमोनिय है। यूरोट्रोपीन का सूत्र	ग से क्रिय है :	ग करके यूरोट्रोपीन बनाता
	(1) $(CH_2)_6 N_4$	(2) $(CH_2)_4 N_3$		(1) (CH ₂) ₆ N ₄	(2	2) (CH ₂) ₄ N ₃
	(3) $(CH_2)_6 N_6$	(4) $(CH_2)_3N_3$		(3) $(CH_2)_6 N_6$	(•	4) $(CH_2)_3N_3$
73.	Which does not ex-	ist in solid state :-	73.	कौनसा ठोस अवस्था में	ं अस्तित्व	व में नहीं है-
	(1) NaHCO ₃	(2) NaHSO ₃		(1) NaHCO ₃	(2	2) NaHSO ₃
	(3) LiHCO ₃	(4) CaCO ₃		(3) LiHCO ₃	(4	4) CaCO ₃
74.	Formaldehyde and distinguished by re	d acetaldehyde are readily eaction with :	74.	फॉर्मेल्डिहाइड तथा ऐस करता है :	हाइड में सुगमता से विभेद	
	(1) A solution of 2	2,4-dinitrophenylhydrazine		(1) 2, 4–डाइनाइट्रोफेनिलहाइड्रैजीन		
	(2) Fehling's solut	ion		(2) फेलिंग विलयन		
	(3) Tollen's reagen	ıt		(3) टॉलेन अभिकर्मक		
	(4) Iodine and alka	ali		(4) आयोडीन तथा क्ष	र	
75.	For the reversible 1	reaction,	75.	उत्क्रमणीय अभिक्रिया,		
	$N_2(g) + 3H_2(g)$	$\Rightarrow 2NH_3(g)$		$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$		
	at 500°C, the value	e of K_p is 1.44×10^{-5} when		क लिए 500°C पर K	्रका मान	1.44 × 10⁻° प्राप्त होता
	partial pressure is r	neasured in atmosphere. The		हे, जब आशिक दाब क	न वायुमण	ण्डलीय दाब में लिया जाता
	corresponding valu	e of K_c with concentration in		है, तो इस अभिक्रिया	के लिए	(K _c का मान mol/L में
	mol/L is :-			होगा :-		
	(1) $\frac{1.44 \times 10^{-5}}{(0.082 \times 500)^{-2}}$	(2) $\frac{1.44 \times 10^{-5}}{(8.314 \times 773)^{-2}}$		(1) $\frac{1.44 \times 10^{-5}}{(0.082 \times 500)^{-2}}$	- (2	2) $\frac{1.44 \times 10^{-5}}{(8.314 \times 773)^{-2}}$
	(3) $\frac{1.44 \times 10^{-5}}{(0.082 \times 773)^2}$	(4) $\frac{1.44 \times 10^{-5}}{(0.082 \times 773)^{-2}}$		(3) $\frac{1.44 \times 10^{-5}}{(0.082 \times 773)^2}$	(4	4) $\frac{1.44 \times 10^{-5}}{(0.082 \times 773)^{-2}}$

Your Target is to secure Good Rank in Pre-Medical 2013

13/32

Parts to Sur		RGET : PRE-MED	ICAL	2013 (NEET-UG)	18-02-2013	
76.	The entropy change expansion of an ideal temperature T is given (1) $\Delta S = 0$ (2) $\Delta S = 2.303 \text{ R } \log_{10}$ (3) $\Delta S = 2.303 \text{ RT } \log_{10}$	during an isothermal gas from V_1 to V_2 at by :- V_2/V_1	76.	आदर्श गैस को समतापीय प्रक्रम से V ₂ तक विस्तारित करने प जायेगा :- (1) $\Delta S = 0$ (2) $\Delta S = 2.303 \text{ R } \log_{10} \text{ V}$	म द्वारा ताप T पर आयतन V_1 ।र एंट्रॉपी में परिवर्तन दिया V_2/V_1	
	(4) $\Delta S = 2.303 \text{ R } \log_{10}$	V_1/V_2		(3) $\Delta S = 2.303 \text{ RT } \log_{10}$ (4) $\Delta S = 2.303 \text{ R } \log_{10} \text{ V}$	V_2/V_1 V_1/V_2	
77.	$Ag^+ + NH_3 \rightleftharpoons [Ag(NH)]$	$[H_3]^+; k_1 = 3.5 \times 10^{-3}$	77.	$Ag^+ + NH_3 \Longrightarrow [Ag(NH$	$_{3})]^{+}; k_{1} = 3.5 \times 10^{-3}$	
	$[Ag(NH_3)]^+ + NH_3 \rightleftharpoons$	$[Ag(NH_3)_2]^+;$ $k_2 = 1.7 \times 10^{-3}$		$[Ag(NH_3)]^+ + NH_3 \rightleftharpoons [$	$[Ag(NH_3)_2]^+;$ $k_2 = 1.7 \times 10^{-3}$	
	Then the formation const	ant of $[Ag(NH_3)_2]^+$ is :-		तो $[Ag(NH_3)_2]^+$ का निर्माण	नियंताक होगा :-	
	(1) 6.08×10^{-6}	(2) 6.08×10^6		(1) 6.08×10^{-6}	(2) 6.08×10^6	
78.	(3) 6.08×10^{-9} Entropy of universe, in expansion of a gas is :-	(4) None o these n the case of adiabatic	78.	(3) 6.08 × 10 ⁻⁹ रूद्धोष्म प्रसार के दौरान ब्रह्मा होगा :-	(4) उपरोक्त में से कोई नहीं ण्ड की एंट्रॉपी में परिवर्तन	
79.	(1) $\Delta S_{univ} = 0$ (3) $\Delta S_{univ} < 0$ A certain weak acid has of 1.0 × 10 ⁻⁴ . The equi reaction with a strong b	(2) $\Delta S_{univ} > 0$ (4) $\Delta S_{univ} \ge 0$ is a dissociation constant librium constant for its pase is :-	79.	(1) $\Delta S_{univ} = 0$ (3) $\Delta S_{univ} < 0$ एक दुर्बल अम्ल का वियोजन 1 अम्ल का प्रबल क्षार के साथ अधि	(2) $\Delta S_{univ} > 0$ (4) $\Delta S_{univ} \ge 0$ स्थिरांक 1.0 × 10 ⁻⁴ है। इस भेक्रिया के लिए साम्य स्थिरांक	
	(1) 1.0×10^{-4}	(2) 1.0×10^{-10}		$(1) 10 \times 10^{-4}$	(2) 1.0×10^{-10}	
	(3) 1.0×10^{10}	(4) 1.0×10^{14}		(1) 1.0×10^{10} (3) 1.0×10^{10}	(4) 1.0×10^{14}	
80.	Which of the following ar mostly likely to be stable	rangements of electrons is $? (z \le 30 \text{ for this atom}):-$	80.	निम्न में से कौनसा इलेक्ट्रॉनिक (z ≤ 30 वाले परमाणु के लिप	5 विन्यास स्थायी होगा ? र) :-	
	$(1) \xrightarrow{3d} 4s \\ \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \downarrow$	$(2) \underbrace{\uparrow\downarrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow}^{3d} \underbrace{4s}{\uparrow}$		$(1) \underbrace{\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow}^{3d} \underbrace{4s}_{\uparrow\downarrow}$	$(2) \underbrace{\uparrow \downarrow \uparrow \uparrow \uparrow \uparrow}^{3d} \underbrace{4s}_{\uparrow}$	
	$(3) \underbrace{\overset{3d}{\uparrow \uparrow \uparrow \downarrow \uparrow \uparrow \uparrow} \overset{4s}{\downarrow}}_{4s}$	$(4) \underbrace{\overset{3d}{\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow}}_{4s} \underbrace{\overset{4s}{\uparrow\uparrow\uparrow}}_{4s}$		(3) 1 4s 4s 4s 4s	$(4) \underbrace{\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow}^{3d} \underbrace{4s}_{\uparrow \uparrow}$	
81.	Which of the following	is a strongest acid :-	81.	निम्न में से कौनसा प्रबलतम अ	भम्ल होगा :-	
	(1) HClO ₄	(2) HClO ₃		(1) HClO ₄	(2) HClO ₃	
	(3) H_2SO_4	(4) H_2SO_3		(3) H_2SO_4	$(4) H_2 SO_3$	
82.	Which orbital gives an probablity of being four	n electron the greatest ad close to the nucleus:-	82.	निम्नलिखित में से किस कक्षक में इलेक्ट्रॉन के पाये जाने की संभावना नाभिक के पास सर्वाधिक होगी :-		
	(1) 3p	(2) 3d		(1) 3p	(2) 3d	
	(3) 3s	(4) Equal		(3) 3s	(4) बराबर	

