

MOCK TEST

EXAM DATE : 01.12.2018

CODE B

utsav

Note : For Solutions of this mock test paper kindly visit our website www.allen.ac.in/bengaluru

BENGALURU, KARNATAKA												lutso			
BENGALUI	KU, KAI	ANATAN	A	CODE B careers after +2 A Premier Educational Fair											
Q.No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans	3	3	2	3	2	4	1	4	2	2	3	4	2	1	2
Q.No	16	17	18	19	20	21	22	23	24	25					
Ans	2	2	2	2	3	1	4	2	2	1					
Q.NO	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans	4	3	1	2	1	1	3	2	1	1	1	3	2	2	1
Q.NO	41	42	43	44	45	46	47	48	49	50					
Ans	3	2	2	4	1	3	2	2	2	4					
Q.NO	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65
Ans	3	2	2	1	3	1	1	3	2	3	2	4	3	3	1
Q.NO	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans	3	2	3	3	4	3	4	1	1	1	3	1	4	3	3
Q.NO	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
Ans	3	2	2	2	3	2	1	2	1	3	3	1	4	4	1
Q.NO	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110
Ans	3	2	4	3	1	2	2	3	2	4	3	3	3	3	3
Q.NO	111	112	113	114	115	116	117	118	119	120		•	•	•	•
Ans	3	4	2	4	1	4	4	4	2	4					
No	te : Fo	r Solut	ions of	this m	ock tes	st pape	r kindl	y visit	our we	bsite v	ww.al	len.ac.	in/beng	galuru	

	(OTA (RA	NSTITUT JASTHAN RNATAK		MOCK TEST EXAM DATE : 01.12.2018 CODE B								CARE ULTSC Careers af A Premier Educat	Ter +2 tional Fair		
Q.No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans	3	3	2	3	2	4	1	4	2	2	3	4	2	1	2
Q.No	16	17	18	19	20	21	22	23	24	25					
Ans	2	2	2	2	3	1	4	2	2	1					
Q.NO	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans	4	3	1	2	1	1	3	2	1	1	1	3	2	2	1
Q.NO	41	42	43	44	45	46	47	48	49	50					
Ans	3	2	2	4	1	3	2	2	2	4					
Q.NO	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65
Ans	3	2	2	1	3	1	1	3	2	3	2	4	3	3	1
Q.NO	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans	3	2	3	3	4	3	4	1	1	1	3	1	4	3	3
Q.NO	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
Ans	3	2	2	2	3	2	1	2	1	3	3	1	4	4	1
Q.NO	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110
Ans	3	2	4	3	1	2	2	3	2	4	3	3	3	3	3
Q.NO	111	112	113	114	115	116	117	118	119	120					
Ans	3	4	2	4	1	4	4	4	2	4					
No	te : Fo	r Solut	ions of	this m	ock tes	t pape	r kindl	y visit	our we	bsite v	ww.al	len.ac.	in/beng	galuru	

MOCK TEST

Β

PAPER CODE

EXAM DATE : 01.12.2018

TIME	
TIME 1.30 Hours	(PCM)
1.30 Hours	(PCB)

FORM NUMBER :

	ANSWER KEY & SOLUTION														
Q.No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans	3	3	2	3	2	4	1	4	2	2	3	4	2	1	2
Q.No	16	17	18	19	20	21	22	23	24	25					
Ans	2	2	2	2	3	1	4	2	2	1					
Q.NO	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans	4	3	1	2	1	1	3	2	1	1	1	3	2	2	1
Q.NO	41	42	43	44	45	46	47	48	49	50		-			
Ans	3	2	2	4	1	3	2	2	2	4					
Q.NO	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65
Ans	3	2	2	1	3	1	1	3	2	3	2	4	3	3	1
Q.NO	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans	3	2	3	3	4	3	4	1	1	1	3	1	4	3	3
Q.NO	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
Ans	3	2	2	2	3	2	1	2	1	3	3	1	4	4	1
Q.NO	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110
Ans	3	2	4	3	1	2	2	3	2	4	3	3	3	3	3
Q.NO	111	112	113	114	115	116	117	118	119	120					
Ans	3	4	2	4	1	4	4	4	2	4					

1. Two bodies of masses m_1 and m_2 are connected by a light string passing over a smooth light fixed pulley. The acceleration of the system is g/7. The ratio of their masses is

(3)4:3

(4) 4 : 5

 $(1) 7: 1 \quad (2) 7: 2$

Ans. 3

Sol. $a = \frac{m_1 - m_2}{m_1 + m_2}g = \frac{g}{7}$ $7m_1 - 7m_2 = m_1 + m_2$ $6m_1 = 8m_2$ or $\frac{m_1}{2} = \frac{4}{2}$

or,
$$\frac{1}{m_2} = \frac{1}{3}$$

- 2. In an a.c. circuit, V & I are given by $V = 100 \sin (100 t) \text{ volt.}$
 - I = 100 sin (100 t + $\pi/3$) mA.

The power dissipated in the circuit is :

- (1) 10^4 watt (2) 10 watt
- (3) 2.5 watt (4) 5 watt

Ans. 3

l.
$$P = V_{rms} I_{rms} \cos \phi$$

2 2

$$= \frac{100}{\sqrt{2}} \cdot \left(\frac{100}{\sqrt{2}} \times 10^{-3}\right) \cos 60^{\circ}$$
$$= \frac{10}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = 2.5 \text{ watt}$$

- 3. A metal rod moves at a constant velocity in a direction perpendicular to its length. A constant, uniform magnetic field exists in space in a direction perpendicular to the rod as well as its velocity. Select the correct statement (s) from the following
 - (1) The entire rod is at the same electric potential
 - (2) There is an electric field in the rod
 - (3) The electric potential is highest at the center of the rod and decreases towards its ends
 - (4) The electric potential is lowest at the center of the rod and increases towards its ends.

Ans. 2

1

Pad to Succes Bengaluru, Karnataka

- Sol. According to Faraday's law, an induced emf is set 6. up on the rod whose magnitude is B/v. Thus, an electric field is generated in the rod. The electric potential varies uniformly along the rod.
- 4. The magnetic flux through a coil varies with time as $\phi = 5t^2+6t+9$. The ratio of emf at t = 3s to t = 0s will be

(3) 6:1 (4) 9:1

(1) 1:9 (2) 1:8 Ans. 3

Sol. $\frac{d\phi}{dt} = 10t + 6$ $e = -\frac{d\phi}{dt} = -(10t + 6)$ $e |_{t=3} = -(10 \times 3 + 6) = -36$ $e |_{t=0} = -(10 \times 0 + 6) = -6$ $\frac{e_{t=3}}{e_{t=0}} = \frac{-36}{-6} = \frac{6}{1}$

- 5. A current I flows along the length of an infinitely long, straight, thin-walled pipe. Then
 - (1) The magnetic field at all points outside the pipe is the same.
 - (2) The magnetic field at any point inside the pipe is zero
 - (3) The magnetic field is zero only on the axis of the pipe
 - (4) The magnetic field is different at different points inside the pipe.

Ans. 2

Sol. Fig. shows infinitely, long, straight, thin-walled pipe carrying current I.

Let P be any point at a distance r from the axis OO_1 of the pipe. Let B be magnetic field at P. Consider a closed circular path passing through point P as shown in figure. From Ampere's Circuital

i = current through the closed path. Obviously, i = 0

 \oint B.dl = $\mu_0 i$

 $\therefore 2\pi r.B = 0 \text{ or } B = 0$

Theorem,

A thin equiconvex lens of refractive index 3/2 and radius of curvature 30 cm is put in water

(refractive index $=\frac{4}{3}$). Its focal length is (1) 0.15 m (2) 0.30m

(4) 1.20 m

Ans. 4

(3) 0.45 m

Sol.
$$\frac{1}{f} = \left(\frac{\mu_1}{\mu_2} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

MOCK TEST/CODE-B/01-12-2018

$$\frac{1}{f} = \left(\frac{3/2}{4/3} - 1\right) \left(\frac{1}{0.3} + \frac{1}{0.3}\right)$$

or
$$\frac{1}{f} = \left(\frac{9}{8} - 1\right) \left(\frac{2}{0.3}\right)$$

or
$$\frac{1}{f} = \frac{1}{8} \times \frac{2}{0.3}$$

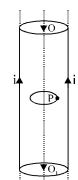
or
$$f = 1.20 \, m$$

- A ray of light falls on a transparent glass slab with refractive index (relative to air) of 1.62. The angle of incidence for which the reflected and refracted rays are mutually perpendicular is:
 - (1) $\tan^{-1}(1.62)$ (2) $\sin^{-1}(1.62)$ (3) $\cos^{-1}(1.62)$ (4) None of these

(4)

Ans. 1

7.


