

MOCK TEST

BENGALURU, KARNATAKA

EXAM DATE : 26.11.2017

CODE B

Q.No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans	4	1	1	2	1	2	3	3	2	2	3	2	2	4	2
Q.No	16	17	18	19	20	21	22	23	24	25					
Ans	4	4	1	1	1	3	1	2	1	3					
Q.NO	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans	4	4	4	3	2	1	4	2	3	3	3	2	2	2	4
Q.NO	41	42	43	44	45	46	47	48	49	50					
Ans	4	4	4	4	1	3	2	2	4	2					
Q.NO	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65
Ans	1	1	2	2	1	1	4	3	3	1	1	4	1	4	3
Q.NO	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans	3	3	3	4	2	1	3	3	1	1	3	1	4	1	2
Q.No	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
Ans	2	4	3	2	2	3	2	2	1	2	3	2	1	2	1
Q.No	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110
Ans	2	4	3	4	1	2	2	2	2	2	3	4	3	2	2
Q.No	111	112	113	114	115	116	117	118	119	120					
Ans	1	3	1	2	2	4	1	3	2	3					

CAREER INSTITUTE MOCK TEST											CARE	ER			
pain to success	ΚΟΤΑ (RAJASTI	HAN)			EXA	M DAT	E : 26.11	.2017					utsav	'17 ter +2
BENGAL	URU, K	ARNAT	TAKA				COL	DE B					A Premie	r Education	al Fair
Q.No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans	4	1	1	2	1	2	3	3	2	2	3	2	2	4	2
Q.No	16	17	18	19	20	21	22	23	24	25					
Ans	4	4	1	1	1	3	1	2	1	3					
Q.NO	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans	4	4	4	3	2	1	4	2	3	3	3	2	2	2	4
Q.NO	41	42	43	44	45	46	47	48	49	50					
Ans	4	4	4	4	1	3	2	2	4	2					
Q.NO	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65
Ans	1	1	2	2	1	1	4	3	3	1	1	4	1	4	3
Q.NO	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans	3	3	3	4	2	1	3	3	1	1	3	1	4	1	2
Q.No	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
Ans	2	4	3	2	2	3	2	2	1	2	3	2	1	2	1
Q.No	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110
Ans	2	4	3	4	1	2	2	2	2	2	3	4	3	2	2
Q.No	111	112	113	114	115	116	117	118	119	120					
Ans	1	3	1	2	2	4	1	3	2	3					

MAXIMUM MARKS PCM - 80 MARKS

PCB - 90 MARKS

TIME 1.30 Hours (PCM) 1.30 Hours (PCB)

EXAM DATE : 26.11.2017

MOCK TEST

FORM NUMBER :

ANSWER KEY & SOLUTION

1. A ray of light passes through four transparent 3. media with refractive indices μ_1, μ_2, μ_3 and μ_4 as shown in the figure, the surfaces of all media are parallel. If the emergent ray CD is parallel to the incident ray AB, we must have

Ans.4

Sol. According to Snell's Law,

 $\mu \sin \theta = \text{constant}$

which gives

$$\mu_1 = \mu_4.$$

2. A body performs S.H.M. Its kinetic energy, K, varies with time t, as indicated in the graph :

With what acceleration 'a' should the box in the figure descend so that a body of mass M placed in

 $\frac{\text{Mg}}{4}$ on the base of the box ? it exerts a force -

$$(1) \frac{3g}{4} \quad (2) \frac{g}{4} \quad (3) \frac{g}{2} \quad (4) \frac{g}{8}$$
ns : 1

A

Sol. If the box is accelerated downwards, from the frame outside the elevator, equation of motion can be written as

$$Mg - N = Ma$$

Here,
$$N = \frac{Mg}{4}$$

 $\Rightarrow a = \frac{3g}{4}$

4. The magnetic flux through each turn of a 100 turn coil is $(t^3 - 2t) \times 10^{-3}$ Wb, where t is in second. The induced emf at t = 2 s is

(1)
$$-4V$$
 (2) $-1V$
(3) $+1V$ (4) $+4V$

Ans. 2

Sol.
$$\phi = (t^3 - 2t) \times 10^{-3}$$

 $\frac{d\phi}{dt} = (3t^2 - 2) \times 10^{-3}$
 $\frac{d\phi}{dt}\Big|_{t=2} = (3 \times 4 - 2) \times 10^{-3}$. Wb/s
 $= 10^{-2}$ Wb/s

$$e = -N \frac{d\phi}{dt} = -100 \times 10^{-2} V$$
$$= -1 V.$$

- 5. Resonance frequency of a circuit is f. If the 8. capacitance is made 4 times the initial value, then the resonance frequency will become :
 - (1) f/2 (2) 2f
 - (3) f (4) f/4

Ans. 1

Sol.
$$f = \frac{1}{2\pi\sqrt{LC}}$$
 i.e. $f \propto \frac{1}{\sqrt{C}} \rightarrow \frac{1}{\sqrt{4}} = \frac{1}{2}$ time

6. A uniform wire has electric resistance R. The wire is cut into n equal parts. All wires are put parallel to each other and joined at the ends. The resistance of the combination is

(4) None of these.

- (1) R/n (2) R/n^2
- (3) R

 $Ans.\,2$

Sol. $\therefore R = \rho \frac{l}{A}$ $\therefore R \propto l$

Hence, resistance of each wire is $\frac{R}{n}$

For the resistance of the combination,

$$\frac{1}{R'} = \frac{n}{R} + \frac{n}{R} + \frac{n}{R} + \dots \dots n \text{ times}$$
$$= \frac{n}{R} \times n$$
$$R' = \frac{R}{n^2}.$$

7. A regular loop carrying a current i is situated near a long striaght wire such that the wire is parallel to one of the sides of the loop and is in the plane of the loop. If a steady current I established in the wire as shown in the figure, the loop will :

- (1) Rotate about an axis parallel to the wire
- (2) Move away from the wire
- (3) Move towards the wire
- (4) Remain stationary.

Ans.3

Sol: $F = \frac{\mu_0 iI}{2\pi r}$

 $F_{attraction} > F_{repulsion}$ Hence the loop will move towards the wire. A body of mass m is slowly pulled up the hill by a force F which at each point was directed along the tangent of the trajectory as shown in figure. All surfaces are smooth. Find the work performed by this force

(1) mgl	(2) - mgl
(3) mgh	(4) Zero

Ans:3

S

Sol.
$$\sum W_{net} = \Delta k$$

as particle is moving slowly, this means $\Delta K = 0$

$$\Rightarrow W_{\rm N} + W_{\rm F} + W_{\rm mg} = \Delta K$$

MOCK TEST/CODE-B/26-11-2017

but $W_N = 0$, as $\vec{N} \perp d\vec{r}$

$$\Rightarrow O + W_f - mgh = 0$$

$$\Rightarrow W_F = mgh$$

- 9. There are points on a straight line joining two fixed opposite charges. There is :
 - (1) No point where potential is zero
 - (2) Only one point where potential is zero
 - (3) No point where electric field is zero
 - (4) Only one point where electric field is zero.