			MAJOR TEST
Path is Succ	PRE-MEDICAL : E	NTHU	SIAST COURSE 18-02-2013
83.	The value of vander Waals' constant 'a' for the gases $O_2 N_2$, NH ₃ and CH ₄ are 1.360, 1.390, 4.170 and 2.253 L ² atm mol ⁻² respectively. The gas which can most easily be liquified is :- (1) O_2 (2) N_2 (3) NH ₂ (4) CH ₄	83.	वान्डरवाल नियतांक 'a' का मान O_2 , N_2 , NH_3 तथा CH_4 के लिए क्रमश: 1.360, 1.390, 4.170 व 2.253 L^2 atm mol ⁻² तो गैस जो सबसे आसानी से द्रवित होगी :-
84.	How many unpaired electrons are in gaseous Fe^{2} ion in the ground state ?	84.	(1) 02 (2) 172 (3) 1113 (4) 0114 Fe ²⁺ आयन की गैसीय अवस्था में कितने अयुग्मित इलेक्ट्रॉन होंगे ?
85.	(1) 0 (2) 2 (3) 4 (4) 6 In the standardization of $Na_2S_2O_3$, using $K_2Cr_2O_3$ by iodometry, the equivalent weight of $K_2Cr_2O_3$ is :- (1) (Molecular weight)/2 (2) (Molecular weight)/6 (2) (Molecular weight)/2	85.	(1) 0 (2) 2 (3) 4 (4) 6 $Na_2S_2O_3$ का मानकीकरण, आयोडोमितिक अनुमापन में $K_2Cr_2O_7$ के साथ किया जाता है इसमें $K_2Cr_2O_7$ का तुल्यांकी भार होगा :- (1) (Molecular weight)/2 (2) (Molecular weight)/6
86.	(4) Same as molecular weight//3 (4) Same as molecular weight All of these sets of quantum numbers are permissible except :- n 1 $m_1 m_s$ (1) 1 0 0 +1/2 (2) 2 2 0 -1/2 (3) 31 1 -1/2	86.	(3) (Molecular weight)/3 (4) Same as molecular weight
87.	(4) 3 2 -1 $+1/2$ The oxidation number of iron in magnetite (Fe ₃ O ₄) is :- (1) +2 (2) +3 (3) Both of the above (4) +4/3	87.	(4) 32 -1 $+1/2$ $\ddot{\mu}$ ग्नेटाईट (Fe ₃ O ₄) में आयरन की आक्सीकरण संख्याहोगी:-(1) +2(2) +3(3) उपरोक्त दोनों(4) +4/3
88.	According to Schrodinger model nature of electron in an atom is as :- (1) Particles only (2) Wave only (3) Both simultaneously (4) Sometimes waves and sometimes particles	88.	श्रेडिंगर के अनुसार परमाणु इलेक्ट्रॉन की प्रकृति होती है :- (1) केवल कण (2) केवल तरंग (3) उपरोक्त दोनो साथ-साथ (4) कभी कण व कभी तरंग
89.	The largest number of molecules is in :- (1) 8g of hydrogen	89.	निम्न में से किसमें अणुओं की संख्या अधिकतम होगी :- (1) 8g हाइड्रोजन
	(2) 28 g of CO (3) 92 g of C_2H_5OH (4) 56 g of N		(2) 28 g CO गस (3) C ₂ H ₅ OH के 92 g (4) N के 56 g
90.	When the same amount of zinc is treated separately with excess of sulphuric acid and excess of sodium hydroxide, the ratio of volumes of hydrogen evolved is :- (1) 1 : 1 (2) 1 : 2 (3) 2 : 1 (4) 9 : 4	90.	(1) H_2 10 50 gयदि जिंक की समान मात्रा अलग-अलग H_2SO_4 व NaOHके आधिक्य से क्रिया करती है तो, निकलने वाली हाइड्रोजनके आयतन का अनुपात होगा :-(1) 1 : 1(2) 1 : 2(3) 2 : 1(4) 9 : 4
	•••		

Your Target is to secure Good Rank in Pre-Medical 2013

15/32

								MAJOR TEST
Path os Succ		TARC	GET : PRE-MED	IC	AL	2013 (NEET-U	G)	18-02-2013
91.	During evolution se	ee wead	ds existed probably	9	1.	उद्विकास के दौरान समुद्री	खरपतव	गार संभवत: कितने वर्ष पृ
	before how many ye	ears :-				अस्तित्व में आये -		
	(1) 320 million year	s (2) 200 million years			(1) 320 million year	rs (2	2) 200 million years
	(3) 100 million year	s (4) 350 million years			(3) 100 million year	rs (4	4) 350 million years
92.	Progressive degene	ration	of skeletal muscles	9	2.	मुख्यत: आनुवंशिक विक	गर के क	जरण कंकालीय पेशियों व
	mostly due to genetic	ic disor	der is called :-			लगातार कमजोर होना क	हलाता	है :-
	(1) Myasthenia grav	is				(1) मायस्थेनिया ग्रेविस		
	(2) Muscular dystrop	phy				(2) पेशीय डिस्ट्रोफी		
	(3) Tetany					(3) टिटैनी		
	(4) Gout					(4) गाऊट/गठिया		
93.	During evolution the	animal	which evolved in to	9	3.	उद्विकास के दौरान सजीव	त्र जो प्रध	थम उभयचर प्राणी के रू
	the first amphibian t	that live	ed on both land and			में विकसित हुये और जो	া जल व	। थल दोनों पर रहे थे-
	water were:-					(1) सॉरोप्सीड	C	2) सिनेप्सीड
	(1) Sauropsids	(2) Synapsids			(३) गालीगंज	(4) कोमगीट
	(3) Lobefins	(4) Therapsids) + +	$+)$ at while $ -\dot{x}$
94.	Match column-I with	h colun	nn-ll :-	9 Г	4.	कालम-1 का कालम-11	स ।मला	न कर :- चर्नेच्या म
	Column-I		Column-II			कालम-1		कालम-11
•	Countral harmon		(number of bones)		٨	क्तालीय भगिषयाँ	(i)	(आस्थया का संख्या 24
A. D	Cranial bones	(1)	24		A. D	फपालाय आस्यया गणन्त्र्याँ	(I) (ii)	24
В.	K10S Vortahral aalumn	(11)	20		D. С	पसालया क्रणेक्टंट	(II) (iii)	20
C.	venebrar column	(III) (iv)	0 12		C.	41416-66	(iii)	o 12
	(1) A = (i) B = (ii) (ii)	$\frac{(10)}{C}$	12			(1) A - (i) B - (ii)	C - (ii)	i)
	(1) $\mathbf{A} = (1), \mathbf{B} = (1), \mathbf{C} = (1), $	C - (ii))			(1) $A = (iii) B = (i)$	C - (i	i)
	(2) $A = (iii), B = (iv)$	C - G	, i)			(2) $A = (iii), B = (iv)$). C - ((ii)
	(4) A - (iv), B - (i)	, e (iii)			(4) $A - (iv), B - (i),$	C - (i	ii)
95.	During evolution wh	hich or	panism deposits and	9	5	उदिकास के दौरान कौनस	े सजीव	/ धोरे–धोरे मर कर वर्तम
	During Crotution wi	men org	Sumbin acposito ana				1 /1 •11 •1	
	convert in to present	t davs o	coal :-		5.	जिन्नगरी के पारी ने कान	÷	
	convert in to present	t days c	coal :-		5.	समय के कोयले के रूप	में बदत	ल गये -
	convert in to present(1) Angiosperms(2) Dicotyledons	t days c	coal :-		5.	समय के कोयले के रूप (1) एन्जीयोस्पर्म	में बदत	त गये -
	convert in to present(1) Angiosperms(2) Dicotyledons(3) Bryonbyte	t days o	coal :-		5.	समय के कोयले के रूप (1) एन्जीयोस्पर्म (2) द्विबीजपत्री	में बदर	ल गये -
	 convert in to present (1) Angiosperms (2) Dicotyledons (3) Bryophyte (4) Pteridophytes 	t days c	coal :-			समय के कोयले के रूप (1) एन्जीयोस्पर्म (2) द्विबीजपत्री (3) ब्रायोफाइट	में बदर	ल गये -
96	 convert in to present (1) Angiosperms (2) Dicotyledons (3) Bryophyte (4) Pteridophytes Ringworm is 	t days o	coal :-	0		समय के कोयले के रूप (1) एन्जीयोस्पर्म (2) द्विबीजपत्री (3) ब्रायोफाइट (4) टेरीडोफायट	में बदर	ल गये –
96.	 convert in to present (1) Angiosperms (2) Dicotyledons (3) Bryophyte (4) Pteridophytes Ringworm is (1) helminth 	t days o disease	coal :- :-) fungal	9	96.	समय के कोयले के रूप (1) एन्जीयोस्पर्म (2) द्विबीजपत्री (3) ब्रायोफाइट (4) टेरीडोफायट रिंगवर्म रोग है :-	में बदर	त गये -
96.	 convert in to present (1) Angiosperms (2) Dicotyledons (3) Bryophyte (4) Pteridophytes Ringworm is (1) helminth (3) bacterial 	t days c disease (2 (4	coal :- e :-) fungal) viral	9	96.	समय के कोयले के रूप (1) एन्जीयोस्पर्म (2) द्विबीजपत्री (3) ब्रायोफाइट (4) टेरीडोफायट रिंगवर्म रोग है :- (1) हैल्मिन्थ (3) जीवाण्विक	में बदत (1	ल गये – 2) कवकीय 4) विषाण
96. 97.	 convert in to present (1) Angiosperms (2) Dicotyledons (3) Bryophyte (4) Pteridophytes Ringworm is (1) helminth (3) bacterial Before how many 	disease (2 (4 vear	coal :- e :-) fungal) viral tinosaur suddenty	9	·5. •6.	समय के कोयले के रूप (1) एन्जीयोस्पर्म (2) द्विबीजपत्री (3) ब्रायोफाइट (4) टेरीडोफायट रिंगवर्म रोग है :- (1) हैल्मिन्थ (3) जीवाण्विक	में बदत (/ (/	ल गये – 2) कवकीय 4) विषाणु
96. 97.	 convert in to present (1) Angiosperms (2) Dicotyledons (3) Bryophyte (4) Pteridophytes Ringworm is (1) helminth (3) bacterial Before how many disappeared from the 	disease (2 (4 year o e earth	coal :- e :-) fungal) viral dinosaur suddenly ·-	9	95. 96. 97.	समय के कोयले के रूप (1) एन्जीयोस्पर्म (2) द्विबीजपत्री (3) ब्रायोफाइट (4) टेरीडोफायट रिंगवर्म रोग है :- (1) हैल्मिन्थ (3) जीवाण्विक कितने वर्ष पूर्व डायनासोर	में बदत (7 (प्रथ्वी से	ल गये – 2) कवकीय 4) विषाणु ने अचानक विलुप्त हो गये
96. 97.	 convert in to present (1) Angiosperms (2) Dicotyledons (3) Bryophyte (4) Pteridophytes Ringworm is (1) helminth (3) bacterial Before how many disappeared from the (1) 100 million year 	disease (2 (4 year o e earth	coal :- e :-) fungal) viral dinosaur suddenly :-	9	6. 77.	समय के कोयले के रूप (1) एन्जीयोस्पर्म (2) द्विबीजपत्री (3) ब्रायोफाइट (4) टेरीडोफायट रिंगवर्म रोग है :- (1) हैल्मिन्थ (3) जीवाण्विक कितने वर्ष पूर्व डायनासोर (1) 100 मिलियन वर्ष	में बदत (1 (4	ल गये – 2) कवकीय 4) विषाणु ने अचानक विलुप्त हो गये
96. 97.	 convert in to present (1) Angiosperms (2) Dicotyledons (3) Bryophyte (4) Pteridophytes Ringworm is (1) helminth (3) bacterial Before how many disappeared from the (1) 100 million year (2) 65 million year 	disease (2 (4 year o e earth	coal :- :-) fungal) viral dinosaur suddenly :-	9	o6. 17.	समय के कोयले के रूप (1) एन्जीयोस्पर्म (2) द्विबीजपत्री (3) ब्रायोफाइट (4) टेरीडोफायट रिंगवर्म रोग है :- (1) हैल्मिन्थ (3) जीवाण्विक कितने वर्ष पूर्व डायनासोर (1) 100 मिलियन वर्ष (2) 65 मिलियन वर्ष	में बदत (7 (4 र पृथ्वी से	ल गये – 2) कवकीय 4) विषाणु वे अचानक विलुप्त हो गरे
96. 97.	 convert in to present (1) Angiosperms (2) Dicotyledons (3) Bryophyte (4) Pteridophytes Ringworm is (1) helminth (3) bacterial Before how many disappeared from the (1) 100 million year (2) 65 million year (3) 200 million year 	disease (2 (4 year o e earth	coal :- e :-) fungal) viral dinosaur suddenly :-	9	75. 17.	 समय के कोयले के रूप (1) एन्जीयोस्पर्म (2) द्विबीजपत्री (3) ब्रायोफाइट (4) टेरीडोफायट रिंगवर्म रोग है :- (1) हैल्मिन्थ (3) जीवाण्विक कितने वर्ष पूर्व डायनासोर (1) 100 मिलियन वर्ष (2) 65 मिलियन वर्ष (3) 200 मिलियन वर्ष 	में बदत (1 (4 र पृथ्वी र	ल गये – 2) कवकीय 4) विषाणु ने अचानक विलुप्त हो गये