Sol. we know that

$$\mu = \frac{\sin i}{\sin r} \text{ and } i + r = 90^{\circ}$$

or $r = 90 - i$
$$\mu = \frac{\sin i}{\sin(90 - i)} = \tan i$$

or $i = \tan^{-1}(\mu) = \tan^{-1}(1.62)$

- 8. Three resistances R, 2R and 3R are connected in parallel to a battery. Then
 - (1) The potential drop across 3R is maximum
 - (2) The current through each resistance is same
 - (3) The heat developed in 3R is maximum
 - (4) The heat developed in R is maximum.

Sol . In parallel combination, potential drop across each resistance is same.

Heat developed
$$=\frac{V^2}{R}$$

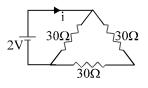
 $H_1 = \frac{V^2}{R}$ $H_2 = \frac{V^2}{2R}$
 $H_3 = \frac{V^2}{3R}$

- \therefore Heat developed in resistance R is maximum.
- 9. A mass of 1 kg is acted upon by a single force $\vec{F} = (4\hat{i} + 4\hat{j})N$. Due to force, mass is displaced from (0, 0) to (1m, 1m). If initially the speed of the particle was 2 m/s, its final speed should approximately be
 - (1) 9 m/s (3) 15 m/s (4) 7.2 m/s

Ans. 2

Sol.
$$W_{net} = \int \vec{F} \cdot d\vec{r} = \int_{0m}^{lm} 4dx + \int_{0m}^{lm} 4dy = 8J$$

and $W_{net} = DK$
 $\Rightarrow 8 = \frac{1}{2}(1) \times v^2 - \frac{1}{2}(1)(2)^2$


 \Rightarrow v = 4.5 m/s

- 10. The angular acceleration of a particle moving along a circular path with uniform speed is
 - (1) Uniform but non-zero
 - (2) Zero
 - (3) Variable
 - (4) Such as cannot be predicted from the given information.

Ans. 2

Ans. 3

- Sol. As angular speed of the particle is constant and hence angular acceleration is zero.
- 11. The current i in the battery (see figure) is

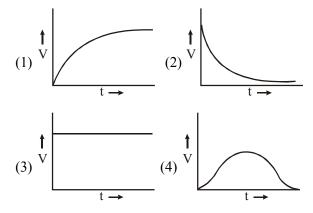
Sol.
$$\frac{1}{R_{eq}} = \frac{1}{30} + \frac{1}{60} = \frac{90}{30 \times 60} R_{eq} = 20$$

 $V = IR$
 $I = \frac{2}{20} = 0.1$ Amp.

12. Two identical metal plates are given positive charges Q_1 and Q_2 (< Q_1) respectively. If they are now brought close together to form a parallel plate capacitor with capacitance C, the potential difference between them is :

(1)
$$\frac{Q_1 + Q_2}{2C}$$
 (2) $\frac{Q_1 + Q_2}{C}$
(3) $\frac{Q_1 - Q_2}{C}$ (4) $\frac{Q_1 - Q_2}{2C}$

Ans.4


S

Sol. Within the capacitor,

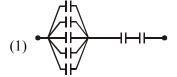
$$E_1 = \frac{Q_1}{2\varepsilon_0 A}; E_2 = \frac{Q_2}{2\varepsilon_0 A}$$
$$E = E_1 - E_2 = \frac{1}{2\varepsilon_0 A} (Q_1 - Q_2)$$

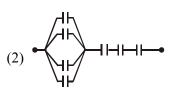
Hence,
$$V = Ed = \frac{1}{2} \frac{d}{\varepsilon_0 A} (Q_1 - Q_2) = \frac{Q_1 - Q_2}{2C}$$
.

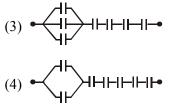
13. An ideal cell is connected to a capacitor and a voltmeter in series. The reading V of the voltmeter (added in parallel with resistor) is plotted against time. Which of the following best represents the resulting curve?

Ans.2

Sol. This is basically an RC circuit, charging from a cell. The resistance (R) of the voltmeter is the resistance in the circuit. The voltage across R = circuit current $\times R =$ reading of the voltmeter (V). Thus the nature of the V-t curve is the same as the nature of the


I-t curve.


Prif to Success BENGALURU, KARNATAKA


MOCK TEST/CODE-B/01-12-2018

14. Seven capacitors each of capacitance $2\mu F$ are to be connected in a configuration to obtain an effective capacitance of $(10/11)\mu F$. Which of the combination(s), shown in figure below, will achieve the desired result ?

Ans. 1

- Sol. (1) $\frac{1}{C} = \frac{1}{5 \times 2} + \frac{2}{2} = \frac{11}{10}$ or $C = \frac{10}{11} \mu F$ (2) $\frac{1}{C} = \frac{1}{4 \times 2} + \frac{3}{2} = \frac{13}{8}$ or $C = \frac{8}{13} \mu F$ (3) $\frac{1}{C} = \frac{1}{3 \times 2} + \frac{4}{2} = \frac{13}{6}$ or $C = \frac{6}{13} \mu F$ (4) $\frac{1}{C} = \frac{1}{2 \times 2} + \frac{5}{2} = \frac{11}{4}$ or $C = \frac{4}{11} \mu F$.
- 15. A 6000 kg rocket is set for vertical firing. If the exhaust speed is 1000 ms⁻¹, the amount of gas that must be ejected per second to supply the thrust needed to overcome the weight of the rocket is

$$(g = 10 \text{ ms}^{-1}).$$

Ans. 2

Sol.
$$M_0 g = \text{Thrust} = v \frac{dM}{dt}$$

$$\Rightarrow \frac{dM}{dt} = \frac{M_0 g}{v} = \frac{6000 \times 10}{1000} \text{ kgs}^{-1}$$

$$\Rightarrow \frac{dM}{dt} = \frac{60000}{1000} = 60 \text{ kgs}^{-1}$$

 During adiabatic process pressure (P) versus density (ρ) equation is

(1)
$$P.\rho^{\gamma} = constant$$
 (2) $P.\rho^{-\gamma} = constant$

(3)
$$P^{\gamma} \cdot \rho^{1+\gamma} = \text{constant}$$
 (4) $P^{\frac{1}{\gamma}} \cdot \rho^{\gamma} = \text{constant}$

... (1)

Ans. 2

Sol. In adiabatic process

$$m_{\rm e}$$
 it $n_{\rm e} = \frac{m}{m}$

Density
$$\rho = \frac{1}{V}$$

 $PV^{\gamma} = constant$

or $\rho \propto V^{-1}$

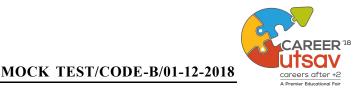
- \therefore equation (1) can be written as constant
- 17. A charge is situated at a certain distance from an electric dipole in the end-on position(i.e along the axis of dipole) experiences a force F. if the distance of the charge is doubled, the force acting on the charge will be :

Ans.2

Sol.
$$E = \frac{1}{4\pi\epsilon_0} \frac{2p}{r^3}$$

 $E \propto \frac{1}{r^3} \implies F \propto \frac{1}{r^3}$

Hence, the force will become F/8

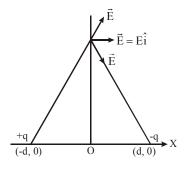

18. The current in an L-R circuit builds up to $3/4^{th}$ of its steady state value in 4 seconds. The time constant of this circuit is

(1)
$$\frac{1}{\ln 2} \sec$$
 (2) $\frac{2}{\ln 2} \sec$
(3) $\frac{3}{\ln 2} \sec$ (4) $\frac{4}{\ln 2} \sec$

Ans. 2

Sol. $I = I_0 (1 - e^{-t/\tau})$ where $\tau \rightarrow$ time constant

$$\therefore \qquad \frac{3}{4}I_0 = I_0(1 - e^{-t/\tau})$$
$$\Rightarrow \qquad \frac{3}{4} = 1 - e^{-t/\tau}$$
$$\Rightarrow \qquad e^{-t/\tau} = \frac{1}{4}$$


Part o Succession Career Institute Bengaluru, Karnataka

$$\Rightarrow \quad \frac{-t}{\tau} = \ln \frac{1}{4}$$
$$\Rightarrow \quad \frac{-4}{\tau} = -2 \ln 2$$
$$\Rightarrow \quad \tau = \frac{2}{\ln 2}$$

- 19. Two point charges +q and -q are held fixed at (-d, 0) and (d, 0) respectively of a (X, Y) coordinate system. Then
 - (1) The electric field \vec{E} at all points on the X-axis has the same direction.
 - (2) \vec{E} at all points on the Y-axis is along \hat{i} .
 - (3) Work has to be done in bringing a test charge from infinity to the origin.
 - (4) The dipole moment is qd directed along \hat{i} .