Ans.2

Sol. Let two opposite charges +q and -q be situated at points A and B respectively.

$$A \xrightarrow{+q} \underbrace{E_2 \quad j^- q}_{E_1} B$$

$$E_1 = \frac{1}{4\pi\epsilon_0} \frac{q}{a^2}$$

$$E_2 = \frac{1}{4\pi\epsilon_0} \frac{q}{(d-a)^2}$$

$$E = E_1 + E_2$$

$$= \frac{q}{4\pi\epsilon_0} \left[\frac{1}{a^2} + \frac{1}{(d-a)^2} \right]$$

$$= \frac{q}{4\pi\epsilon_0} \frac{\left[d^2 - 2ad + a^2 + a^2 \right]}{a^2(d-a)^2}$$

Hence, there can be more that one point where electric field is zero.

$$V_1 = \frac{1}{4\pi\varepsilon_0} \frac{q}{a}; V_2 = \frac{1}{4\pi\varepsilon_0} \frac{(-q)}{(d-a)}$$
$$V = V_1 + V_2$$

- 10. A ray of light passes through an equilateral prism such that the angle of incidence and the angle of emergence are both equal to 3/4th of the angle of prism. The angle of minimum deviation is
 - (1) 15° $(2) 30^{\circ}$ (3) 45° (4) 60°

Givne $A = 60^{\circ}$

$$i = i' = \frac{3}{4}A = 45^{\circ} \quad \because \quad i + i' = A + \delta$$

or 90° = 60° + δ

 $\therefore \delta = 30^{\circ}$

Note that i = i' is the condition for minimum deviation.

Hence
$$\delta = 30^{\circ} = \delta_{min}$$

11. A body when projected vertically up, covers a total distance D, during the time of its flight t. If there were no gravity, the distance covered by it during the same time is equal to

(1) 0	(2) D
(3) 2D	(4) 4D.

Ans:3

Sol.

The displacement of the body during the time t as it attains the point of projection

$$\Rightarrow S = 0$$

$$\Rightarrow v_0 t - \frac{1}{2}gt^2 = 0$$

$$\Rightarrow t = \frac{2v_0}{g}$$

During the same time t, the body moves in absence of gravity through a distance

 $D' = v_0 t$, because in absence of gravity g = 0

$$\implies D' = v_0 \left(\frac{2v_0}{g}\right) = \frac{2v_0^2}{g} \qquad \dots(i)$$

MOCK TEST/CODE-B/26-11-2017

In presence of gravity the total distance covered is

$$= D = 2H = 2\frac{v_0^2}{2g} = \frac{v_0^2}{g} \qquad ...(ii)$$

(i) \div (ii) \Rightarrow D' = 2D

12. A 6×10^{-9} F parallel plate capacitor is connected to a 500 V battery. When air is replaced by another dielectric material. 7.5×10^{-6} C charge flows into the capacitor. The dielectric constant of the material is :

Ans.2 Sol.

$$Q = CV$$

$$Q_1 = 6 \times 10^{-9} \times 500$$

$$= 3 \times 10^{-6} C$$
After insertion of dielectric

$$Q'_1 = (3+7.5) \times 10^{-6} C$$

= 10.5 × 10⁻⁶ C
 $Q'_1 = CVK$
10.5 × 10⁻⁶ = 6 × 10⁻⁹ × 500 K
K= 3.5

In the circuit shown in figure the heat produced in 13. the 5 ohm resistor due to the current flowing through it is 10 calories per second. The heat generated in the 4 ohms resistor is

- (1) 1 calorie/sec (2) 2 calories/sec (3) 3 calories/sec
 - (4) 4 calories/sec

Ans. 2

Sol. Let I_1 be the current flowing in 5 Ω resistance and $(I - I_1)$ in 4 Ω and 6 Ω resistance.

The heat generated in 5Ω resistor is

$$10 \text{ cal/s} = 4.2 \times 10 \text{ J/s}$$

$$\therefore 4.2 \times 10 = I_1^2 R$$

:.
$$I_1 = \sqrt{\frac{4.2 \times 10}{5}} = \sqrt{8.4} = 2.9 \text{ amp} \dots(i)$$

Since AB and CD are in parallel.

- The potential difference remains the same between C and D; and between A and B.
- \therefore (I I₁) (4 + 6) = I₁ × 5 on solving using I₁ from (i) we get

- $(I 2.9) \ 10 = 2.9 \times 5$ \therefore I - 2.9 = 1.45 \therefore I = 4.35 Heat released/sec in 4 W resistance will be $=(4.35-2.9)^2 \times 4$ = 8.4 J/s= 2 cal/s $=\frac{q}{4\pi\varepsilon_0}\left[\frac{1}{a}-\frac{1}{d-a}\right]=\frac{q(d-2a)}{4\pi\varepsilon_0 a(d-a)}$
- \therefore Potential is zero only at d = 2a or a = d/2
- 14. A certain charge Q is divided into two parts q and (Q-q). For the maximum coulomb force between them, the ratio (q/Q) is :

(1) 1/16	(2) 1/8
(3) 1/4	(4) 1/2

Ans.4

Sol.
$$F = \frac{1}{4\pi\epsilon_0} \frac{q(Q-q)}{r^2}$$

for F to be maximum, $\frac{dF}{dq} = 0$
 $\frac{1}{4\pi\epsilon_0} \cdot \frac{1}{r^2} [Q-q+q(-1)] = 0$
 $Q - 2q = 0$
 $q = 1$

$$\frac{1}{0} = \frac{1}{2}$$

15. A uniform electric field pointing in positive xdirection exists in a region. Let A be the origin, B be the point on the x-axis at x = +1 cm and C be point on the

y-axis at y = +1 cm. Then the potentials at the points A, B and C satisfy :

0

 $(1) V_{A} < V_{B}$ (2) $V_A > V_B$ (4) $V_A > V_C$ $(3) V_{A}^{-} < V_{C}^{-}$ Ans.2 Sol.

> Direction of electric field is in the direction of potential drop

 \Rightarrow V_A > V_B $V_A = V_C$

- 16. An ammeter and a voltmeter are joined in series to a cell. Their readings are A and V respectively. If a resistance is now joined in parallel with the voltmeter.
 - (1) Both A and V will increase
 - (2) Both A and V will decrease
 - (3) A will decrease, V will increase
 - (4) A will increase, V will decrease.

Ans.4

When a resistance is joined in parallel with the voltemeter, the total resistance of the circuit decreases. Current will increase and ammeter reading will increase. Potential difference across the ammeter increases thus potential difference across voltmeter decreases.