					MAJOR TEST
Path or Succ		MEDICAL : ENT	HUS	SIAST COURSE	18-02-2013
98.	Enters via contaminated food	+ water	98.	संदुषित भोजन + जल	न द्वारा प्रवेश
	cytotoxins, Slough villus ce	lls		कोशिकाविष, सुक्ष्मांकुर कोशि	काओं को तोड़ता है
	enterotoxin stimulates Adenylat	e cyclase		एंटेरोटॉक्सिन्स द्वारा एडिना	इलेट साइक्लेज का उद्दीपन
	\downarrow			· · ·	
	Induction of diarrhoea due to loss of Cl ⁻ + water			जल व क्लोराइड + हानि व	ने कारण डायरिया
	\downarrow			Ļ	
	Sustain high fever \longrightarrow (39°–40°C)	diagnosed by widal test		लगातार उच्च (39°-40°C	ज्वर → विडाल परीक्षण ²⁾ द्वारा निदान
	above chart is related with :-			उपरोक्त चार्ट किससे सम्बन्धि	त है :-
	(1) Common cold			(1) सामान्य जुकाम	
	(2) Typhoid			(2) टाइफाइड	
	(3) Haemophilus influenzae			(3) हीमोफिलस इन्फ्लुएँजी	
00	(4) <i>Trichophyton</i>			(4) ट्राइकॉफाइटोन	
99.	Modern farmer's can increase the up of 50% by the up of f	e yield of Paddy	99.	आज के कृषक धान को फसल	। को 50% तक वृद्धि किसके
	(1) Cyclic bostoria			उपयोग द्वारा कर सकते हे :-	
	(1) Cyanobacteria (2) Phizobium			(1) Cyanobacteria	
	(2) Kinzooluin (3) Cyanobacteria in <i>Azolla ni</i>	nnata		(2) Rhizobium	11 • /
	(4) Farm vard manure	<i>inata</i>		(3) Cyanobacteria in Az	olla pinnata
100.	In which phase of meiosis the c	hromosomes do	100		
100.	undergoes some dispersion, but	they do not reach	100.	अधसूत्रा विभाजन का किस अ	वस्था म गुणसूत्रा का छितराव ४०००
	the extremely extended state of	f the interphase		हाता ह किन्तु य अतरावस्था क	न्द्रक का तरह पूणतया फला
	nucleus ?			हुई अवस्था में नहीं मिलते हैं	?
	(1) Prophase-I (2) M	etaphase-I		(1) पूर्वावस्था -I	(2) मध्यावस्था-I
	(3) Telophase-I (4) Pr	ophase-II		(3) अत्यांवस्था -I	(4) पूर्वावस्था-II
101.	First transgenic plant :-]	101.	प्रथम ट्रासजेनिक पादप था :	-
	(1) Potato (2) To	mato		(1) Potato	(2) Tomato
	(3) Tobacco (4) M	aize	100	(3) Tobacco	(4) Maize
102.	Which one of the following of	cellular parts is	102.	ानम्नालाखत म स कान स एक	काशिकाय भाग का सहा वणन
	correctly described ?			ाकया गया ह ?	
	(1) Ribosomes - Those on chloro (80s) while in the cytoplasm	oplasts are larger are smaller (70s)		 (1) राइबोसोम्स - क्लोरोप्लास्ट को जबकी साइटोप्लाज्म 	ों में मीलने वाले बड़े (80s) में होने वाले छोटे (70s) होते
	(2) Centrioles - Site for active	RNA synthesis		है। (2) सेंट्रिओल - सक्रिय RNA	 संश्लेषण के स्थान।
	(3) Thylakoids - Flatted me forming the grana of chlor	mbranous sacs oplasts		(3) थाइलैकॉइड्स - चपटे झिल क्लोरोप्लास्टों के गेना बन्	लीदार थैले जो परस्पर मिलकर गते है।
	(4) Golgi body - Not surrounde	ed by membrane		(4) गल्जी काय - झिल्ली से	घरी हई नही होती है।
103.	Which fish selectively feed on la	rva of mosquito:-	103.	कौनसी मछली मच्छर के लाख	n को चुनचुन कर खाती है
	(1) Gambusia (2) Ro	hu		(1) गेम्बूसिया	(2) रोहू
	(3) Clarias (4) Ex	ocoetus		(3) क्लेरियस	(4) एक्सोसीटस
	(अपनी	। क्षमता को परा वसल	तने क	ा प्रयास करें।	
	Vour Jarcot	is to secure Good	Raub	in Pre-Medical 2013	17/32
					11/02

TARGET : PRE-MEDICAL 2013 (NEET-UG)

104. Identify the A, B, C and D select the correct statements regarding to A, B, C and D.

- (1) Percentage of "A" is maximum in the membrane
- (2) Percentage of "B" is minimum in the membrane
- (3) Lateral movement of "B" help in the measurement of fluidity of membrane
- (4) The fluidity of membrane is due to "D"
- **105.** Which of the following method is most commonly used for creation of genetic variation–
 - (1) Polyploidy
 - (2) Hybridisation
 - (3) Mutation
 - (4) Genetic engineering
- 106. Steroidal hormone are synthesised in :-
 - (1) Rough endoplasmic reticulum
 - (2) Golgi body
 - (3) Smooth endoplasmic or eticulum
 - (4) Mitochondria
- 107. Embryo culture is mostly used for
 - (1) Establishing suspension culture
 - (2) Recovery of interspecific hybrids
 - (3) Somatic hybridisation
 - (4) Haploid plant production