Ans. 2

Sol.

The diagrammatic representation of the given problem is shown in fig.

The electrical field \vec{E} at all points on the X-axis will not have the same direction.

The electrical field \vec{E} at all points on the Y-axis

will be parallel to the X-axis (i.e. \hat{i} direction).

The electric potential at the origin due to both the charge is zero, hence, no work is done in bringing a test charge from infinity to the origin.

Dipole moment is directed from the -q charge to the +q charge (i.e. -x direction).

20. A geo-stationary satellite orbits around the earth in a circular orbit of radius 36000 km. Then, the time period of a spy satellite orbiting a few hundred kilometers above the earth's surface

(R_{earth}=6400 km) will approximately be

(1) 5 hr	(2) 16 hr	
----------	-----------	--

- (3) 2 hr (4) 8 hr
- Ans. 3

Sol. We know that

or

$$T^2 \propto R^3$$
 or $(T_2 / T_1) = (R_2 / R_1)^{3/2}$
or $\frac{T_2}{T_1} = \left(\frac{6400}{36000}\right)^{3/2}$

$$T_2 = \left(\frac{6400}{36000}\right)^{3/2} \times 24 \approx 2 \,\mathrm{hr}.$$

21. A traveling wave in a stretched string is described by the equation $y = A \sin(kx - \omega t)$. The maximum particle velocity is

(1) $A\omega$ (2) ω/k (3) $d\omega/dk$ (4) x/t

Ans. 1

Sol :Particle velocity
$$|v| = \left| \frac{dy}{dt} = A\omega \cos(kx - \omega t) \right|$$

 \therefore Maximum particle velocity = $A\omega$

22. A proton moving with a constant velocity passes through region of space without any change in its velocity. If E and B represent the electric and magnetic fields respectively, this region of space may have

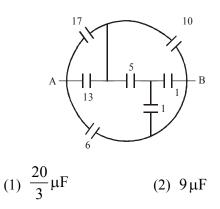
(1)
$$E = 0, B = 0$$
 (2) $E = 0, B \neq 0$

(3)
$$E \neq 0, B \neq 0$$
 (4) All of these

Ans.4

Sol. As there is no acceleration, either E = 0, B = 0 or

 $E \neq 0, B \neq 0 \text{ or } E = 0, B \neq 0$.


- 23. In a transformer, $n_p = 500$, $n_s = 5000$. Input voltage is 20 V and frequency is 50 Hz. Then in the output, we have
 - (1) 200 V, 500 Hz (2) 200 V, 50 Hz (3) 20 V, 5 Hz (4) 2 C, 5 Hz.

Ans.2

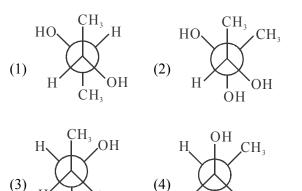
Sol.
$$E_s = \frac{n_s}{n_p} \times E_p = \frac{5000}{500} \times 20 = 200 \text{ V}$$

Frequency is not affected by transformer.

24. Find equivalent capacitance across AB (all capacitances are in μF)

(3) 48 µF (4) None

Ans. 2


Sol.

25. Two men A and B are sitting at the end of a plank of length L, if plank is rotating with angular velocity ω about an axis perpendicular to its length and passing through a point at a distance of L/3 from A. The angular velocity of B with respect to A is

(1)
$$\omega$$
 (2) $\omega L/3$
(3) $\frac{2\omega}{3}$ (4) 2ω

Ans. 1

- Sol. Angular velocity of a body about any point in it is same.
- 26. Which one of the following is the least stable conformer?

Ans. 4

27. The anions (A) form hexagonal closest packing and atoms (C) occupy only 2/3 of octahedral voids in it, then the general formula of the compound is

(4) $C_{2}A_{2}$

(1) CA (2) C_2A_2

 $(3) C_{2}A_{3}$

Ans. 3

28. The correct order of boiling point is

(1)
$$CH_3I > CH_3Br > CH_3Cl > CH_3F$$

- (2) $CH_3Br > CH_3I > CH_3Cl > CH_3F$
- (3) $CH_3F > CH_3Cl > CH_3Br > CH_3I$

(3)
$$CH_3Cl > CH_3F > CH_3I > CH_3Br$$

Ans. 1

29. The correct order of hybridization of the central atom in the following species.

$$NH_{3}, [PtCl_{4}]^{2^{-}}, PCl_{5} \text{ and } BCl_{3} \text{ is}$$
(1) dsp², dsp³, sp² and sp³
(2) sp³, dsp², sp³d, sp²
(3) dsp², sp², sp³, dsp³
(4) dsp², sp³, sp², dsp³
5. 2

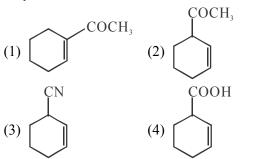
Ans

- 31. The wt. of urea dissolved in 100 ml. solution which produce an osmotic pressure of 20.4 atm at 25° C, will be [S = 0.0821]
 - (1) 5 g (2) 4 g

Ans. 1

CH₃

OH


32. The ratio between the rms velocity of H_2 at 50 K and that of O₂ at 800 K is

	<i>L</i>
(1) 4	(2) 2
(3) 1	(4) 1/4

33. End product of the following sequence of reaction is $\xrightarrow{\text{NBS}}(A) \xrightarrow{\text{Mg/ether}} (B) \xrightarrow{\text{CH}_3\text{CN}} (C)$

Ans. 2

34. In the sequence reaction,

$$A \xrightarrow{K_1} B \xrightarrow{K_2} C \xrightarrow{K_3} D$$
, $K_3 > K_2 > K_1$,
then the rate determining step of the reaction is

(1) $A \rightarrow B$ (2) $B \rightarrow C$ (3) $C \rightarrow D$ (4) $A \rightarrow D$

Ans. 1

35. Which is prussian blue?

(1) $KFe^{III} \left[Fe^{II} (CN)_{6} \right]$ (2) KFe^{III} $\left[Fe^{I} (CN)_{6} \right]$ (3) $K_2 \left[Fe^{II} (CN)_6 \right]$ (4) $K_3 \left[Fe(CN)_6 \right]$

Ans	5. 1		
36.	Charge required to liber	rate 11.5 g sodium is	
	(1) 0.5 F	(2) 0.1 F	
	(3) 1.5 F	(4) 96500 coulombs	
Ans	5. 1		F
37.	Which solution will have	te the highest boiling point?	4
	(1) $1 \text{m C}_6 \text{H}_{12} \text{O}_6$ solutio	n(2) 1m NaCl solution	
	(3) $\lim BaCl_2$ solution	(4) 1m CO(NH ₂) ₂ solution	
Ans	5. 3		
38.	In which one of the folt than K_{c} ?	lowing reactants K_{p} is less	
	(1) $2SO_{3(g)} \Longrightarrow 2SC$	$O_{2(g)} + O_{2(g)}$	
	(2) $N_{2(g)} + 3H_{2(g)}$	$\Rightarrow 2NH_{3(g)}$	4

(3) $PCl_{5(g)} \Longrightarrow PCl_{3(g)} + Cl_{2(g)}$ (4) $H_{2(g)} + I_{2(g)} \Longrightarrow 2HI_{(g)}$