17. A thin semi-circular conducting ring of radius R is falling with its plane vertical in a horizontal magnetic induction $\vec{\mathbf{B}}$ (see figure). At the position MNQ the speed of the ring is v and the potential difference developed across the ring is

- (1) zero
- (2) By $\pi R^2/2$
- (3) πRBv
- (4) 2RBv

Ans. 4

Sol. The induced emf as given by Faraday's law of induction is

$$E = - Blv$$
$$l = 2 R$$

= projection of ring perpendicular to the direction of v

$$= - \mathbf{B} \times 2 \mathbf{R} \times \mathbf{v}$$
$$= - 2 \mathbf{B} \mathbf{v} \mathbf{R}.$$

18. The position of centre of mass of a system 20. consisting of two particles of masses m_1 and m_2 separated by a distance L apart from m_1 is

(1)
$$\frac{m_2 L}{m_1 + m_2}$$
 (2) $\frac{m_1 L}{m_1 + m_2}$

(3)
$$\frac{m_2 L}{m_1 - m_2}$$
 (4) $\frac{m_1 L}{m_1 - m_2}$

Ans. 1

Sol. Let centre of first body be origin and line joining them is taken as x-axis

19. Two particles A and B of mass m each and moving with velocity v, hit the ends of a rigid bar of the same mass m and length l simultaneously and stick to the bar as shown in the figure. The bar is kept on a smooth horizontal plane. The linear and angular speed of the system (bar + particle) after the collision are

Ans : 1

Sol. From COLM, $mv - mv + 0 = 3 m v_{cm}$ $\Rightarrow v_{cm} = 0$ From COAM

$$2mv \times \frac{\ell}{2} = \left(\frac{m\ell^2}{12} + \frac{2m\ell^2}{4}\right)\alpha$$
$$\Rightarrow \frac{12v}{7\ell}$$

20. A block slides down an inclined rough plane of inclination θ with constant velocity. It is then projected up the inclined plane with an initial speed u. How far up the incline will it move before coming to rest?

(1) $u^2/4g \sin\theta$ (2) $u^2/g \sin\theta$ (3) $u^2/2g \sin\theta$ (4) u^2/g

Ans : 1

Sol. As acceleration is zero on the inclined plane this means $f = mg \sin\theta$

For upward motion net downward force is

$$f + mg \sin\theta = 2mg \sin\theta$$

$$\Rightarrow a = 2g \sin\theta$$

$$\Rightarrow u \sin g v^{2} = u^{2} + 2as$$

$$0 = u^{2} - 4g \sin\theta s$$

$$\Rightarrow \frac{u^{2}}{4g \sin\theta} = s$$

21. Two particles X and Y having equal charges, after being accelerated through the same potential difference, enter a region of uniform magnetic field and describe circular paths of radii R_1 and R_2 , respectivley. The ratio of the mass of X to that of Y is

(1)
$$(R_1/R_2)^{1/2}$$
 (2) R_2/R_1
(3) $(R_1/R_2)^2$ (4) R_1/R_2

Ans.3

Sol. Let the masses be m_1 and m_2 respectively of X and Y. If E is energy gained by charged particle in electric field.

$$Bqv = \frac{mv^{2}}{r} \implies Bqr = \sqrt{2mE}$$

$$R_{1} = \frac{\sqrt{2m_{1}E}}{Bq}; R_{2} = \frac{\sqrt{2m_{2}E}}{Bq}$$

$$\frac{R_{1}}{R_{2}} = \sqrt{\frac{m_{1}}{m_{2}}} \implies \frac{m_{1}}{m_{2}} = \left(\frac{R_{1}}{R_{2}}\right)^{2}$$

22. Two inductances L_1 and L_2 are placed far apart and in parallel. Their combined inductance is

(1) $\frac{L_1L_2}{L_1+L_2}$ (2) (L_1+L_2)

(3)
$$(L_1 + L_2) \frac{L_1}{L_2}$$
 (4) $(L_1 + L_2) \frac{L_2}{L_1}$

Ans. 1

- Sol. $E = L_{e} \frac{di}{dt}$ $E = L_{1} \frac{di_{1}}{dt} = L_{2} \frac{di_{2}}{dt}$ $i = i_{1} + i_{2}$ $\frac{di}{dt} = \frac{di_{1}}{dt} + \frac{di_{2}}{dt}$ $\frac{E}{L_{e}} = \frac{E}{L_{1}} + \frac{E}{L_{2}}$ $\frac{1}{L_{e}} = \frac{1}{L_{1}} + \frac{1}{L_{2}}$ $L_{e} = \frac{L_{1}L_{2}}{L_{1} + L_{2}}$
- 23. In the circuit shown in figure, what will be the readings of voltmeter and ammeter ?

(1) 800 V, 2 A	(2) 220 V, 2.2 A
(3) 300 V, 2 A	(4) 100 V, 2 A.
-	

Ans. 2

Sol. As
$$V_L = V_C = 300 V$$
,
and $V = \sqrt{V_R^2 + (V_L - V_C)^2}$
 $\therefore V_R = V = 220 V$
Also $I = \frac{V}{R} = \frac{220}{100} = 2.2 A$

24. When a beam of light with wavelength, $\lambda = 6000 \text{ A}$, traveling in air, enters a glass medium whose refractive index is 1.5 then

MOCK TEST/CODE-B/26-11-2017

(1) Frequency of light remains constant (2) Velocity of light increases by 1.5 times (3) Frequency of light increases by 1.5 times (4) Wavelength (λ) remains constant Ans.1 Sol. (i) When a beam of light enters from one medium to other, its frequency remains unchanged. (ii) $V = n \lambda$ and $\mu = \frac{c}{v}$ $\therefore \quad 1.5 = \frac{n\lambda_1}{n\lambda_2}$ or $1.5 = \frac{\lambda_1}{\lambda_2}$ or $\lambda_2 = \frac{\lambda_1}{1.5}$ Hence wavelength decreases by 1.5 times. 25. An artificial satellite moving in a circular orbit around the earth has a total (K.E. + P.E.) = E_0 . Its potential energy is (2) 1.5 E₀ $(1) - E_0$ $(3) 2 E_0$ (4) E₀. Ans. 3 Sol. Total energy = kinetic energy + Potential energy $E_0 = \frac{1}{2}mv^2 - \frac{GMm}{r}$...(i) Further, $\frac{mv^2}{r} = \frac{GMm}{r^2}$ or $\frac{1}{2}mv^2 = \frac{GMm}{2r}$...(ii) Substituting the value of $\frac{1}{2}mv^2$ in equation (i) from equation (ii), we get $E_0 = \frac{GMm}{2r} - \frac{GMm}{r} = -\frac{GMm}{2r}$ Therefore, P.E. = $-\frac{GMm}{r} = 2E_0$ 26. In Cannizzaro reaction given below :-2PhCHO $\xrightarrow{:OH}$ PhCH₂OH + PhCO₂

the slowest step is :-

- (1) The abstraction of proton from the carboxylic group
- (2) The deprotonation of $PhCH_2OH$
- (3) The attack of : $\stackrel{\smile}{O}$ H at the carboxyl group
- (4) The transfer of hydride to the carbonyl group