104. A, B, C a D को पहचानीए, a A, B, C a D के संदर्भ में सही कथन का चयन कीजिए –

- (1) "A" की प्रतीशतता सबसे अधिक होती हैं।
- (2) "B" की प्रतिशतता सबसे अधिक होती हैं।
- (3) "B" को पार्श्विक गति झिल्ली की तरलता का मापन करता
 है।
- (4) झिल्ली की तरलता "D" के कारण होती हैं।
- 105. आनुवांशिक विभिन्नता उत्पन्न करने की सबसे सामान्य विधि है –
 - (1) बहुगुणिता
 - (2) संकरण
 - (3) उत्परिवर्तन
 - (4) आनुवांशिक अभियांत्रिकी
- 106. स्ट्रीरायडल हार्मोन का निर्माण कहाँ होता हैं :-
 - (1) खुरदरी अंतप्रद्रव्यी जालिका
 - (2) गॉल्जीकाय
 - (3) चिकनी अतंप्रद्रव्यी जालिका
 - (4) माइट्रोकान्ड्रिया
- 107. भ्रूण संवर्धन का अधिकतर उपयोग किया जाता है
 - (1) निलम्बन संवर्धन को स्थायी रखने के लिये
 - (2) अंतरजातीय संकर को बचाने के लिये
 - (3) कायिक संकरण के लिये
 - (4) अगुणित पादपों के उत्पादन के लिये

PRE-MEDICAL : ENTHUSIAST COURSE

108. The experiment shown in the figure has been carried out by Morgan to show the phenomenon of linkage recombination. If in Cross I, genes are tightly linked and in Cross II, genes are loosely linked then what will be percentage of recombinants produced in Cross I and Cross II respectively ?

ALLEN

उपरोक्त चित्र मॉर्गन द्वारा किए गए प्रयोग को प्रदर्शित 108. करता है यदि क्रॉस - I में जीन में अधिक सहलग्नता तथा क्रॉस -II में जीन के मध्य कम सहलग्नता पायी जाती है तो बताए कि क्रॉस -I व क्रॉस -II में पुनर्योगजो की प्रतिशतता क्या होगी ?

Miniature body wings

- (4) 62.8% and 98.7%
- 109. कोनिफरेल्स एवं साइकेडेल्स क्रमश: रखते हैं :-
 - (1) चल एवं अचल नर युग्मक
 - (2) चल एवं चल नर युग्मक
 - (3) अचल एवं चल नर युग्मक
 - (4) अचल नर युग्मक

Time Management is Life Management

Your Target is to secure Good Rank in Pre-Medical 2013

19/32

PRE-MEDICAL : ENTHUSIAST COURSE

- 112. Read the following statements :-
 - (a) It produces disorder in females more often than in males
 - (b) All female offsprings will exhibit disorder, if father possesses the same
 - (c) Do not transmitted to son if mother does not exhibit disorder.

Which of the following gene will have the above stated features?

- (1) Sex-linked recessive gene
- (2) Sex-linked dominant gene
- (3) Autosomal dominant gene
- (4) Autosomal recessive gene
- **113.** The unique feature of bryophytes being member of kingdom plantae :-
 - (1) They lack roots
 - (2) The produce spores
 - (3 They lack vascular tissue
 - (4) Their sporophytes is attacend to gametophyte
- **114.** Given diagram show Morgan experiment between body colour and eye colour, what will be true for this experiment :-

- (1) The strength of linkage between y and w is higher
- (2) Crossing over between y and w is higher
- (3) The strength of linkage between y and w is low
- (4) All the above

- 112. निम्न कथन को पढ़े :-
 - (a) यह रोग नर की अपेक्षा मादा में अधिक मिलता है ।
 - (b) यदि पिता रोगी है तब सभी मादा संताने रोगी होगी
 - (c) पुत्र में स्थानांतरित नहीं होगा यदि मादा प्रभावित नहीं है।
 - निम्न में से कौनसे जीन में उपरोक्त लक्षण पाए जाते हैं ?
 - (1) लिंग सहलग्न अप्रभावी जीन में
 - (2) लिंग सहलग्न प्रभावी जीन में
 - (3) ऑटोसोमल प्रभावी जीन में
 - (4) ऑटोसोमल अप्रभावी जीन में
 - **113.** पादप जगत का सदस्य होने पर ब्रायोफाइट्स का अद्वितीय गुण है :-
 - (1) इनमें मूल की अनुपस्थिति
 - (2) वे बीजाणु बनाते हैं
 - (3 वे संवहन उत्तक नहीं रखते
 - (4) उनका बीजाणुद्भिद युग्मकोद्भिद से जुड़ा रहता है
 - 114. दिया गया चित्र मॉर्गन के द्वारा किए गए शरीर के रंग तथा आंखों के रंग के प्रयोग को प्रदर्शित करता है। इस प्रयोग के लिए कौनसा कथन सही है :-

(1) y व w के मध्य सहलग्नता अधिक है।
 (2) y व w के मध्य जीन विनिमय अधिक है।
 (3) y व w के मध्य सहलग्नता कम है।
 (4) उपरोक्त सभी

	NA	JOR	TES	Т
1	8-	02-	201	3

TARGET : PRE-MEDICAL 2013 (NEET-UG)

- 115. Read the following statements :-(A) Bryophytes are thallus like and prostrate or erect (B) They attached to the substratum by the help of only multicellular rhizoids (C) They usually occur in damp, humid and shaded localities (D) The sporophyte of bryophytes is free living How many above statements are correct and incorrect regarding bryophytes :-(1) 2-correct ; 2-incorrect (2) 1-correct ; 3-incorrect (3) 3-correct ; 1-incorrect (4) 4-correct ; 0-incorrect **116.** Which of the following tissue is not found in the skin of man? (1) Epithelial tissue (2) Areolar tissue (3) Dense fibrous connective tissue (4) Both (1) and (3) **117.** The incorrect match for chlorophyll type is (1) Chlorophyll a – Green algae (2) Chlorophyll d – Diatoms (3) Chlorophyll c – Diatoms & Brown Algae (4) Chlrophyll d – Red Algae **118.** Most abundant formed elements with nucleus in blood of human are :-(1) Erythrocytes (2) Leucocytes (4) Platelets (3) Thrombocytes 119. The stored food in rhodophyceae is floridean starch which is very similar in structure to :-(2) Amylopectin (1) Glycogen (3) Both (1) & (2) (4) Lipids 120. Cockroach is :-(2) Uricotelic (1) Ureotelic (3) Ammonotelic (4) Aminotelic 121. Find out the incorrect statement in the following :-(1) Heterotrophic bacteria are most abundant in nature (2) Bacterial structure is very complex & they
 - have very simple behaviour
 - (3) Bacteria reproduce mainly by fission
 - (4) Archaebacteria differ from other bacteria in having different cell wall structure

115. निम्नलिखित कथनों का अध्ययन कीजिए :-

- (A) ब्रायोफाइट थैलस के समान है तथा श्यान या उर्ध्व होते हैं
 - (B) वे सबस्ट्रेटम के साथ केवल बहुकोशिकीय मूलाभास की सहायता से चिपके रहते हैं।
- (C) वे सामान्यतया नम, आईतायुक्त छायादार क्षेत्रों में पाये जाते हैं।
- (D) ब्रायोफाइट्स का बीजाणुद्भिद मुक्त जीवी होता है

उपरोक्त में से ब्रायोफाइटस के संदर्भ में कितने कथन सही एवं गलत हैं :-

- (1) 2-सही ; 2-गलत
- (2) 1-सही ; 3-गलत
- (3) 3-सही ; 1-गलत
- (4) 4-सही ; 0-गलत
- 116. निम्न में से कौन सा ऊतक मानव त्वचा में नही पाया जाता हैं?
 - (1) उपकला ऊतक
 - (2) गर्तिका ऊतक
 - (3) सघन तंतुमय संयोजी ऊतक
 - (4) दोनों (1) और (3)
- 117. क्लोरोफिल के प्रकार के लिए गलत मेल है :-
 - (1) क्लोरोफील a हरा शैवाल
 - (2) क्लोरोफील d डायटम
 - (3) क्लोरोफील c डायटम एवं भूरे शैवाल
 - (4) क्लोरोफील d लाल शैवाल
- 118. मानव रक्त में केन्द्रक युक्त सर्वाधिक संगठित पदार्थ हैं :-
 - (2) ल्यूकोसाइटस (1) इरिथ्रोसाइट्स
 - (3) थ्रोम्बोसाइट्स (4) प्लेटलेट्स

119. रोडोफाइसी में संचित भोजन फ्लोरिडीयन स्टार्च जो संरचना में बहत अधिक समान है :-

- (1) ग्लाइकोजन (2) एमाइलोपेक्टिन
- (4) लिपिड्स (3) (1) a (2) दोनों
- 120. तिलचट्टा हैं :-
 - (1) यूरियोटेलिक (2) यूरिकोटेलिक
 - (3) अमोनोटेलिक (4) अमीनोटेलिक
- 121. निम्नलिखित में गलत कथन का चुनाव कीजिये :-
 - (1) विषमपोषी जीवाणु प्रकृति में अत्यधिक पाए जाते हैं।
 - (2) जीवाणु अत्यधिक जटिल संरचना एवं अत्यधिक सरल व्यवहार रखते हैं।
 - (3) जीवाणु प्रजनन मुख्यतः द्विवखण्डन द्वारा होता है
 - (4) आद्य जीवाणु दूसरे जीवाणु से भिन्न कोशिका भित्ति संरचना में अलग है

(4) Lethal gene

(4) घातक जीन

TARGET : PRE-MEDICAL 2013 (NEET-UG)

128.