Ans. 2

39. The dative bond is present in

(1)
$$NH_3$$
 (2) SO_3
(3) CO_2 (4) BF_3

Ans.2

40. 20 ml of 0.2M $Al_2(SO_4)$, is mixed with 20 ml of 0.6 M BaCl, concentration of Al^{3+} ion in the solution will be

(1) 0.2 M	(2) 10.3 M
(3) 0.1 M	(4) 0.25 M

Ans. 1

- 41. The element with the highest first ionization potential is
 - (1) Boron (2) Carbon (4) Oxygen (3) Nitrogen

Ans. 3

- 42. The correct order of equivalent conductance's at infinite dilution of LiCl, NaCl, KCl is
 - (1) LiCl > NaCl > KCl(2) KCl > NaCl > LiCl
 - (3) NaCl > KCl > LiCl
 - (4) LiCl > KCl > NaCl

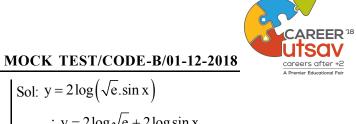
Ans. 2

43. In the extraction of copper from copper pyrites, iron is removed as

(1) $FeSO_4$	(2) $FeSiO_3$

(3) $Fe_{3}O_{4}$ (4) $Fe_{2}O_{3}$

Ans. 2


- 44. Which of the following is true regarding reversible adiabatic expansion of an ideal gas?
 - (1) Plot of T vs V is a straight line with slope equal to γ
 - (2) Plot of *l*nT vs *l*nV is a straight line with slope equal to γ
 - (3) Plot of lnT vs lnV is a straight line with slope equal to $-\gamma$
 - (4) Plot of *l*nT vs *l*nV is a straight line with slope $(1 - \gamma)$

45. FeSO₄ solution gives brown colour ring in testing 49. Primary and secondary valency of Pt in nitrates or nitrites. This is $\left[Pt(en)_2 Cl_2 \right] Cl_2$ are : (1) $\left[\text{Fe}(\text{H}_2\text{O})_{\epsilon} \text{NO} \right]^{2+}$ (1) 4, 4 (2) 4, 6 (3) 6, 6 (4)4,2Ans. 2 (2) $\left[\text{Fe}(\text{H}_2\text{O})_5 \text{NO}_2 \right]^{2+}$ 50. Which of the following does not forms interstitial compounds (3) $\left[\operatorname{Fe}(\mathrm{H}_{2}\mathrm{O})_{4}(\mathrm{NO})_{2} \right]^{2+}$ (1) Co (2)Ni (3) Fe (4) Ca Ans. 4 (4) $\left[\operatorname{Fe}(\mathrm{H}_{2}\mathrm{O})_{4} \operatorname{NO} \right]^{2+}$ 51. If 1, ω and ω^2 are three cube roots of unity, then Ans. 1 the roots of equation $(x-1)^3 - 8 = 0$, are 46. Among $\left[\text{Ni}(\text{CO})_{4} \right]$, $\left[\text{Ni}(\text{CN})_{4} \right]^{2-}$ and $\left[\text{Ni}\text{Cl}_{4} \right]^{2-}$ (1) $-1, -1-2\omega, -1+2\omega^2$ (2) $3, 2\omega, 2\omega^2$ (1) $\left\lceil Ni(CO)_{_{4}} \right\rceil$ and $\left\lceil NiCl_{_{4}} \right\rceil^{2-}$ are diamagnetic (3) $3,1+2\omega,1+2\omega^2$ (4) $3,1-2\omega,1-2\omega^2$ Ans:3 and $\left[Ni(CN)_{4} \right]^{2-}$ is paramagnetic Sol: $(x-1)^3 = 8 \Rightarrow (x-1)^3 = 2^3$ (2) $\left[\operatorname{NiCl}_{4}\right]^{2+}$ and $\left[\operatorname{Ni}(\operatorname{CN})_{4}\right]^{2-}$ are $\Rightarrow \left(\frac{x-1}{2}\right)^3 = 1 \Rightarrow \frac{x-1}{2} = 1, \omega, \omega^2$ diamagnetic and $\left[Ni(CO)_{4} \right]$ is paramagnetic \Rightarrow x -1 = 2, 2 ω , 2 ω^2 (3) $\left\lceil Ni(CO)_{4} \right\rceil$ and $\left\lceil Ni(CN)_{4} \right\rceil^{2^{-}}$ are \Rightarrow x = 3.1 + 2 ω .1 + 2 ω^2 diamagnetic and $[NiCl_4]$ is paramagnetic 52. If f(x) is a polynomial satisfying (4) $\left[Ni(CO)_{4} \right]$ is diamagnetic and f(x).f(1/x) = f(x) + f(1/x) and f(3) = 28, then f(4) is $\left[\operatorname{Ni}(\operatorname{CN})_{4}\right]^{2-}$, $\left[\operatorname{NiCl}_{4}\right]^{2-}$ are paramagnetic (1) 63(2) 65 (3) 17 (4) 19 Ans. 3 Ans:2 47. Consider the following reaction. Sol: $f(x) = x^n + 1$ $CH_3 - CH_2 - CH_2 - Br + NaOH \longrightarrow$ $:: f(3) = 3^n + 1 = 28$ \Rightarrow n = 3 Total number of possible products in this reaction $\therefore f(x) = x^3 + 1$ is $\therefore f(4) = 65$ (1) Two (2) Four (3) One (4) Three 53. If x = -9 is a root of $\begin{vmatrix} x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x \end{vmatrix} = 0$, then the other Ans. 2 48. H_2 acts as an oxidant in its reaction with (1) Br₂ (2) Ca two roots are: (1) {3, 7} (2) {2, 7} (3) N_2 (4) S (3) {3, 6} (4) {2, 6} Ans.2 Ans:2

BENGALONO, NANNAIANA	A Premier Educational Fair
x 3 7	Sol: $y = 2\log(\sqrt{e}.\sin x)$
Sol: $\begin{vmatrix} x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x \end{vmatrix} = 0, [R_1 \rightarrow R_1 + R_2 + R_3]$	$\therefore y = 2\log\sqrt{e} + 2\log\sin x$
	$\frac{dy}{dx} = 2\frac{1}{\sin x} \cdot \cos x = 2\cot x$
$\Rightarrow (x+9) \begin{vmatrix} 1 & 1 & 1 \\ 2 & x & 2 \\ 7 & 6 & x \end{vmatrix} = 0$	57 $\lim_{n \to \infty} \sum_{n=1}^{n} \frac{1}{n}$ equals
$\left 7 6 x \right $	$\begin{array}{ccc} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$
$\Rightarrow (x+9)(x^2-9x+14) = 0 \Rightarrow x = -9, 2, 7$	$\begin{array}{cccc} (1) & 2 & (2) & 1 \\ (3) & 0 & (4) & 4 \\ \text{Ans:1} & & & \end{array}$
54. The slope of tangent to the curve $y = \int_{0}^{x} \frac{dt}{1+t^{3}}$	\overline{s} at Sol: Required = $\lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{\sqrt{n}} \cdot \frac{1}{\sqrt{r}}$
the point where $x = 2$, is	$\dots \overline{n} 1 1$
(1) $\frac{1}{9}$ (2) 9	$= \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n} \frac{1}{\sqrt{\frac{r}{n}}} = \int_{0}^{1} \frac{1}{\sqrt{x}} dx = \left[2\sqrt{x} \right]_{0}^{1} = 2$
(3) $\frac{1}{3}$ (4) 3	58. If $\int_{\log 2}^{x} \frac{dx}{\sqrt{e^{x}-1}} = \frac{\pi}{6}$, then x =
Ans: 1	
Sol: $y = \int_{0}^{x} \frac{dt}{1+t^3} \Rightarrow \frac{dy}{dx} = \frac{1}{1+x^3}$	(1) 4 (2) log 8 (3) log 4 (4) log 2 Ans:3
$\left. \left. \frac{\mathrm{dy}}{\mathrm{dx}} \right _{\mathrm{x}=2} = 1/9$	Sol: $\int_{\log 2}^{x} \frac{dx}{\sqrt{e^{x} - 1}} = \int_{\log 2}^{x} \frac{e^{x/2}}{e^{x/2}\sqrt{(e^{x/2})^{2} - 1}} dx$
55. If $f(x)$, $g(x)$ be differentiable functions and $f(1)$ g(1) = 2, then	$) = \begin{bmatrix} \log_2 \sqrt{e} & 1 & \log_2 e & \sqrt{e} & 1 & -1 \\ put e^{x/2} = z \end{bmatrix}$
$\lim_{x \to 1} \frac{f(1)g(x) - f(x)g(1) - f(1) + g(1)}{g(x) - f(x)}, $ is	or $\frac{1}{2}e^{x/2}dx = dz$
(1) 0 (2) 1 (3) 2 (4) -1 Ans:3	$\Rightarrow \int_{\log 2}^{x} \frac{dx}{\sqrt{e^{x} - 1}} = 2 \int_{\sqrt{2}}^{e^{x/2}} \frac{dz}{ z \sqrt{z^{2} - 1}} = 2 \left[\sec^{-1} z \right]_{\sqrt{2}}^{e^{x/2}}$
Sol: $\lim_{x \to 1} \frac{f(1)g'(x) - f'(x)g(1)}{g'(x) - f'(x)}$	$\therefore 2\left\{\sec^{-1} e^{x/2} - \sec^{-1} \sqrt{2}\right\} = \pi/6$
$= \lim_{x \to 1} \frac{2\{g'(x) - f'(x)\}}{g'(x) - f'(x)} = 2$	$\Rightarrow \sec^{-1} e^{x/2} = \frac{\pi}{12} + \frac{\pi}{4} = \frac{\pi}{3}$
56. If $y = 2\log \left \left(\sqrt{e} \cdot \sin x \right) \right $; then $\frac{dy}{dx}$ is	$\Rightarrow x = \log 4$ 59. The area bounded by the curve $y = \sqrt{4 - x^2}$ and
(1) $2\cot x$ (2) $\frac{1}{2}\cot x$	the line $y = 0$ is (1) 4π (2) 2π
1	(1) 4π (2) 2π (3) π (4) $\pi/2$
(3) $\frac{1}{\sqrt{e}}\cot x$ (4) $\sqrt{e}\cot x$	Ans: 2
Ans: 1	Sol: $y = \sqrt{4 - x^2} \implies a \text{ semi-circle so area} = \frac{\pi (2)^2}{2} = 2\pi$