ALLEN CAREER INSTITUTE CAREER INSTITUTE KOTA (RAJASTHAN) BENGALURU, KARNATAKA

O

35. Gold numbers of protective colloids A, B, C →B HNO and D are 0.50, 0.01, 0.10 and 0.005, 41. respectively. The correct order of their In above reaction major product (C) is : protective powers is HO. CH₂OH CH,OH (1) D < A < C < B(2) C < B < D < A(1)(3) A < C < B < D(4) B < D < A < COН Ans.3 .OH 36. The reaction of $CH_3OC_2H_5$ with HI gives (3)(1) CH₂I (2) C_2H_5OH Ans.4 (3) $CH_3I + C_2H_5OH$ (4) $C_2H_5I + CH_3OH$ 42. If a is the length of unit cell, then which one is Ans.3 correct relationship -37. Anti-Markownikoff's addition of HBr is not (1) For simple cubic lattice, Radius of metal observed in -(1) Propene atom = $\frac{a}{2}$ (2) But-2-ene (3) Butene (4) Pent-2-ene (2) For bcc lattice, Radius of metal atom Ans. 2 $=\frac{\sqrt{3a}}{\sqrt{3a}}$ 38. The reaction quotient (Q) for the reaction (3) For fcc lattice, Radius of metal $N_{2}(g) + 3H_{2}(g) \Longrightarrow 2NH_{3}(g)$ is given by Q = $\frac{[NH_3]^2}{[N_2][H_2]^3}$. The reaction will proatom = $\frac{a}{2\sqrt{2}}$ (4) All of these ceed form right to left if Ans.4 (1) $Q < K_{c}$ (2) $Q > K_{c}$ (4) Q = K(3) Q = 043. The correct order of O–O bond length in O₂, H₂O₂ and O₃ is Ans.2 $\begin{array}{ll} (1) \ {\rm O}_2 > {\rm O}_3 > {\rm H}_2 {\rm O}_2 & (2) \ {\rm O}_3 > {\rm H}_2 {\rm O}_2 > {\rm O}_2 \\ (3) \ {\rm O}_2 > {\rm H}_2 {\rm O} > {\rm O}_3 & (4) \ {\rm H}_2 {\rm O}_2 > {\rm O}_3 > {\rm O}_2 \end{array}$ 39. The oxidation state of Fe in the brown ring complex : [Fe(H₂O)₅NO] SO₄ is :-(1) + 2(2) + 1Ans.4 (3) + 3(4) 044. According to Bohr's theory, the angular momentum of an electron in 5th orbit is Ans.2 40. When O_2 is converted into O_2^+ ; (2) $1.0\frac{h}{\pi}$ (1) $25\frac{h}{\pi}$ (1) Both paramagnetic character and bond order increase (3) $10^{\frac{h}{-}}$ (4) $2.5\frac{h}{-}$ (2) Bond order decreases (3) Paramagnetic character increases (4) Paramagnetic character decreases and the bond Ans.4 order increases 45. In which of the following complex ion, the central Ans.4 metal ion is in a state of sp^3d^2 hybridisation ? (1) $[CoF_6]^{3-}$ (3) $[Fe(CN)_6]^{3-}$ (2) $[Co(NH_3)_6]^{3+}$ (4) $[Cr(NH_3)_6]^{3+}$ Ans 1

(1)
$$I > II > III > IV$$
 (2) $IV > III > II > I$
(3) $II > I > III > IV$ (4) $II > III > I > IV$

Ans . 3

47. The wavelength of the third line of the Balmer series for a hydrogen atom is :

 $(2)\frac{100}{21R_{H}}$

(1)
$$\frac{21}{100R_{H}}$$

(3)
$$\frac{21R_{\text{H}}}{100}$$
 (4) $\frac{100R_{\text{H}}}{21}$

Ans . 2

48. The standard electrode potential for the half cell reactions are :

 $Zn^{++} + 2e^{-} \rightarrow Zn E^{\circ} = -0.76 V$ Fe⁺⁺ + 2e⁻ \rightarrow Fe E^o = -0.44 V The E.M.F. of the cell reaction : Fe⁺⁺ + Zn \rightarrow Zn⁺⁺ + Fe is (1) +1.20 V (2) +0.32 V (3) -0.32 V (4) -1.20 V

Ans . 2

- 49. Which one of the following statement is FALSE ?
 - Raoult's law states that the vapour pressure of a components over a solution is proportional to its mole fraction
 - (2) The osmotic pressure (π) of a solution is given by the equation π = MRT, where M is the molarity of the solution
 - (3) The correct order of osmotic pressure for 0.01 M aqueous solution of each compound is BaCl₂ > KCl > CH₃COOH > sucrose
 - (4) Two sucrose solutions of same molality prepared in different solvents will have the same freezing point depression.

 Arrange Cl⁻, Br⁻, I⁻ in the order of decreasing reducing power –

(1)
$$Cl^- > Br^- > l^-$$
 (2) $l^- > Br^- > Cl^-$ (3)
 $Br^- > Cl^- > l^-$ (4) $l^- > Cl^- > Br^-$
. 2

51. The area of the plane region bounded by the curve
$$x + 2y^2 = 0$$
 and $x + 3y^2 = 1$ is equal to

(4) $\frac{2}{3}$

(1)
$$\frac{4}{3}$$
 (2) $\frac{5}{3}$

MOCK TEST/CODE-B/26-11-2017

(3)
$$\frac{1}{3}$$

Ans.1

Ans

(3) $\ln|y| + \sqrt{x^2 + y^2} + \ln y + c = 0$

9

CAREER utsav '17 careers after +2

Sol.
$$dx + \left(\frac{x^2 - xy + y^2}{y^2}\right) dy = 0$$

 $\frac{dx}{dy} + \left(\frac{x}{y}\right)^2 - \left(\frac{x}{y}\right) + 1 = 0$
 $\frac{x}{dy} = 0$
 $\frac{dx}{dy} = 0 + y \frac{d0}{dy}$
 $y \frac{d0}{dy} = 0 + y \frac{d0}{dy}$
 $y \frac{d0}{dy} = -(0 + 1)$
 $\Rightarrow \tan^{-1} 0 + \log|y| + c = 0$
53. The solutions of the differential equation
 $\frac{dy}{dx} + \frac{2x}{1 + x^2} y = \frac{1}{(1 + x^2)^2}$ is
(1) $y(1 - x^2) = \tan^{-1} x + c$
(2) $y(1 + x^2) = \tan^{-1} x + c$
(3) $y(1 + x^2)^2 = \tan^{-1} x + c$
(4) $y(1 - x^2)^2 = \tan^{-1} x + c$
Ans.2
Sol. $\frac{dy}{dx} + \frac{2x}{1 + x^2} y = \frac{1}{(1 + x^2)^2}$
 $P = \frac{2x}{1 + x^2} Q = \frac{1}{(1 + x^2)^2}$
 $IF = e^{\int pdx} = 1 + x^2$
 $y(1 + x^2) = \int (1 + x^2) \frac{1}{(1 + x^2)^2} dx + c$
 $y(1 + x^2) = \tan^{-1} x + c$
54. If $\vec{a}, \vec{b}, \vec{c}$ are unit coplanar vectors, then
 $[2\vec{a} - \vec{b} - 2\vec{b} - \vec{c} - 2\vec{c} - \vec{a}]$ is equal to
(1) 1 (2) 0 (3) $-\sqrt{3}$ (4) $\sqrt{3}$
Ans.2
10