- **128.** Regulation of kidney function of Juxtaglomerular Apparatus (JGA) involves certain steps given below. Arrange them in the correct order :-
 - (a) Release of enzyme renin
 - (b) Release of aldosterone from adrenal gland
 - (c) Reabsorption of Na⁺ and water at DCT
 - (d) Decrease in blood pressure and blood volume(e) Conversion of angiotensinogen to angiotensin II
 - (1) a, e, b, c, d (3) c, d, a, e, b (2) b, c, a, e, d (4) d, a, e, b, c
- 129. The height of a plant is under control of polygenic inheritance. The plant having genotype 'aabb' has
 - 20 cm height and height of plant having genotype AaBb is 50 cm, what will be height of a plant having AABB genotype ?
 - (1) 45 cm (2) 60 cm
 - (3) 80 cm (4) 15 cm
- **130.** Which one of the following statements is incorrect:-
 - The medullary zone of kidney is divided into a few conical masses called medullary pyramids projecting into the calyces
 - (2) Inside the kidney the cortical region extends in between the medullary pyramids as renal pelvis
 - (3) Glomerulus alongwith Bowman's capsule is called the renal corpuscle
 - (4) Renal corpuscles, proximal convoluted tubule (PCT) and distal convoluted tubule (DCT) of the nephron are situated in the cortical region of kidney
- 131. In man gene for polydactyly shows :-
 - (1) Complete penetrance
 - (2) Incomplete penetrance
 - (3) Variable expressivity
 - (4) 2 and 3 both
- **132.** Cardiac activity could be moderated by the autonomous neural system. Tick the correct answer :-
 - (1) The parasympathetic system stimulates heart rate and stroke volume
 - (2) The sympathetic system stimulates heart rate and stroke volume
 - (3) The parasympathetic system decreases the heart rate but increase stroke volume
 - (4) The sympathetic system decreases the heart rate but increase stroke volume

में कुछ निश्चित पद सम्मिलित हैं जो नीचे दिये गये हैं। इन पदों को सही क्रम में व्यवस्थित कीजिये :-(a) रेनिन एंजाइम का मुक्त होना (b) ऐड्रीनल ग्रंथि से एल्डोस्टेरोन का मुक्त होना (c) DCT में Na⁺ व जल का पुन:अवशोषण (d) रक्त दाब व रक्त आयतन में कमी होना (e) एंजियोटेन्सिनोजन का एंजियोटेन्सिन II में परिवर्तित होना (1) a, e, b, c, d (2) b, c, a, e, d (3) c, d, a, e, b (4) d, a, e, b, c

जक्स्टाग्लोमेरूलर उपकरण (JGA) के वृक्क कार्य के नियंत्रण

- 129. एक पौधे को लम्बाई बहुजीनी प्रभाव द्वारा नियन्त्रित होती है। एक पौधा जिसका जीन प्रारूप aabb है 20 cm लम्बा है, तथा AaBb जीन प्रारूप वाले पौधे की लम्बाई 50 सेमी है। AABB जीन प्रारूप वाले पौधे की लम्बाई क्या होगी ?
 - (1) 45 cm (2) 60 cm
 - (3) 80 cm (4) 15 cm
- 130. निम्नलिखित में से कौनसा कथन सही नहीं है :-
 - (1) वृक्क के मेडुलरी क्षेत्र कुछ शंकुरूपी संहतियों में बँटा होता है जिन्हें मेडुलरी पिरामिड कहते हैं जो कैलिक्सों के भीतर प्रक्षिप्त होते हैं।
 - (2) वृक्क के भीतर, कॉर्टिकल क्षेत्र वृक्क-पेल्वस (Renal pelvis) के रूप में मेडुलरी पिरामिडों के बीच-बीच में फैले होते हैं।
 - (3) ग्लोमेरूलस और बोमेन संपुट मिलकर वृक्क कणिका (Renal corpuscle) कहलाते हैं।
 - (4) वृक्काणु को वृक्क-कणिक, निकटस्थ संवलित नलिका (PCT) और दूरस्थ संवलित नलिका (DCT) वृक्क के कॉर्टिकल क्षेत्र में स्थित होते हैं।
- 131. मनुष्य में पोलीडेक्टाइली की जीन दर्शाती है :-
 - (1) पूर्ण पेनीट्रेन्स
 - (2) अपूर्ण पेनीट्रेन्स
 - (3) वेरीयेबल एक्सप्रेसीवीटी
 - (4) 2 व 3 दोनों
- 132. स्वायत तंत्रिक-तंत्र द्वारा हृदय क्रिया को संयमित किया जा सकता है। सही उत्तर चुनिये :-
 - परानुकंपी तंत्र हृद दर और स्ट्रोक आयतन के उद्दीपन करता है।
 - (2) अनुकंपी तंत्र दर और स्ट्रोक आयतन के उद्दीपन करता है।
 - (3) परानुकंपी तंत्र हृद दर को तो कम कर देता है, लेकिन स्ट्रोक आयतन में वृद्धि कर देता है।
 - (4) अनुकंपी तंत्र हृद-दर को तो कर कर देता है, लेकिन स्ट्रोक आयतन में वृद्धि कर देता है।

Path is Succ		PRE-MEDICAL : EN	ITHU	SIAST COURSE	18-02-2013
133.	Which of the following c	ross is used to find out	133.	एक प्रभावी सदस्य की, समयुग्मज	ता या विषमयुग्मजता का
	homozygosity or heteroz	ygosity of a dominant			से किया जाता है ?
	individual ?			(1) 	
	(1) Reciprocal cross	(2) Test cross		(1) व्युत्क्रम क्रांस (2) पराक्षण क्रास • ँ
	(3) Out cross	(4) Monohybrid cross		(3) आऊट क्रास (4)) एकसकर क्रास
134.	Which among the following	ng is correct during each	134.	प्रत्येक हृदय चक्र के दौरान :-	
	cardiac cycle ?	mummed out by the Dt		(1) दाँए और बाँए निलयों द्वारा पंप	किए गए रूधिर की मात्रा
	(1) The volume of blood	pumped out by the Rt		समान होती है।	
	(2) The volume of blood	pumped out by the Rt		(2) दाँए और बाँए निलयों द्वारा पंप	किए गए रूधिर की मात्रा
	and Lt ventricles is d	lifferent		अलग-अलग होती है।	
	(3) The volume of blood	eceived by each atrium		(3) प्रत्येक अलिंद द्वारा प्राप्त रूधि	र का मात्रा अलग-अलग
	is different			होती है।	
	(4) The volume of blood r	eceived by the aorta and		(4) महाधमनी और फुफ्फुस-धमनी	द्वारा प्राप्त रूधिर की मात्रा
	pulmonary artery is a	lifferent		अलग-अलग होती है।	
135.	Which part is removed at t	he time of emasculation	135.	एकलिंगी पुष्प में विपुसंन के दौरान	निम्न में कौनसा भाग हटाते
	in unisexual flower?			हे ?	c
	(1) Anther	(2) Carpel		(1) परागकोष (2) (2) गंगोगम (4)) कार्पल अ या के के के चर्ने चर्न
136	(3) Stamen Which of the following is	(4) None of the above	126	(3) पुकसर (4)) उपराक्त म स काइ नहा रा भंग है
130.	(1) Liver	(2) Nerve	130.	(1) यकत (2)	्रा जग ह-) तंत्रिका
	(3) Stomach	(4) Skin		(3) आमाशय(4)) त्वचा
137.	Match the column-I with	column–II and select the	137.	स्तम्भ–I का सुमेल, स्तम्भ–II से उ	, कर सही उत्तर का चुनाव
	correct answer :-			कोजिये :-	,
	Column-I	Column-II		स्तम्भ-I	स्तम्भ-II
	(A) Monohybrid cross	(i) TtRr		(A) मोनोहाइब्रिड क्रॉस ((i) TtRr
	(B) Test cross	$\begin{array}{ccc} (11) & Tt \times TT \\ (11) & Tt \times tt \end{array}$		(B) पराक्षण क्रास	$\begin{array}{c} (ii) \\ Tt \times TT \\ (iii) \\ Tt \cdots tt \end{array}$
	(C) Out closs (D) True dihybrid	(iii) It × u (iv) Tt × Tt		(C) आऊट क्रांस (D) वाम्वतिक टाइटाइकिट ($\begin{array}{c c} (111) & 1t \times tt \\ (112) & Tt \times Tt \end{array}$
	(E) Monohybrid	(\mathbf{v}) $\mathbf{R}\mathbf{r}$		(E) Up that Up that	(v) Rr
	(1) A – iv, B – iii, C – i	i, D – i, E–v		(1) $A - iv, B - iii, C - ii, I$	D - i, E - v
	(2) A – i, B – ii, C – iii,	D – iv, E–v		(2) A – i, B – ii, C – iii, D	– iv, E–v
	(3) $A - iii, B - i, C - ii,$	D – iv, E–v		(3) A – iii, B – i, C – ii, D	– iv, E–v
138	(4) $A - 11$, $B - 1V$, $C - 11$ The germ layers are form	1, $D - 1$, $E - V$	120	(4) A – ii, B – iv, C – iii, I) – i, E–v चार्ताच प्राप्तें चार्ताणण
130.	of embryonic developme	nt ·-	138.	ाकस म्रूणाय प्रावस्या क दारान ताना होता है-	जनानक स्तरा का निमाण
	(1) Morula	(2) Blastula		(1) मोरूला (2)) ब्लास्टला
	(3) Gastrula	(4) Blastocyst		(3) गैस्ट्रला (4) कोरकपुटी
139.	First transgenic plant was	tobacco and it contains	139.	प्रथम ट्रान्सजेनिक पादप तम्बाकू थ	। तथा इसमें किसके लिये
	resistant gene for –			प्रतिरोधक जीन थी ?	
	(1) Insect resistant	(2) Herbicide resistant		(1) कोट प्रतिरोधी (2) शाकन	गशियों के लिये प्रतिरोधी
	(3) Pest resistant	(4) Frost resistant		(3) पीड़क प्रतिरोधी (4) पाले	के प्रति प्रतिरोधक
140.	In human During fertiliz	zation; a sperm firstly	140.	मनुष्य में निषेचन के समय एक शुक्र	ाणु, अण्डाणु को सर्वप्रथम ्
	comes in contact with the v	(2) Vitalling membrane		कौनसी परत के साथ सम्पर्क में अ	आता है-
	(1) Zona penucida (3) Jelly coat	(2) vitemme memorane(4) Zona radiata		 (1) जाना पल्यूांसडा (2) जैली अग्वयाग) पातक ाझल्ला) जोनागेटियाया
				(5) जला जावरण (4) ଆମାସାର୍ଟ୍ଟମମ
	Nour *	Target is to secure Good	l Rank	k in Pre-Medical 2013	25/32