Sol: Required sum= 60. A spherical balloon is pumped, at the constant rate of $3m^3/min$. The rate of increase of its surface area at certain instant is found to be $5m^2/min$. At this instant its radius equals;

(1)
$$\frac{1}{5}$$
m (2) $\frac{3}{5}$ m (3) $\frac{6}{5}$ m (4) $\frac{2}{5}$ m

Ans:3

Sol:
$$V = \frac{4}{3}\pi r^3 \Rightarrow \frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$$

Also $S = 4\pi r^2 \Rightarrow \frac{ds}{dt} = 8\pi r.\frac{dr}{dt}$
Where, $\frac{dV}{dt} = 3, \frac{ds}{dt} = 5$
 $\therefore \frac{r}{2} = \frac{3}{5} \Rightarrow r = \frac{6}{5}m$

- 61. The roots of $x^2 ax + b = 0$ differ by unity, then:
 - (1) $b^2 = 1 + 4a$ (2) $a^2 = 1 + 4b$ (3) $b^2 + 4a = 1$ (4) $a^2 + 4b = 1$

Ans: 2

Sol: Let x_1, x_2 be the roots, then

$$|x_1 - x_2| = 1 \Longrightarrow (x_1 + x_2)^2 - 4x_1x_2 = 1$$
$$\implies a^2 - 4b = 1 \implies a^2 = 1 + 4b$$

62. A person while dialing a telephone number, forgets the last three digits of the number but remember that exactly two of them same. He dials the number randomly. The probability that he dials the correct number is

(1)
$$\frac{1}{135}$$
 (2) $\frac{1}{27}$ (3) $\frac{1}{54}$ (4) $\frac{1}{270}$

Ans: 4

Sol: Required probability =
$$\frac{1}{{}^{10}C_2 \cdot 2 \cdot \frac{3!}{2!}} = \frac{1}{270}$$

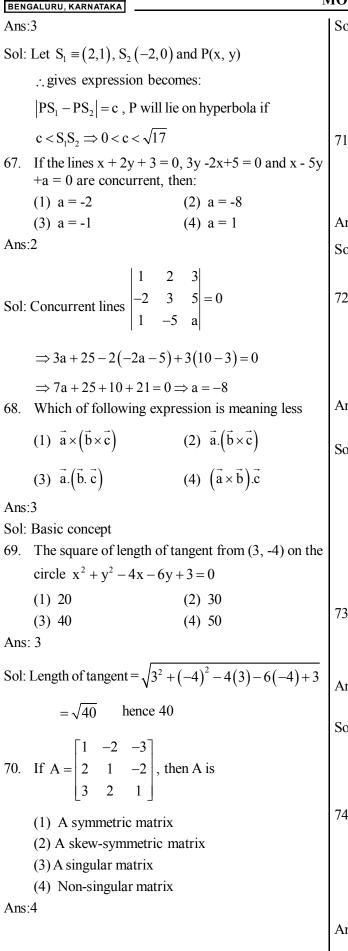
63. Sum of the series

$$\frac{1}{\sqrt{2} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{8}} + \frac{1}{\sqrt{8} + \sqrt{11}} + \frac{1}{\sqrt{11} + \sqrt{14}} + \dots$$

.....upto n terms equals

(1)
$$\frac{n}{\sqrt{3n+2}-\sqrt{2}}$$
 (2) $\frac{1}{3}(\sqrt{2}-\sqrt{3n+2})$
(3) $\frac{n}{\sqrt{3n+2}+\sqrt{2}}$ (4) $\frac{n}{\sqrt{2}}$

Ans: 3


 $\frac{1}{3} \Big[\sqrt{5} - \sqrt{2} + \sqrt{8} - \sqrt{5} + \sqrt{11} - \sqrt{8} + ... + \sqrt{3n+2} - \sqrt{3n-1} \Big]$ $= \frac{1}{3} \left[\sqrt{3n+2} - \sqrt{2} \right] = \frac{n}{\sqrt{3n+2} + \sqrt{2}}$ 64. The value of $\sin^{-1} \left(\cos \left(\sin^{-1} \frac{\sqrt{3}}{2} \right) \right)$ (1) 0(2) $\pi/3$ (3) $\pi/6$ (4) $\pi/2$ Ans: 3 $\left| \text{Sol:} \sin^{-1} \left(\cos \left(\sin^{-1} \frac{\sqrt{3}}{2} \right) \right) \right|$ $=\sin^{-1}\left(\cos\frac{\pi}{3}\right)=\sin^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}$ 65. The number of solutions of the equation $5 \sec \theta - 13 = 12 \tan \theta$ in $[0, 2\pi]$ (1) 2(2) 1 (3) 4 (4) 0Ans:1 Sol: \therefore 5 sec $\theta = 13 + 12 \tan \theta$ \Rightarrow 13 cos θ + 12 sin θ = 5 or $\frac{13}{\sqrt{13^2 + 12^2}}\cos\theta + \frac{12}{\sqrt{13^2 + 12^2}}\sin\theta = \frac{5}{\sqrt{13^2 + 12^2}}$ $\theta = 2n\pi \pm \cos^{-1} \frac{5}{\sqrt{313}} + \cos^{-1} \frac{13}{\sqrt{313}}$, $n \in \mathbb{Z}$ or $\cos(\theta - \alpha) = \frac{5}{\sqrt{313}}$ where $\cos \alpha = \frac{13}{\sqrt{313}}$ As $\cos^{-1}\frac{5}{\sqrt{313}} > \cos^{-1}\frac{13}{\sqrt{313}}$, we get $\theta \in [0, 2\pi]$, when n =0 (one value, taking positive sign)

and when n = 1 (one value, taking negative sign) 66. The equation:

$$\left| \sqrt{(x-2)^{2} + (y-1)^{2}} - \sqrt{(x+2)^{2} + y^{2}} \right| = c, \text{ will}$$

represent a hyperbola if
(1) $c \in (0, 6)$ (2) $c \in (0, 5)$

(1) $c \in (0, 6)$ (3) $c \in (0, \sqrt{17})$ (2) $c \in (0,5)$ (4) $c \in \phi$

MOCK TEST/CODE-B/01-12-2018
Sol: It is clear that A is neither symmetric nor skew-
symmetric.
and
$$|A| = 1(1+4) + 2(2+6) - 3(4-3) = 18$$