Sol. :
$$2\vec{a} - \vec{b}, 2\vec{b} - \vec{c}, 2\vec{c} - \vec{a}$$

are also coplaner, thus
 $\begin{bmatrix} 2\vec{a} - \vec{b}, 2\vec{b} - \vec{c}, 2\vec{c} - \vec{a} \end{bmatrix} = 0$
55. If $(\vec{a} \times \vec{b})^2 + (\vec{a}, \vec{b})^2 = 676$ and $|\vec{b}| = 2$, then $|\vec{a}|$ is
equal to
(1) 13 (2) 26
(3) 39 (4) None of these
Ans. 1
Sol. $(|\vec{a}||\vec{b}|\sin\theta \hat{n})^2 + (|\vec{a}||\vec{b}|\cos\theta)^2 = 676$
 $|\vec{a}|^2 |\vec{b}|^2 = 676$
 $|\vec{a}| = 13$
56. If $f(x) = \frac{e^x}{1 + e^x}$
 $I_1 = \int_{r(-a)}^{r(a)} xg(x(1-x))dx$ then the value of $I_2 : I_1 =$
(1) 2 (2) - 3
(3) -1 (4) 1
Ans. 1
Sol. $f(a) + f(-a) = \frac{e^a}{1 + e^a} + \frac{1}{e^a + 1} = 1$
 $\Rightarrow f(a) = 1 - f(-a)$
Let $f(-a) = t$
 $\Rightarrow f(a) = 1 - t$
 $I_1 = \int_{t}^{t} xg(x(1-x))dx$
 $I_1 = \int_{t}^{t-t} xg(x(1-x))dx$
 $I_2 = \int_{t}^{t-t} g(x(1-x))dx$

A Premier Educational Fair

57. If
$$D_{k} = \begin{vmatrix} 1 & n & n \\ 2k & n^{2} + n + 1 & n^{2} + n \\ 2k - 1 & n^{2} & n^{2} + n + 1 \end{vmatrix}$$
 and

$$\sum_{k=1}^{n} D_{k} = 56 \text{ then n equals}$$
(1) 4 (2) 6
(3) 8 (4) None of these
Ans. 4
Sol:

$$\sum_{k=1}^{n} D_{k} = \begin{vmatrix} \sum_{k=1}^{n} 1 & n & n \\ 2\sum_{k=1}^{n} k & n^{2} + n + 1 & n^{2} + n \\ 2\sum_{k=1}^{n} k - \sum_{k=1}^{n} 1 & n^{2} & n^{2} + n + 1 \end{vmatrix}$$

$$\Rightarrow \begin{vmatrix} n & 0 & 0 \\ n^{2} + n & 1 & 0 \\ n & 0 & n + 1 \end{vmatrix} = 56$$

$$\Rightarrow n(n+1) = 56$$

$$\Rightarrow n = 7$$

58. The mirror image of the parabola $y^2 = 4x$ in the tangent to the parabola at the point (1,2) is

(1) $(x-1)^2 = 4(y+1)$ (2) $(x+1)^2 = 4(y+1)$ (3) $(x+1)^2 = 4(y-1)$ (4) $(x-1)^2 = 4(y-1)$

Ans. 3

Sol. Any point on given parabola is $(t^2, 2t)$. The equation of tangent at (1,2) is x - y + 1 = 0 image of (h,k) of the point $(t^2, 2t)$ in x - y + 1 = 0

$$\frac{h - t^{2}}{1} = \frac{k - 2t}{-1} = \frac{-2(t^{2} - 2t + 1)}{1 + 1}$$

h = 2t - 1
k = t² + 1
elimintary (h + 1)² = 4(k - 1)

59. The number of distinct values of a 2×2 determinant whose entries are from the set {-1,0,1} is
(1) 3 (2) 4 (3) 5 (4) 6

Ans. 3

Sol. Possible values are -2, -1, 0, 1, 2 $\begin{vmatrix} 1 & 0 \\ -1 & 1 \end{vmatrix} = 1 \qquad \begin{vmatrix} 1 & -1 \\ 0 & 0 \end{vmatrix} = 0$ $\begin{vmatrix} 0 & 1 \\ 1 & -1 \end{vmatrix} = -1$ $\begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} = 2$ $\begin{vmatrix} -1 & 1 \\ 1 & 1 \end{vmatrix} = -2$ 60. The lines $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k}$ and $\frac{x-1}{k} = \frac{y-4}{2} = \frac{z-5}{1}$ are co-planar if (where $k \neq -3$) (1) k = 0(2) k = 1(3) k = 3(4) k = 4Ans. 1 Sol. $\begin{vmatrix} -1 & 1 & 1 \\ 1 & 1 & -k \\ k & 2 & 1 \end{vmatrix} = 0$ $\Rightarrow -1(1+2k)-1(1+k^2)+1(2-k)=0$ $\Rightarrow -k^2 - 3k^2 = 0$ $\Rightarrow k = 0 \text{ or } k = -3$ 61. If the sum to infinity of the series $1 + 4x + 7x^2 + 10x^3 + \dots + \infty$ is $\frac{35}{16}$ then x equals (1) $\frac{1}{5}$ (2) $\frac{19}{7}$

MOCK TEST/CODE-B/26-11-2017

(3)
$$\frac{4}{5}$$
 (4) $\frac{2}{3}$

Ans.1 S

1

$$s_{\infty} = 1 + 4x + 7x^{2} + 10x^{3} + \dots \infty$$

$$xs_{\infty} = x + 4x^{2} + 7x^{3} + \dots \infty$$

$$(1-x)s_{\infty} = 1 + 3x + 3x^{2} + 3x^{3} + \dots \infty$$

$$\Rightarrow (1-x)\frac{35}{16} = 1 + \frac{3x}{1-x}$$

$$\Rightarrow 35 x^{2} - 102 x + 19 = 0$$

$$\Rightarrow (7x-19)(5x-1) = 0$$

$$\Rightarrow x = \frac{19}{7} \quad x = \frac{1}{5}$$

$$\therefore \quad |x| < 1 \quad ; \quad x = \frac{1}{5}$$

62. If $a = \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7}$, then the quadratic equation
whose roots are $\alpha = a + a^2 + a^4$ and
 $\beta = a^3 + a^5 + a^6$ is
(1) $x^2 - x + 2 = 0$ (2) $x^2 + x - 2 = 0$
(3) $x^2 - x - 2 = 0$ (4) $x^2 + x + 2 = 0$
Ans.4
Sol. $a = \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7}$
 $a^7 = 1$
 $s = \alpha + \beta = a + a^2 + a^4 + a^3 + a^5 + a^6$
 $s = a \frac{(1 - a^6)}{1 - a} = -1$
 $p = \alpha\beta = (a + a^2 + a^4)(a^3 + a^5 + a^6)$
 $= a^4 + a^6 + 1 + a^5 + 1 + a + 1 + a^2 + a^3$
 $= 3 - 1 = 2$
Require equivation of the curve $y = x^2$ which is element to
 $x^2 + x + 2 = 0$
62. The point of the curve $y = x^2$ which is element to