Path jo Succe		TAF	RGET : PRE-MED		L 2	013 (NEET-U	G)	18-02-2013
141.	Which of the f	ollowing con	clusions of Mendel can	14	l. Ì	ण्डल के कौनसे निष्क	र्ष को व	hेवल डाइहाइब्रिड क्रास के
	be explained	by dihybrid	cross ?		3	नाधार पर समझाया जा	सकता	है ?
	(1) Dominance	ce			(1) प्रभाविकता		
	(2) Unit facto	or and segreg	gation		(2) एकल कारक व पृ	थक्करण	
	(3) Independe	ent assortme	nt		(3) स्वतन्त्र अपव्यूहन		
	(4) All the ab	oove			(4) उपरोक्त सभी		
142.	Read the follo	owing staten	nent :-	142	2. ਤ	परोक्त कथनों को ध्या	न से पवि	ढेऐं –
	(A) Inhibitory	proteins are	released by epididymis		(.	A) अधिवृषण द्वारा अव	रोधक प्र	ग्रेटीन मुक्त किये जाते है जो
	which co	nserve energ	gy of sperms			शुकाणुओं की ऊज	र्ग को स	गरक्षित करते हैं।
	(B) Epididym sperms	nis provides	more ATP energy to		(.	B) आधवृषण शुक्राणुअ हैं	। का आध	धक ATP ऊजा प्रदान करात
	(C) The sing placenta	als of partu and CNS	rition originate from		(C) प्रसव के लिए सके उत्पन्न होते हैं।	त अपरा	तथा कन्द्रिय तत्रिका तत्र से
	(D) Lactation	amenorrhea i	s used as contraception		(.	D) स्तनपान अनार्तव वि	ाधि गर्भ	-निरोधन में प्रयोग होती है।
	How many th	e above stat	tement are correct?		ਤ	परोक्त में से कितने क	थन सत्य	म है?
	(1) Four (1)	2) Three	(3) Two (4) One		(1) चार (2) तीन	((3) दो (4) एक
143.	Main basis of	f DNA finge	er printing is :-	14.	3. I	DNA फिंगर प्रिन्टिंग व	न मुख्य	आधार है :-
	(1) RFLP		(2) VNTR		(1) RFLP	(2) VNTR
	(3) RAPD		(4) None of these		(3) RAPD	(4) इनमें से कोई नहीं
144.	Which of th	e followin	g contributes in the	14	1. ਤ	परोक्त में से कौनसे से	मिनल प	लाज्मा के निर्माण में अपनी
	formation of	seminal plas	sma :-		ð	गूमिका निभाते हैं-		
	(a) Sertoli cel	ls	(b) Seminal vesicle		(a) सटौली कोशिकाएँ	(b) शुक्राशय
	(c) Spermatog	gonia	(d) Leydig cells		(c) स्पर्मटोगीनिया	(d) लोडग कोशिकाएँ
	(e) Bulbouret	nral gland	(f) Prostate gland		()	e) कदमूल ग्राथ	(f) प्रास्टट ग्राथ
	(1) b, c, e, 1 (3) b c d e	f	(2) a, b, c, 1 (4) only b, a, f		(1) b, c, e, f	((2) a, b, c, f
145	(3) 0, c, u, e, Match the colu	1 umn I with c	(4) Unity U, C, I olumn II and select the	14	(, ТТТ	3) b, c, d, e, f) דיד דרי	4) ਅਕਿ D, e, I ਜਿਸ ਸਟੀ ਕਿਸ ਕਰ ਜਹਾਕ
173.	correct answe	umm-1 wrun c	orumn-m and select the	14	7. 5. 	राम्म−1 फा सुमल, साम होन्नियो म	-4-11 6	। फर सहा उतार फा युगाप
	Column-l	[[Column-II	r		गाजव स्तम्भ_ा		स्तम्भ_।।
(A) RFLP	(i)	Pseudomonas putida		(A)	RFLP	(i)	स्यडोमोनास पटिडा
(B) Super bug	g (ii)	PCR-technique		(B)	सपर बग	(ii)	PCR–तकनीक
(C	E) ECORI	(iii)	Exonuclease		(C)	ECORI	(iii)	एक्सोन्यूक्लियेज
(D) TPA	(iv)	Restriction		(D)	TPA	(iv)	रेस्ट्रिक्शन
(E) Interferon		endonuclease		(E)	इन्टरफेरोन		एण्डोन्यूक्लियेज
		(v)	Antiviral protein				(v)	एन्टीवाइरल प्रोटीन
		(vi)	Blood clot dissolving				(vi)	रक्त के थक्के घोलने वाला
			agent					कारक
		(vii)	DNA test				(vii)	DNA टेस्ट
		(viii)	Haemophilia				(viii)	हीमोफिलिया
		(ix)	Albinism				(ix)	रंजकहीनता
		(X)	Agrobacterium	[(X)	एग्रोबैक्टीरियम
	(1) A-vii, B-	i, C–iv, D–v	vi, E–v		(1) A-vii, B-i, C-i	v, D–v	ri, E–v

- (1) A-vii, B-i, C-iv, D-vi, E-v
- (2) A-v, B-x, C-ii, D-i, E-iv
- (3) A-vi, B-ii, C-ix, D-x, E-v
- (4) A-x, B-i, C-vi, D-ix, E-x

- (2) A–v, B–x, C–ii, D–i, E–iv (3) A-vi, B-ii, C-ix, D-x, E-v
- (4) A-x, B-i, C-vi, D-ix, E-x