Hence A is non-singular
71. The number of diagonals of a polygon of 20 sides
is
(1) 25 (2) 150
(3) 170 (4) 210
Ans:3
Sol:Required number of diagonals = ${}^{20}C_2 - 20 = 170$
72. $\int_{0}^{\pi/2} \frac{dx}{1 + \tan x}$ equals to
(1) 0 (2) π
(3) $\frac{\pi}{2}$ (4) $\frac{\pi}{4}$
Ans: 4
Sol: $I = \int_{0}^{\pi/2} \frac{dx}{1 + \tan x}$ curve.(1)
 $\therefore I = \int_{0}^{\pi/2} \frac{dx}{1 + \cot x} \Rightarrow I = \int_{0}^{\pi/2} \frac{\tan x}{1 + \tan x} dx$ (2)
(1) + (2) $\Rightarrow 2I = \int_{0}^{\pi/2} dx = \frac{\pi}{2} \Rightarrow I = \frac{\pi}{4}$
73. $\lim_{x \to 0^{+}} (1 + x)^{\cot x}$ equals
(1) e (2) e^{-1}
(3) e^{2} (4) e^{-2}
Ans: 1
Sol: $\lim_{x \to 0^{+}} (1 + x)^{\cot x} = \lim_{h \to 0} ((1 + h)^{\frac{1}{h}})^{h \text{ coth}}$
 $e^{\lim_{x \to 0^{+}} \frac{h}{\tan h}} = e$
74. Orthogonal trajectories of family of hyperbolas
 $xy = c^{2}$, is $c \neq 0$
(1) $x^{2} - y^{2} + a = 0$ (2) $x(y - x) = a$

(3)
$$x^2 + y^2 = a$$
 (4) $y(x - y) = a$

Ans: 1

Sol: $\therefore xy = c^2$ $x\frac{dy}{dt} + y = 0$ Differential equation for orthogonal trajectory is $-x\frac{dx}{dy}+y=0$ \Rightarrow ydy - xdx = 0 $\therefore \frac{y^2}{2} - \frac{x^2}{2} = b$ (b is arbitrary constant) \Rightarrow y² - x² = 2b \Rightarrow x² - y² + a = 0;{Let 2b = a} 75. The remainder obtained when 1!+2!+3!+...+95! is divided by 15, is (1) 3 (2) 14 (3) 1 (4) 2Ans:1 Sol: Required remainder is same as the remainder obtained when (1!+2!+3!+4!) is divided by 15 i.e (1+2+6+24) divided by 15 i.e 3. 76. $\lim_{x \to \infty} \left(\sqrt{x + \sqrt{x}} - \sqrt{x} \right)$ equals (1) 1(2) 0(3) $\frac{1}{2}$ (4) 2Ans: 3 Sol: $\lim_{x \to \infty} \left(\sqrt{x + \sqrt{x}} - \sqrt{x} \right) = \lim_{x \to \infty} \frac{\sqrt{x}}{\sqrt{x + \sqrt{x}} + \sqrt{x}}$ $= \lim_{x \to \infty} \frac{1}{\left(\sqrt{1 + \frac{1}{\sqrt{x}}} + 1\right)} = \frac{1}{2}$ 77. $\int e^{x} (\cos x - \sin x) dx$ is equal to (1) $e^{x} \cos x + c$ (2) $e^x \sin x + c$ (4) $-e^x \sin x + c$ (3) $-e^{x}\cos x + c$ Ans: 1 Sol: $\int e^{x} (\cos x - \sin x) dx$ $=\int e^{x} \cos x dx - \int e^{x} \sin x dx$

MOCK TEST/CODE-B/01-12-2018 $= e^{x} \cos x + \int e^{x} \sin x dx - \int e^{x} \sin x dx + c$ $= e^{x} \cos x + c$ 78. For any arbitrary vector \vec{a} , the expression: $(\vec{a}.\hat{i})(\vec{a}\times\hat{i}) + (\vec{a}.\hat{j})(\vec{a}\times\hat{j}) + (\vec{a}.\hat{k})(\vec{a}\times\hat{k})$ is equal to (1) \vec{a} (2) $\vec{2a}$ $(3) \vec{3a}$ $(4) \vec{0}$ Ans:4 Sol: Let $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ $\vec{a} \times \hat{i} = -a_2\hat{k} + a_3\hat{j}$ $\therefore \vec{a} \cdot \vec{i} = a_1$ $\vec{a} \times \hat{j} = +a_1\hat{k} - a_3\hat{i}$ $\vec{a} \cdot \vec{a} \cdot \vec{j} = a_2$ $\therefore \vec{a} \cdot \hat{k} = a_{2}$ $\vec{a} \times \hat{k} = -a_1\hat{j} + a_2\hat{i}$ required value $= \vec{0}$ 79. The solution of differential equation (xy + x + y + 1)dy = dx, equal to (1) $y(y+1)-2\log|x+1| = c$ (2) $(y+1)^2 + 2\log|x+1| = c$ (3) $(y+1)^2 - 2\log|x+1| = c$ (4) $y(y+1) + 2\log|x+1| = c$ Ans: 3 Sol: (xy + x + y + 1)dy = dx \Rightarrow (x+1)(y+1)dy = dx $\Rightarrow (y+1) dy = \frac{dx}{dy}$ on integrating both sides $\Rightarrow \frac{y^2}{2} + y = \log |x+1| + k$ $\Rightarrow (y+1)^2 = 2\log|x+1| + c$ 80. Let $\vec{a}, \vec{b}, \vec{c}$ be pairwise mutually perpendicular vectors, such that; $|\vec{a}| = 1, |\vec{b}| = 2, |\vec{c}| = 2$ then $\left| \vec{a} + \vec{b} + \vec{c} \right|$ equals (1) 2(2) 4 (3) 3 (4) 6Ans:3 Sol: $|\vec{a} + \vec{b} + \vec{c}| = \sqrt{|a|^2 + |b|^2 + |c|^2} = \sqrt{1 + 4 + 4} = 3$