63. The point of the curve $y = x^2$ which is closest to

$$\begin{pmatrix} 4, -\frac{1}{2} \end{pmatrix} is (1) (1, 1) (2) (2, 4) (3) $\left(\frac{2}{3}, \frac{4}{9}\right)$ (4) $\left(\frac{4}{3}, \frac{16}{9}\right)$$$

Ans.1

Sol.
$$L = \sqrt{(x-4)^2 + (y+\frac{1}{2})^2}$$

 $L = (x-4)^2 + (y+\frac{1}{2})^2$
 $L' = x^4 + 2x^2 - 8x$
 $L' = 4x^3 + 4x - 8 = 0$
 $\Rightarrow x = 1$
 $L'' = 12x^2 + 4$

MOCK TEST/CODE-B/26-11-2017

$$L'' = 16 > 0$$

So D is minimum at x = 1i.e at (1, 1)

64. The value of
$$\int \frac{(x+1)}{x(1+xe^x)^2} dx$$
 is

(1)
$$\frac{1}{1+xe^x} + c$$
 (2) $\ln\left(\frac{x+e^x}{1+xe^x}\right) + c$

(3)
$$\ln \left| \frac{x+1}{1+xe^x} \right| + c$$
 (4) None of these

Ans.4

Sol. Let
$$1 + xe^{x} = t$$

 $(x + 1)e^{x}dx = dt$
 $I = \int \frac{dt}{(t - 1)t^{2}} = \int -\frac{1}{t^{2}} - \frac{1}{t} + \frac{1}{t - 1}dt$
 $= \frac{1}{t} - \log|t| + \log|t - 1| + C$
 $= \frac{1}{1 + xe^{x}} + \log\left|\frac{xe^{x}}{1 + xe^{x}}\right| + C$
65. If $f(x) = \min\{x + 2, 1, 2 - x\}$, then $\int_{-2}^{2} f(x)dx$
equals
(1) 1 (2) 2
(3) 3 (4) 0
Ans 3

Ans. 3

Sol.
$$\int_{-2}^{1} (x+2) dx + \int_{-1}^{1} dx + \int_{1}^{2} (2-x) dx$$
$$= \frac{1}{2} + 2 + \frac{1}{2} = 367.$$

66. If $\cos \alpha + \cos \beta + \cos \gamma = \sin \alpha + \sin \beta$

 $\beta + \sin \gamma = 0$ then $\cos 3\alpha + \cos 3\beta + \cos 3\gamma =$

(1) 0 (2)
$$\cos(\alpha+\beta+\gamma)$$

(3)
$$3\cos(\alpha+\beta+\gamma)$$
 (4) $3\sin(\alpha+\beta+\gamma)$

Ans.3

Sol. $\cos \alpha + \cos \beta + \cos \gamma = 0$ $\sin\alpha + \sin\beta + \sin\gamma = 0$ let $a = \cos \alpha + i \sin \alpha$ $b = \cos\beta + i\sin\beta$

 $c = \cos \gamma + i \sin \gamma$ $\therefore a + b + c = 0$ $a^3 + b^3 + c^3 - 3abc = 0$ \Rightarrow (cos 3 α + i sin 3 α)(cos 3 β + i sin 3 β) + (cos 3 γ + i sin 3 γ) = $3\left[\cos(\alpha + \beta + \gamma) + i\sin(\alpha + \beta + \gamma)\right]$ $\Rightarrow \cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3\cos(\alpha + \beta + \gamma)$ 67. The value of $\int \frac{(x^2 - 1)dx}{x^3\sqrt{2x^4 - 2x^2 + 1}}$ is (1) $2\sqrt{2-\frac{2}{x^2}+\frac{1}{x^4}}+C$ (2) $2\sqrt{2+\frac{2}{x^2}+\frac{1}{x^4}}+C$ (3) $\frac{1}{2}\sqrt{2-\frac{2}{x^2}+\frac{1}{x^4}}+C$ (4) None of these Ans.3 Sol. $I = \int \frac{\left(\frac{1}{x^3} - \frac{1}{x^5}\right) dx}{\sqrt{2 - \frac{2}{x^2} + \frac{1}{x^4}}}$ $2 - \frac{2}{x^2} + \frac{1}{x^2} = t$ $\left(\frac{4}{x^3} - \frac{4}{x^5}\right)dx = dt$ $I = \frac{1}{4} \int \frac{dt}{\sqrt{t}} = \frac{1}{2} \sqrt{2 - \frac{2}{v^2} + \frac{1}{v^4}} + C$ 68. N be the set of natural numbers. The relation R defined on $N \times N$ as follows (a, b) R (c, d) \Leftrightarrow a + d = b + c is (1) Not reflexive (2) Not symmetric (3) Transitive (4) None of these Ans.3 Sol. 1.(a, b) R (a, b) \Leftrightarrow a + b= b + a is \therefore R is reflexive 2. (a, b) R (c, d) \Rightarrow a + d = b + c = c + b = d + a= (c, d) R (a, b)

MOCK TEST/CODE-B/26-11-2017 3. (a, b) R (c, d) & (c, d) R (e, f) \Rightarrow (a + d) = (b + c) & c + f = d + e \Rightarrow a + d + c + f = b + c + d + e \Rightarrow a + f = b + e \Rightarrow (a, b) R (e, f) \therefore R is transitive 69. Co- ordinates of a point on the curve $y = x \log x$ at which the normal is parallel to the line 2x - 2y = 3 are (1) (0,0)(2) (e, e) (3) $(e^2, 2e^2)$ $(4) (e^{-2}, -2e^{-2})$ Ans. 4 Sol. Given $y = x \ln x$ $\frac{dy}{dx} = 1 + \ln x$ Slope of normal = $\frac{-1}{1 + \ln x}$ So $\frac{-1}{1+\ln x} = 1 \implies x = e^{-2}$ \Rightarrow y = -2e⁻² So co-ordinate of pt in $(e^{-2}, -2e^{-2})$ 70. If f''(x) = -f(x) where f(x) is a continuous double differentiable function and g(x) = f'(x). If $F(x) = \left(f\left(\frac{x}{2}\right)\right)^2 + \left(g\left(\frac{x}{2}\right)\right)^2$ and F(5) = 5, then F(10) =(1) 0(2) 5 (3) 10 (4) 25 Ans.2 Sol. f''(x) = -f(x) \Rightarrow g'(x) = -f(x) Also $F(x) = \left(f\left(\frac{x}{2}\right)\right)^2 + \left(g\left(\frac{x}{2}\right)\right)^2$ $F'(x) = 2f\left(\frac{x}{2}\right) \times f'\left(\frac{x}{2}\right) \times \frac{1}{2} + 2g\left(\frac{x}{2}\right) \times g'\left(\frac{x}{2}\right) \times \frac{1}{2}$ $F'(x) = 0 \implies F(x) = C$ F(5) = 5