Your Target is to secure Good Rank in Pre-Medical 2013

27/32

Path to Succe		TA	RGET : I	PRE-MED		2013	(NE	ET-UG)		18-0	2–2013
153.	Read the fo	llowing four	statements	(A–D) :-	153.	निम्न चा	र कथन	गें (A–D) क	ो पढ़िए	:-	
	(A) Infection	n in alimenta	ary canal car	n be caused		(A) गोल	1 कृमि	के कारण आ	हार नाल	में संक्रम	गण हो सकता
	by roun	d worm				है।					
	(B) Rennin	enzyme for	and in gastr	ric juice of		(B) शिश्	गु के ज	ठर रस में पारं	ये जाने व	त्राला रेनि	न दूध शर्करा
	infants l	helps in dige	stion of mil	k sugar.		के	पाचन ग	नें सहायक हो	ता है।		
	(C) Principle is small	e organ for a intestine	absorption of	f nutrients		(C) छोर्ट है।	ी आंत	पोषक तत्वों	के अव	शोषण व	ज मुख्य अंग
	(D) Serosa i canal	is the outerm	nost layer of	alimentary		(D) सिरं	ोसा आ	हार नाल को	सबसे व	बाहरी पर	त है।
	How many	of the above	statements	are correct?		निम्न में	से कि	ाने कथन सर्ह	ो है?		
	(1) Four	(2) One	(3) Two	(4) Three		(1) चार		(2) एक	(3) ਵੱ	Ĵ	(4) तीन
154.	In which pr conversion c compound a	rocess of dec of the decomp and inorgani	composition, posing detritu c substances	enzymatic s to simpler occur ?	154.	अपघटन सरल यौ है ?	। की वि गिको	केस प्रक्रिया तथा अकार्बी	में अपर नेक पद	द का ए ार्थों में प	न्जाइमो द्वारा रिवर्तन होता
	(1) Fregmer	ntation of de	tritus			(1) अप	रद के	विखण्डन में			
	(2) Leachin	g				(2) निश	छालन				
	(3) Cataboli	ism				(3) केट	बाँलिज	Ч			
	(4) Minerali	isation				(4) खन्	नजीकर	ण			
155.	How many marine ?	fishes in th	e list given	below are	155.	नीचे दी जाती है	गई सू [.] ?	वी में कितनी	मछलि	यां लवण	जल में पाई
	Catla, Pomf Rohu, Mack	ret, Commor kerel, Salmor	ı carp, Silver n, Mrigal	carp, Hilsa,		कतला, मेकिरल,	पोम्फ्रेट , साल्म	, कामन कार्प न, मृगल	, सिल्व	र कार्प <i>,</i> '	हिलसा, रोहू,
	(1) Six	(2) Three	(3) Four	(4) Five		(1) छ:		(2) तीन	(3) च	गार	(4) पांच
156.	How much p for human u	percent of impuse?	purities make	e water unfit	156.	कितने प्र हानिकार	प्रतिशत क बना	अशुद्धि, जल देती है ?	ा को म	ानव उपर	योग के लिए
	(1) 0.1	(2) 1	(3) 10	(4) 60		(1) 0.1		(2) 1	(3) 1	0	(4) 60
157.	What is the growth curv	sequence of	phases indic	cated in the	157.	दिये गये क्रम है -	ो वृद्धि -	वक्र में दर्शा	यी गई	प्रावस्था	ओं का सही
	Size/weight of the organ	(b) (a) Time	(c)			(a)	Size/weight of the organ	(b) (a) Time	(c) (C)	•	
	(a)	(b)	(c)			(1) lag		log	Infle	xon nh:	ase
	(1) lag	log	Inflexon pl	nase		(2) lag		stationarv	109	più	
	(2) lag	stationary	log			(3) log		lag	statio	onarv	
	(3) log	lag	stationary	. 1		(4) lag		log	statio	onary nl	hase
	(4) lag	log	stationary j	pnase		(.) 145		0	Statt	Pi	

Your Target is to secure Good Rank in Pre-Medical 2013

Path is Succe		PRE-MEDICAL : EN	ITHU	SIAST COURSE	18-02-2013
158.	Ozone hole over Antra	ctica develops each year	158.	अंटार्कटिका में, प्रत्येक वर्ष ओजो	न छिद्र विकसित होता
	between :-			है:-	
	(1) Late August and ea	irly September		(1) अगस्त के अंत में तथा सितम	बर के प्रारम्भ मे
	(2) Late February and	early April		(2) फरवरों के अंत में तथा अप्रेल	न के प्रारम्भ में
	(3) Late August and ea	iriy October		(3) अगस्त के अंत में तथा अक्टू	बर क प्रारम्भ म
4 -	(4) Late November and	l early January	4 -	 (4) नवम्बर क अत म तथा जनव (4) नवम्बर क अत म तथा जनव 	रा के प्रारम्भ म <u>' – – – – – – – – – – – – – – – – – – –</u>
159.	When the resources are	e limited, which are the	159.	जब संसाधन सामित होत ह, तो जाव म	। वृद्ध क दारान कानसा
	phases exhibited by an o	organism during growth?		अवस्थाएँ दर्शायी जाती है ?	
	(1) Lag, Log, expon-	ential, asymptomatic,			
				(1) लेग, लोग, चरघाताँकी, एसिम्पर	गेमेटिक, वित्वरणीय
	(2) Lag, log asympto	matic, deacceleration,		(१) लेग लोग गणिगणगेगेरिक विव	नाणीय चापानॉंकी
	(2) Leg leg deces	laration arnonantial		(2) लग, लाग, संसम्पटामाटफ, ापत	परणाप, परपाताफा
	(5) Lag, 10g, deacce	relation, exponential,		(3) लेग लोग वित्वरणीय चरघाताँ	की एसिम्पटोमेटिक
	(4) Lag acceleration	log desceleration			
	(+) Lag, acceleration	, log, deacecteration,		(4) लेग, त्वरणीय, लोग, वित्वरणीय	, एसिम्पटोमेटिक
160.	Flowers of peal gram &	k bean are :-	160	मरग चने त सेम के प्रह्म दोते हैं •	
2000	(1) Actinomorphic and	epigvnous	100.	(1) त्रिज्या सममित और प्रपिगायनस	। (अधिजायांगी)
	(2) Actinomorphic and	hypogynous		(2) त्रिज्या सममित और हाइपोगायन	स (अधोजायांगी)
	(3) Zygomorphic and h	ypogynous		(3) एकव्यास सममित और हाइपोग	यनस (अधोजायांगी)
	(4) Zygomorphic and e	pigynous		(4) एकव्यास सममित ओर एपिगाय	नस (अधिजायांगी)
161.	Which of the following	g sequence is incorrect?	161.	निम्नलिखित में से कौनसा गलत है	?
	(1) Starch $\xrightarrow{\text{Amylase}}$ of	lisaccharides		 स्टार्च <u>्^{एमाइलेजेस}</u>→ डाईसेक्साइ 	डि
	(2) Fats \longrightarrow digl	lycerides		(2) वसा <u>लापेइजेज</u> डाईग्लिसीरा	ईड
	(3) Nucleic acids <u>Nuc</u>	nucleotides		(3) न्यूक्लिक अम्ल — ^{न्यूक्लिएजेज}	न्यूक्लियोटाइड
	(4) Lactose $\xrightarrow{\text{Lactase}}$	glucose + glucose		(4) लेक्टोज — लेक्टेजेज → ग्लूकोज	+ ग्लूकोज
162.	In brinjal flowers are :-	-	162.	बैंगन में पुष्प होते हैं :-	
	(1) Hypogynous			(1) हाइपोगायनस (अधोजायांगी)	
	(2) Epigynous			(2) एपिगायनस (अधिजायांगी)	
	(3) Perigynous	· ·		(3) पेरीगायनस (परिजायांगी)	
1(2	(4) Both hypogynous &	k perigynous		(4) हाइपोगायनस एव पेरोगायनस द	ोनो 💦
103.	about :	neter of pollen grains are	163.	पुष्पाय पादपा म परागकणा का व्या भ	स लगभग ाकतना हाता
	(1) 5 - 10 µm	(2) 25-50 um		た:- (1) 5 10 um (2) /	25 50 um
	(1) 5 10 μ m (3) 50–100 μ m	(4) $100-200 \mu\text{m}$		(1) $5-10 \ \mu m$ (2) $(3) 50-100 \ \mu m$ (4)	23–30 μm 100–200 μm
164.	In china rose the type	of cohesion is :-	164.	गुडहल में किस प्रकार का ससंजन	पाया जाता हैं :-
	(1) Monoadelphous	(2) Diadelphous	_	(1) मोनोएडलफस (एकसंघी) (2)	डाईएडलफस (द्रिसंघी)
	(3) Polyadelphous	(4) None of the above		(3) पॉलीएडेलफस (बहसंघी) (4)	उपरोक्त में से कोर्ड नहीं
165.	An event unique to flo	wering plants are :-	165.	पष्पीय पादपों में एक अनोखी घटना	क्या है ?
	(1) Endosperm formati	on		(1) भ्रुणपोष निर्माण	
	(2) Seed formation			(2) बीज निर्माण	
	(3) Ovule formation			(3) बीजाण्ड निर्माण	
	(4) Double fertilization	l		(4) दोहरा निषेचन	