 81. Select the incorrect match w.r.t interspecific interaction. Species A Species B Interaction (1) - Column I 86. Match the Column I and Column II. 86. Match the Column I and Column II. Column I a. Germplasm (i) Crucial and requestion (ii) Generating purelines (iii) Back-bone of purelines (iii) Alternative and testing (ii) alternative and testing (iii) alternative and testing (iii) alternative and testing (iii) alternative and te	plant
Species ASpecies B InteractionColumn IColumn II(1) Competition(2) -O Amensalism(3) +O Predation(4) ++ ProtocooperationAns : 3.82. Select wrongly matched pair(1) Down's syndrome – Mongolismd. Superior(2) Monosomy- Patau syndrome(3) 47, XXY- Klinefelter syndrome	plant
 (1) - Competition (2) - O Amensalism (3) + O Predation (4) + Protocooperation Ans : 3 82. Select wrongly matched pair. (1) Down's syndrome - Mongolism (2) Monosomy - Patau syndrome (3) 47, XXY - Klinefelter syndrome a. Germplasm (i) Crucial and requestion b. Cross-hybridisation (ii) Generating purelines c. Parents evaluation and selection breeding d. Superior (iv) Time consuming recombinants selection and testing (1) a(iii), b(iv), c(i), d(ii) (2) a(iii), b(iv), c(i), d(i) (2) a(iii), b(iv), c(i), d(i) 	plant
 (2) - O Amensalism (3) + O Predation (4) + Protocooperation Ans : 3 82. Select wrongly matched pair. (1) Down's syndrome - Mongolism (2) Monosomy - Patau syndrome (3) 47, XXY - Klinefelter syndrome (2) Construction of patau syndrome (3) 47, XXY - Klinefelter syndrome (2) Construction of patau syndrome (3) 47, XXY - Klinefelter syndrome (4) Cross-hybridisation (5) Cross-hybridisation (6) Cross-hybridisation (7) Generating purelines (7) Cross-hybridisation (8) Cross-hybridisation (9) Cross-hybridisation (10) Generating purelines (11) Construction of parameters (12) A(ii), b(iv), c(i), d(ii) (13) AT, XXY - Klinefelter syndrome (14) Cross-hybridisation (15) Cross-hybridisation (16) Cross-hybridisation (17) Construction of parameters (18) Cross-hybridisation (19) Cross-hybridisation (10) Cross-hybridisation (11) Cross-hybridisation (12) Cross-hybridisation (13) Cross-hybridisation (14) Cross-hybridisation (15) Cross-hybridisation (15) Cross-hybridisation (16) Cross-hybridisation (17) Cross-hybridisation (18) Cross-hybridisation (19) Cross-hybridisation (19) Cross-hybridisation (10) Cross-hybridisation (11) Cross-hybridisation (12) Cross-hybridisation (13) Cross-hybridisation (14) Cross-hybridisation (15) Cross-hybridisation (15) Cross-hybridisation (15) Cross-hybridisation (16) Cross-hybridisation (17) Cross-hybridisation (18) Cross-hybridisation (19) Cross-hybridisation (19) Cross-hybridisation (11) Cross-hybridisation (11) Cross-hybridisation (12) Cross-hybridisation (12) Cross-hybridisation (plant
 (3) + O Predation (4) + Protocooperation Ans : 3 82. Select wrongly matched pair. (1) Down's syndrome – Mongolism (2) Monosomy – Patau syndrome (3) 47, XXY – Klinefelter syndrome (4) Protocooperation (5) Parents evaluation (iii) Back-bone of p breeding (6) Superior (iv) Time consuming and tedious selection and testing (1) a(iii), b(iv), c(i), d(ii) (2) a(iii), b(iv), c(i), d(i) (3) 47, XXY – Klinefelter syndrome 	-
 (4) + + Protocooperation Ans : 3 82. Select wrongly matched pair. (1) Down's syndrome - Mongolism (2) Monosomy - Patau syndrome (3) 47, XXY - Klinefelter syndrome (4) + Protocooperation (5) Parents evaluation (iii) Back-bone of p breeding (6) Superior (iv) Time consuming and tedious selection and testing (1) a(iii), b(iv), c(i), d(ii) (2) a(iii), b(iv), c(ii), d(i) (3) 47, XXY - Klinefelter syndrome (4) + Protocooperation (5) Parents evaluation (iii) Back-bone of p breeding (6) Superior (iv) Time consuming and tedious (7) a(iii), b(iv), c(i), d(ii) (8) Parents evaluation (iii) Back-bone of p breeding (9) Parents evaluation (iv) Time consuming and tedious (1) a(iii), b(iv), c(i), d(ii) (2) a(iii), b(iv), c(i), d(i) 	-
 Ans : 3 82. Select wrongly matched pair. (1) Down's syndrome – Mongolism (2) Monosomy – Patau syndrome (3) 47, XXY – Klinefelter syndrome (3) 47, XXY – Klinefelter syndrome (4. Superior (iv) Time consuming and tedious selection and testing (1) a(iii), b(iv), c(i), d(ii) (2) a(iii), b(iv), c(ii), d(i) 	-
 82. Select wrongly matched pair. (1) Down's syndrome – Mongolism (2) Monosomy – Patau syndrome (3) 47, XXY – Klinefelter syndrome (3) 47, XXY – Klinefelter syndrome (4. Superior (iv) Time consuming and tedious selection and testing (1) a(iii), b(iv), c(i), d(ii) (2) a(iii), b(iv), c(ii), d(i) 	ng
 (1) Down's syndrome – Mongonism (2) Monosomy – Patau syndrome (3) 47, XXY – Klinefelter syndrome (2) a(iii), b(iv), c(i), d(ii) (2) a(iii), b(iv), c(ii), d(ii) 	
(2) Monosomy- Patau syndrome(1) $a(iii), b(iv), c(i), d(ii)$ (3) 47, XXY- Klinefelter syndrome(2) $a(iii), b(iv), c(i), d(i)$ (2) $a(iii), b(iv), c(i), d(i)$	
(4) 45 XO Turner surdrome (3) $a(iv), b(iii), c(i), d(ii)$	
(4) 45, XO = Turner Syndrome	
Ans : 2 (4) $a(iv), b(iii), c(ii), d(i)$	
83. The annual net primary productivity of whole Ans : 2	
biosphere is, with contribution of terrestrial ecosystem is approximately (1) 170 billion tone 55%	-
(1) 1/0 dillion tons, 55% (1) Eucus and Sargassum	
(2) Illothriv and Spiragra	
(3) The official constraints, 5570 (2) Chlorelle and Second comus	
(4) $1/0$ minimum tons, $70/6$	
And 1	
 84. After culturing the anther of a plant, a few diploid plants were found alongwith haploid plants. The diploid plants could have developed from (1) Comparison cells of mellon (2) Comparison cells of mellon (3) Comparison cells of mellon (4) Comparison cells of mellon (5) Comparison cells of mellon (6) Comparison cells of mellon (7) Comparison cells of mellon (8) Ans 1 (1) Comparison cells of mellon (1) Comparison cells of mellon (1) Comparison cells of mellon (1) Comparison cells of mellon (2) Comparison cells of mellon (3) Comparison cells of mellon (4) Comparison cells of mellon (5) Comparison cells of mellon (6) Comparison cells of mellon (7) Comparison cells of mellon (8) Comparison cells of mellon (8) Comparison cells of mellon (1) Comparison cells of mellon (1) Comparison cells of mellon (1) Comparison cells of mellon (2) Comparison cells of mellon (3) Comparison cells of mellon (4) Comparison cells of mellon (5) Comparison cells of mellon (6) Comparison cells of mellon (7) Comparison cells of mellon (8) Comparison cells of mellon<!--</td--><td></td>	
(1) Generative cell of pollen	
 (2) Cells of anther wall (3) Vegetative cell of pollen (1) High quality of protein present in them (2) High rate of biomass production 	
(4) Exine of pollen wall(3) Culturing bacteria in specialised nutries	rient
Ans : 2 medium	
85. How many statements are correct from the list (4) Enriches soil with nitrogen fixation	
given below? Ans : 2	
(a) "EcoSan" toilets are used in area of Kerala 89. Match the column I with column II	
and Sri Lanka. <u>Column I</u> <u>Column II</u>	
(b) Water (prevention and control of pollution) Act, 1974. (i) Plant lysosome	
 (c) National forest policy (1988) of India has recommended 67% forest cover for plains. b. Sphaerosome (ii) Glyoxylate cycle (iii) Photorespiration 	
(d) The concept of Joint Forest Management (JFM) introduced by Government of India in d. Peroxisome (iv) Succinate dehydrogenase	9
1971. (1) $a(ii), b(i), c(iv), d(iii)$ (2) $a(ii), b(i), c(iv), d(iii)$	
(1) (a), (b) & (d) (2) (a) & (c) (2) $a(ii), b(i), c(iii), d(iv)$ (2) $a(ii), b(i), c(iii), d(iv)$ (3) $a(iii), b(i), c(iv), d(iv)$	
(3) Only (a) & (b) (4) (a), (b), (c) & (d) (3) $a(iii), b(i), c(iv), d(ii)$ (4) $a(i), b(i), c(iv), d(ii)$	
Ans : 3 (4) $a(i), b(ii), c(iv), d(iii)$	

Ans : 1

90. Choose the incorrect option w.r.t. blood grouping.

	Phenotype	Genotype	Possible cross
(1)	AB	I ^A I ^B	$\mathbf{A} \times \mathbf{B}$
(2)	А	I _V I _O	$\mathbf{A} \times \mathbf{A}\mathbf{B}$

(3) B $I^B I^B$ $A \times AB$ (4) O $I^O I^O$ $A \times A$

Ans:3

91. Which of the following is high energy molecule produced by oxidative decarboxylation in aerobic respiration but is neither the intermediate of TCA nor EMP?