I

71. The number of real solution(s) of the equation

$$7\sqrt{x} + 8\sqrt{-x} + \frac{15}{x^3} = 98$$
 is/are
(1) 0 (2) 1
(3) 2 (4) Infinite
Ans. 1
Sol. \sqrt{x} ; $x \ge 0$ $\sqrt{-x} - x \ge 0$
 $x \le 0$
But $x = 0$ is also not possible
 $\therefore \frac{15}{x^3}$ is indefined
72. If the eccentricity of the two ellipse
 $\frac{x^2}{169} + \frac{y^2}{25} = 1$ and $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are equal, then the
value of $\frac{a}{b} =$
(1) $\frac{5}{13}$ (2) $\frac{6}{13}$
Ans. 3
Sol. $\frac{x^2}{169} + \frac{y^2}{5^2} = 1$
 $e = \frac{12}{3}$; $e' = \sqrt{1 - \frac{b^2}{a^2}}$
 $\Rightarrow \frac{b}{a} = \frac{5}{13} \Rightarrow \frac{a}{b} = \frac{13}{5}$
73. $\lim_{x \to 0} (\cos ecx)^{\frac{1}{166x}}$ is equal to
(1) 0 (2) 1
(3) $1/e$ (4) None of these
Ans. 3
Sol. $\ln y = \lim_{x \to 0} \frac{\ln \csc x}{\ln x}$
 $= \lim_{x \to 0} \frac{-\cot x}{1/x} = -1$
 $y = e^{-1}$
(1) $\frac{1}{2}$
(2) $\frac{1}{2}$
(3) $\frac{1}{2}$
(4) $\frac{13}{6}$
(5) $\frac{1}{10}$
(6) $\frac{1}{2}$
(7) $\frac{1}{10}$
(7) $\frac{1}{10}$
(8) $\frac{1}{2}$
(9) $\frac{1}{10}$
(9) $\frac{1}{2}$
(10) $\frac{1}{2}$
(11) $\frac{1}{2}$
(12) $\frac{1}{10}$
(13) $\frac{1}{2}$
(14) None of these
(15) $\frac{1}{10}$
(15) $\frac{1}{10}$
(16) $\frac{1}{10}$
(17) $\frac{1}{10}$
(18) $\frac{1}{10}$
(19) $\frac{1}{10}$
(10) $\frac{1}{10}$
(10) $\frac{1}{10}$
(10) $\frac{1}{10}$
(11) $\frac{1}{10}$
(11) $\frac{1}{10}$
(12) $\frac{1}{10}$
(13) $\frac{1}{10}$
(14) $\frac{1}{10}$
(15) $\frac{1}{10}$
(15) $\frac{1}{10}$
(16) $\frac{1}{10}$
(17) $\frac{1}{10}$
(17) $\frac{1}{10}$
(18) $\frac{1}{10}$
(19) $\frac{1}{10}$
(10) $\frac{1}{10}$
(10) $\frac{1}{10}$
(11) $\frac{1}{10}$
(11) $\frac{1}{10}$
(12) $\frac{1}{10}$
(13) $\frac{1}{10}$
(14) $\frac{1}{10}$
(15) $\frac{1}{10}$
(15) $\frac{1}{10}$
(16) $\frac{1}{10}$
(17) $\frac{1}{10}$
(18) $\frac{1}{10}$
(19) $\frac{1}{10}$
(10) $\frac{1}{10}$
(10) $\frac{1}{10}$
(11) $\frac{1}{10}$
(12) $\frac{1}{10}$
(13) $\frac{1}{10}$
(14) $\frac{1}{10}$
(15) $\frac{1}{10}$
(15) $\frac{1}{10}$
(16) $\frac{1}{10}$
(17) $\frac{1}{10}$
(18) $\frac{1}{10}$
(19) $\frac{1}{10}$
(10) $\frac{1}{10}$
(10) $\frac{1}{10}$
(11) $\frac{1}{10}$
(12) $\frac{1}{10}$
(13) $\frac{1}{10}$
(14) $\frac{1}{10}$
(15) $\frac{1}{10}$
(15) $\frac{1}{10}$
(16) $\frac{1}{10}$
(17) $\frac{1}{10}$
(18) $\frac{1}{10}$
(19) $\frac{1}{10}$
(19) $\frac{1}{10}$
(10) $\frac{1}{10}$
(10) $\frac{1}{10}$
(10

 $f(x) = \begin{cases} x^{p} \sin \frac{1}{x} & ; x \neq 0 \\ 0 & ; x = 0 \end{cases}, \text{ then } f(x) \text{ is }$ inuous but not differentiable at x = 0 if 0(2) $1 \le p < \infty$ (4) p = 0 $-\infty$ $nx^{p}\sin\frac{1}{x} = 0; \quad 0$ $D = \lim_{h \to 0} \frac{h^{p} \sin \frac{1}{h} - 0}{h}$ $D = \lim_{h \to 0} \frac{\left(-h^{p}\right)\sin\left(-\frac{1}{h}\right) - 0}{h}$ is not differentiable at x > 0 ≤ 1 $p \in (0,1]$ $= 1000^{1000}$; B $= 1001^{999}$, then A > B(2) A = BA < B(4) None of these $e, \left(1 + \frac{1}{n}\right)^n < 3 \quad \forall n \in \mathbb{N}$ $N_{,} \frac{(1001)^{999}}{(1000)^{1000}} = \frac{1}{1001} \left(\frac{1001}{1000}\right)^{1000}$ $\frac{1}{001} \left(1 + \frac{1}{1000} \right)^{1000}$ $\frac{1}{201}.3 < 1$ $1001^{999} < 1000^{1000}$ А maximum value of $f(x) = \frac{x}{4 + x + x^2}$ on [-1, $\frac{1}{6}$ (4) $\frac{1}{5}$ -1 -1

$$(1) \frac{1}{4} \quad (2) \frac{1}{3} \quad (3) \frac{1}{6}$$

Sol.
$$f'(x) = \frac{4 - x^2}{(4 + x + x^2)} = 0 \implies x = \pm 2$$

Both values are not in [-1, 1] so

$$f(-1) = \frac{-1}{4}$$
 $f(1) = \frac{1}{6}$ maximum

77. Let $f: R \rightarrow R$ be a differentiable function having

$$f(2) = 6, \ f'(2) = \frac{1}{48} \ \text{then}, \ \lim_{x \to 2} \int_{6}^{f(x)} \frac{4t^3}{x - 2} dt =$$
(1) 18 (2) 12
(3) 24 (4) 36

Ans.1

Sol. $\lim_{x \to 2} \int_{6}^{f(x)} \frac{4t^{3}}{x-2} dt$ = $4(f(x))^{3} \times f'(x) = 4 \times 6^{3} \times \frac{1}{48} = 18$