Your Target is to secure Good Rank in Pre-Medical 2013

Path to Succe		TARGET : PRE-MED	ICAL	2013 (NEET-UG)		18-02-2013
166.	Valvate aestivation	n of corolla is found in :-	166.	कोरस्पर्शी दलविन्यास किस	में पाया	जाता हैं :-
	(1) Pisum / Fabac	eae		 (1) पाइसम / फाबेसी में 		
	(2) Tamarindus /	Caesalpinoidae		(2) <i>टेमेरिंडस</i> / सीसलपिनॉइ	डी में	
	(3) Sesbania / Fat	baceae		(3) सेसबेनिआ / फाबेसी में		
	(4) Tomato / Sola	naceae		(4) टमाटर / सोलेनेसी में		
167.	Caruncle is presen	nt in :-	167.	केरन्कल उपस्थित होता है :-		
	(1) Ricinus	(2) Tomato		(1) रिसिनस में	(2)	टमाटर में
	(3) Litchi	(4) None of the above		(3) लीची में	(4)	उपरोक्त कोई नहीं
168.	Laticiferous vesse	ls are found in :-	168.	लेटेसीफेरस वाहिकाऐं पाई उ	नाती हैं :	-
	(1) Xylem tissue	(2) Phloem tissue		(1) जायलम ऊतक में	ד (2) ד	म्लोयम ऊतक में
	(3) Cortex	(4) None of the above		(3) कॉर्टेक्स (वल्कुट) में	(4) र	उपरोक्त में से कोई नहीं
169.	A spider makes its	web from the fluid that comes	169.	एक मकडी के द्वारा बनाये ग	ये जाल	का निर्माण एक द्रव से
	out of its:-			होता है जो स्नावित होता है-		
	(1) Posterior part of	f abdomen (2) legs		(1) उदर के पश्च भाग से	(2) ť	गैरो से
	(3) Mouth	(4) Salivary glands		(3) मुख से	(4) र	तार ग्रंथि
170.	Meristematic cells	have :-	170.	विभज्योत्तक कोशिकाओं में	होती है	:-
	(1) Thick cell wall	and large intercellular spaces		(1) मोटी कोशिका भित्ति तथ	। बड़े अं	तरकोशिकीय अवकाश
	(2) Thick cell wal	l and no intercellular spaces		 (2) माटा काशिका भित्त तथा अ (3) पतली कोशिका भित्ति तथ 	तरकााशव 11 बडे अं	काय अवकाश अनुपास्थत तरकोशिकीय अवकाश
	(3) Thin cell wall	and large intercellular spaces		(4) पतली कोशिका भित्ति	तथा अंत	ारकोशिकीय अवकाश
	(4) Thin cell wall	and no intercellular spaces		अनुपस्थित		
171.	Pearls are produce	ed in an ooyster around the:-	171.	मोतियों का निर्माण उस्टर में	होते हैं-	-
	(1) Tears of sea m	ermaids falling in to ooyster.		(1) समदी मरमेद के अश्वअ	गें दारा	जो उस्टर पर गिरते हैं
	(2) First drops of	rain falling in to ooyster in a				
	particular mou	th		(2) वर्षा का पहला बूद जा	उस्टर व	क मुह पर गिरत ह
	skin of oovste	r		(3) कुछ बाहरी कण जो उस	टर के भ	रारीर में धंस जाते हैं
	(4) Eggs of ooyste	er which fail to leave its body		(4) उस्टर के वे अण्डे जो भ	शरीर में	धंसने से रह जाते हैं
172.	Examine the follow	ving figure, in which one of the	172.	दिये गये चित्र का अवलोकन	करे तथ	ग उस विकल्प को चुने
	four options given	all the items P, Q and R are		जिसमें P, Q तथा R को स	ही रूप	से दिया गया है ?
	correct ?				ı Q	
	Г	$\square \swarrow^{Q}$			К.	
	A-	\rightarrow		A	\square	
	\sim	R		1		{
	A				\Rightarrow	- ▶B
	<u>`</u>	B			Γ,F	
		P		A	Þ4,	•
				В		
	в			L]	_
	-	membrane		m (embran झिल्ली)	e
	(1) P - Symport pr	(।ধ়ালো।) rotein Q - Antiport protein		(1) P - सिमपोर्ट प्रोटीन	Q -	एटीपोर्ट प्रोटीन
	R - Uniport pr	otein		R - यूनिपोर्ट प्रोटीन		
	(2) P - Symport pr	rotein Q - Uniport protein		(2) P - सिमपोट प्रोटीन	Q -	यूनीपोर्ट प्रोटीन
	R - Antiport p	rotein		R - एंटीपोर्ट प्रोटीन		
	(3) P - Uniport pr	otein Q - Symport protein		(3) P - यूनीपोर्ट प्रोटीन	Q -	सिमपोर्ट प्रोटीन
	R - Antiport p	rotein		R - एंटीपोर्ट प्रोटीन		
	(4) P - Antiport pr	rotein Q - Symport protein		(4) P - एंटीपोर्ट प्रोटीन	Q -	सिमपोर्ट प्रोटीन
	R - Uniport pr	otein		R - यूनिपोर्ट प्रोटीन		

PRE-MEDICAL : ENTHUSIAST COURSE

- 173. Rasping organ in cuttle fish is :-
 - (1) Pectoral fin (2) Pelvic fin
 - (3) Anterior & posterior dorsal fin (4) None
- 174. Match the column of mineral with their functions?

	Column-I		Column-II				
a.	Sulphur	i.	Pollen germination				
b.	Magnesium	ii.	Maintain ribosome				
			structure				
c.	Manganese	iii.	Splitting of water.				
d.	Boron	iv.	Main consituent of				
			several coenzymes.				
(1)	(1) a - i, b - ii, c - iii, d - iv						
			•				

- (2) a iv, b ii, c iii, d i
- (3) a iii, b i, c iv, d ii
- (4) a ii, b i, c iv, d iii
- 175. Select the peculiar character in sponges :-(1) Marine & fresh habitat (2) Tissue level body(3) Intracellular digestion (4) Collar cell
- **176.** Faciliated diffusion cannot cause net transport of molecules from a low to a high concentration because ?
 - (1) It would require input of energy.
 - (2) It would require output of energy.
 - (3) It required proteins.
 - (4) It would take place only for lipophilic substances.
- 177. Mesenchyme is present in :-
 - (1) Spongilla (2) Euplectella
 - (3) Both (4) Pennatula
- **178.** Growth can be measured in terms of ? (1) Fresh or dry weight increase.
 - (2) Increase in girth of stem.
 - (3) Increase in surface area of leaf.
 - (4) All the above
- **179.** Temperature is very high but a plant is showing photosynthesis with normal rate, probably it would be ?
 - (1) C_3 plant (2) Mango plant
 - (3) Pea plant (4) Sugarcane plant
- 180. When a molecule of pyruvic acid is subjected to anaerobic oxidation and forms lactic acid there is?(1) Loss of 3 ATP molecules
 - (2) Loss of 6 ATP molecules
 - (3) Gain of 2 ATP molecules
 - (4) Gain of 4 ATP molecules

- 173. कटक फिश में घिसने वाला अंग है-
 - (1) पेक्टोरल फिन (2) पेलविक फिन
 - (3) अग्र तथा पश्च पृष्ठ फिन (4) कोई नहीं
- 174. खनिजों के कॉलम को उनके कार्य से मिलान करे ?

	Column-I		Column-II
a.	सल्फर	i.	पराग अंकुरण
b.	मेग्नीशियम	ii.	राइबोसोम संरचना का
			संतुलन
с.	मैगनीज	iii.	जल का हटना
d.	बोरोन	iv.	कई कोएनजाइमों का
			मुख्य घटक
(1)	a_{-i} b_{-ii} c_{-i}	iii d	iv

- (1) a = 1, b = 11, c = 11, d = 10(2) a = iv, b = ii, c = iii, d = i
- (2) a iv, b i, c iv, d ii(3) a - iii, b - i, c - iv, d - ii
- (4) a ii, b i, c iv, d iii
- 175. इनमें से पारीफेरा का विशिष्ट लक्षण है-
 - (1) समुद्री तथा स्वच्छ जलीय (2) जन्तु ऊत्तक स्तर शरीर
 - (3) अन्तः कोशीय पाचन (4) कॉलर कोशिका
- 176. सुसाध्य विसरण निम्न से उच्च सान्द्रता में अणुओं का पूर्ण परिवहन नहीं कर सकता क्योंकी ?
 - (1) इसके लिए ऊर्जा निवोश की आवश्यकता होती है।
 - (2) इसके लिए ऊर्जा विकास की आवश्यकता होती है।
 - (3) इसके लिए प्रोटीन चाहिए।
 - (4) यह केवल लिपिटरोगी पदार्थो के लिए होता है।
- 177. मीसेनकाइम उपस्थित होता है-
 - (1) Spongilla (2) Euplectella
 - (3) दोनों (4) Pennatula
- 178. वृद्धि को किस सन्दर्भ में मापा जाता है ?
 - (1) ताजा एवं शुष्क भार की वृद्धि
 - (2) तने के व्यास में वृद्धि
 - (3) पत्ती के सतही क्षेत्रफल में वृद्धि
 - (4) उपरोक्त सभी
- **179.** तापमान बहुत अधिक होने पर भी पादप सामान्य दर से प्रकाश संश्लेषण दर्शा रहा है संभवत: वह है ?
 - (1) C₃ पादप (2) आम का पादप
 - (3) मटर पादप (4) गन्ना पादप
- **180.** जब पाइरूविक अम्ल का एक अणु अवायुवीय ऑक्सीकरण से गुजरता है एवं लेक्टिक अम्ल बनाता है तब ?
 - (1) 3 ATP अणुओं की हानि होती है।
 - (2) 6 ATP अणुओं की हानि होती है।
 - (3) 2 ATP अणुओं का लाभ होती है।
 - (4) 4 ATP अणुओं का लाभ होता है।

TARGET : PRE-MEDICAL 2013 (NEET-UG)

SPACE FOR ROUGH WORK / रफ कार्य के लिये जगह