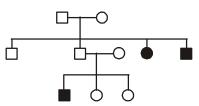
(1) NADH $+H^+$	(2) ATP
(3) Acetyl CoA	(4) Succinyl CoA

Ans : 3

92. 27 : 1 : 1 : 27 test cross ratio of Hutchinson cross for grain colour and size of endosperm in maize suggests that the distance between the linked genes is

(1) 3.6 cM	(2) 96.4 cM
(3) 48.2 cM	(4) 1.8 cM

Ans : 1


- 93. Tyloses thickenings are seen in
 - (1) Phloem cells
 - (2) Ray parenchyma only
 - (3) Collenchyma
 - (4) Ray parenchyma and xylem cells
- Ans:4
- 94. (a) Essential elements are components of energy related compounds
 - (b) Essential elements are components of structural elements of cells
 - (c) Mn²⁺ is an activator of alcohol dehydrogenase
 - (1) All are correct
 - (2) Only (a) is incorrect
 - (3) Only (b) is incorrect
 - (4) Only (c) is incorrect

Ans : 4

- 95. Which one is correct for life span?
 - (1) Fruitfly < Crow < Parrot
 - (2) Rice < Banana < Rose
 - (3) Banyan > Peepal > Mango
 - (4) Banyan > Rose > Banana

Ans : 1

- 96. OEC is located in/on
 - (1) Outer surface of granal membrane
 - (2) Lumen of stroma lamellae
 - (3) Inner surface of thylakoid membrane
 - (4) Stroma.
- Ans : 3
- 97. Study the pedigree chart given below. What does it show?

- (1) Both the parents are homozygous
- (2) The trait under study could be phenylketonuria
- (3) Inheritance of colourblindness
- (4) It shows criss cross inheritance

Ans: 2

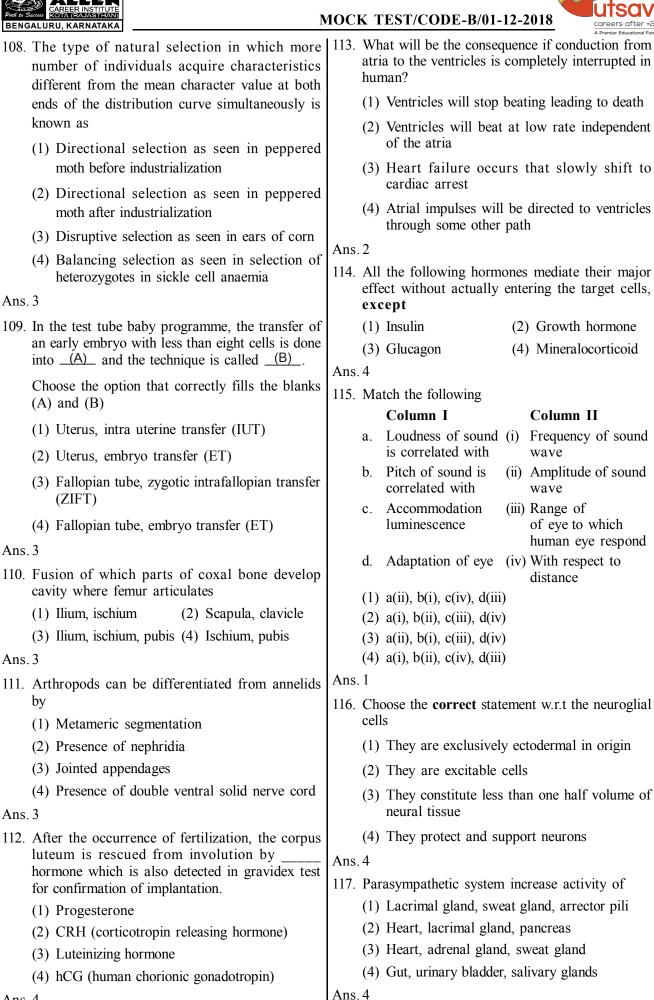
98. In a 4.7 kbp long piece of ds linear DNA the number of phosphodiester bonds will be

(1) 9400	(2) 4700
(3) 4698	(4) 9398

Ans:4

- 99. If we study productivity, which of the following statement is **incorrect**?
 - Gross primary productivity of an ecosystem is the rate of production of organic matter during photosynthesis
 - (2) The annual net primary productivity of the whole biosphere is approximately 170 billion tons
 - (3) Net primary productivity is the available biomass for the consumption to herbivores only
 - (4) Secondary productivity is the rate of formation of new organic matter by consumers

Ans: 3


ALLE

8

BENGALURU, KARNATAKA			AOC	IOCK TEST/CODE-B/01-12-2018		
100.	male gametes from mic	e gametophytes containing prospore mother cell, will s and mitosis respectively? (2) 5 and 10	104.	The corpus luteum of pregnancy is generally larger in size than the corpus luteum of menstruation. Its maintenance for a time period longer than corpus luteum of menstruation is due to		
Ans	(3) 3 and 10 : 1	(4) 5 and 20		(1) Excess LH secretion from pituitary after implantation		
	Which of the following reproductive system of	; is incorrect w.r.t. male humans?		(2) Chorionic gonadotropin (hCG) secreted by trophoblast cells of developing embryo		
		com Cowper's glands is minal fluid into urethra		(3) Chorionic leuteotropic hormone secreted from uterus wall after implantation(4) Absence of negative feedback to pituitary		
	C C	n be cured by estrogen	Ans.	from ovaries due to decreased estrogen and progesterone levels after implantation 2		
	(3) Prostate gland is ho glands of female vu	omologous to the Skene's Iva	105.	The operation of Hardy Weinberg equilibrium in a population indicates its tendency to remain in genetic equilibrium w.r.t. its gene pool. The		
	.,) Smegma from glands of Tyson lubricates the glans penis but it can also harbour bacterial growth in it		equilibrium, however, may be disturbed by (1) Random mating		
Ans	-			(2) Absence of mutations		
				(3) Lack of natural selection		
102.	102. The loss of bone mineral density in post menopausal females can be attributed to reduction in blood titre of	(4) Genetic drift Ans. 4				
	 (1) Calcitriol (3) Gonadotropins 	(2)Estradiol (4)Progesterone	106.	Which of the following correctly represents the origin of mammals from primitive ancestral reptiles?		
Ans 103.		e following is/are sources of		(1) Early reptiles \rightarrow Sauropsids \rightarrow Thecodonts \rightarrow mammals		
	 progesterone in a non pregnant female, causing peak level of progesterone concentration on day 21 of a 28 day menstrual cycle? (a) Graafian follicle (b) Theca cells of tertiary follicle (c) Corpus luteum (d) Hypothalamic hypophyseal system (e) Secondary oocyte 			 (2) Early reptiles → Sauropsids → Therapsids → mammals 		
				(3) Early reptiles \rightarrow Synapsids \rightarrow Therapsids \rightarrow mammals		
				(4) Early reptiles \rightarrow Sauropsids \rightarrow Pelycosaurs \rightarrow mammals		
			Ans.	3		
			107.	Which of the following are examples of convergent evolution?		
	(1) (a), (b) & (d)	(2) (a), (b), (c) & (e)		(a) Mouth parts of housefly and mosquito		
	(3) (c) only	(4) (c) & (d) only		(b) Flippers of penguins and dolphins		
Ans. 3			(c) Sting of honey bee and scorpion			

- (2)(a) & (c) (1) Only (a)
- (3) (b) & (c) (4)(a), (b) & (c)

- 118. In a menstrual cycle of 35 day duration, which of the following events is correctly matched with the time period of its occurrence?
 - (1) Rise in the level of progesterone day 5 to 21
 - (2) Regeneration of endometrium day 1 to 5
 - (3) Release of secondary oocyte day 14
 - (4) Development of secretory endometrium day 21 to 30

Ans. 4

119. 'During the seventh month of intra uterine development, the human embryo resembles a baby ape, being completely covered with hair and having proportionately longer forelimbs'.

The above statement provides support to

- (1) Theory of inheritance of acquired characters given by Lamarck
- (2) Recapitulation theory by Ernst Haeckel
- (3) Kin selection theory of Hamilton
- (4) Origin of apes from man like ancestors

Ans. 2

- 120. The various cell stages in spermatogenesis with the number(s) of chromosomes in each stage is given below:
 - (a) Spermatogonium type A (44 + X + Y)
 - (b) Spermatogonium type B (44 + X + Y)
 - (c) Primary spermatocyte -(22 + X) or (22 + Y)
 - (d) Secondary spermatocyte -(22 + X) or (22 + Y)

The option(s) which are not matched correctly is/ are

- (1) (b) & (c) (2) (b), (c) & (d)
- (3) (a) & (d) (4) Only (c)