- 78. The number of common tangents to the circles
 - $\begin{array}{c} x^2 + y^2 2x 4y + 1 = 0 \ \text{and} \\ x^2 + y^2 12x 16y + 91 = 0 \ \text{is} \\ (1) \ 1 \qquad \qquad (2) \ 2 \\ (3) \ 3 \qquad \qquad (4) \ 4 \end{array}$

Ans.4

Sol.
$$C_1 = (1, 2)$$
 $r_1 = 2$
 $C_2 = (6, 8)$ $r_1 = 3$
 $C_1C_2 = \sqrt{61}$ $r_1 + r_2 = 5$
So $C_1C_2 > r_1 + r_2$

- 79. Two perpendicular tangents to the circle $x^2 + y^2$ = a^2 meet at P. Then, the locus of P has the equation (1) $x^2 + y^2 = 2a^2$ (2) $x^2 + y^2 = 3a^2$
 - (3) $x^2 + y^2 = 4a^2$ (4) None of these

Ans. 1

- Sol. Director circle's equation $x^{2+} y^2 = 2a^2$
- 80. If the tangents at P and Q on the parabola meet in T, then SP, ST and SQ are in
 - (1) AP (2) GP
 - (3) HP (4) None of these

Ans. 2

Sol. Since, tangent at P & Q on the parabola meet in T

$$P(at_{1}^{2}, 2at_{1}), Q(at_{2}^{2}, 2at_{2})$$
$$T = (at_{1}t_{2}, a(t_{1} + t_{2}))$$

$$SP = a(1 + t_1^2)$$

$$SQ = a(1 + t_2^2)$$

$$ST^2 = a^2(1 - t_1t_2)^2 + a^2(t_1 + t_2)^2$$

$$= a(1 + t_2^2) \times a(1 + t_2^2) = SP.SQ$$

$$\therefore SP, ST, SQ \text{ are in GP}$$
Cattle and goats do not eat *Calotropis* because
(1) It is tasteful to its predator
(2) It produces highly poisonous glycosides
(3) It possesses thorms

11-2017

(4) It is hard to chew.

Ans : 2

81.

- 82. In Mendelian dihybrid cross, when heterozygous round / yellow are self crossed, round / green offsprings are represented by the genotype
 - (1) RrYy, RrYY, RRYy (2) Rryy, RRyy, rryy
 - (3) rrYy, RrYY (4) Rryy, RRyy

Ans:4

83. Observe the given flow chart showing steps of anaerobic respiration and identify the compounds A, B, C and D.

	A B C D	88.	The coding strand of DNA has the following sequence:			
(1)	Citrate Pyruvic acid Succinate Glyceraldehyd	e	5' = ACGTAC = 2'			
(0)	3-phosphate		What will be the sequence of mPNA?			
(2) (3)	Succinate Citrate Pyruvic acid Acetaldehyde		(1) LICCALIC (2) ACCLLAC			
(3)	6-Bisphos- dehvde acid		(1) UUCAUU (2) ACUUAC (2) ACUUAC (4) TCCATC			
	phate 3-phosphate	4.000	(3) ACGIAC (4) IGCAIG			
(4)	Glyceral Fructose 1,6- Citric acid Oxaloacetate dehyde bisphosphate 3-phosphate	Ans 89.	Endosperm is formed during the double fertilisation by the fusion of			
	5 phosphae		(1) Two polar nuclei and one male gamete			
Ans	: 3		(2) One polar nucleus and one male gamete			
84.	The flower showing floral formula belongs to Fami	lv	(3) Ovum and male gamete			
		-5	(4) Two polar nuclei and two male gametes			
		Ans	:1			
	(1) Liliaceae (2) Solanaceae	90.	Which of the following plants is not pollinated by water?			
1	(3) Poaceae (4) Kanunculaceae.		(1) Vallisneria (2) Water lily			
Alls 95	. 2 The stall which joins avails to pleasants is called		(1) Function (2) Function (3) Hydrilla (4) Zostera			
<i>83</i> .	(1) Librer (2) Euricle	Ans	· · ?			
	(1) Filmin (2) Funcie	91	In a pond <i>Danhnia</i> is preved upon by Prawn Here			
Ana	(3) Micropyle (4) Charaza	, , , , , , , , , , , , , , , , , , , ,	prawn and <i>Daphnia</i> are respectively			
Alis 86.	Verhulst-Pearl logistic growth is described by t	he	(1) Tertiary consumer and secondary consumer(2) Primary consumer and primary producer			
	equation		(3) Secondary consumer and primary consumer			
	(1) $dN/dt = rN\left(\frac{K-N}{K-N}\right)$		(4) Primary consumer and secondary consumer.			
	(1)	Ans	Ans: 3			
	$(\mathbf{N} - \mathbf{K})$	92.	Identify the correct from given statements.			
	(2) $dN/dt = rN\left(\frac{n-R}{N}\right)$		 (I) Dicot leaves are dorsiventral whereas monocot leaves are isobilateral. 			
	(3) $dN/dt = rN\left(\frac{K-N}{K}\right)$		(II) Cellular slime moulds have multinucleate protoplasmic body called Plasmodium.			
	(4) $dN/dt = rN\left(\frac{N-K}{K}\right)$		(III) During nitrification, ammonium ions are oxidised to nitrites with the help of nitrobacter and nitrites are changed to nitrates by Nitrosomonas bacteria.			
Ans	: 3		(IV) The substrate for photorespiration are glucose			
87.	The elements essential for the translocation organic substances in the phloem are	of	and organic acids.			
	(1) Manganese and copper		invertebrates.			
	(2) Boron and potassium		(1) (I), (III) and (II)			
	(3) Molybdenum and zinc		(2) (I) only			
	(4) Sulphur and potassium		(3) (III) and (IV) only			
Ans	:2		(4) (I), (III) and (IV) only			
		Ans	:2			

93.	An gymnosperm plant has 24 chromosomes in 'microspore mother cell'. The number of chromosomes in its endosperm will be				Init is	tiation codon of protei	n synthesis (in eukaryotes)
	(1) 12	(2) 26	be		(1)	GUA	(2) GCA
	(1) 12 (3) 24	$(2) \ 30$			(3)	CCA	(4) AUG.
Ang	(<i>J</i>) 24	(4) 40		Ans	:4		• , • • , • ,
Alls 04	. I The reserve foo	d in auglanoida	and distoms	98.	Wh	nich of the following	g is not used in catalytic
<i>9</i> 4 .	respectively is		and diatoms		(1)	Rhodium	(2) Palladium
	(1) Cyanophycea	n starch, chitin			(3)	Lead	(4) Platinum
	(2) Paramylon, le	eucosin		Ans	: 3		
	(3) Lipid globules	s, volutin globules		99.	The	e relative contribution	n of CH_4 , CFCs and N_2O
Ang	(4) Leucosiii, giy $\cdot 2$	cogen			(1)	60/140 and $200/2$	(2) 25% 6% and 10%
Alls 05	. 2 Match the colum	n L with column	II and III and		(1)	20% 24% and 2%	(2) 23% , 0% and 10% (4) 20% 14% and 6%
95.	select the correct	option		Ang	(5) • 4	5070, 2470 and 270	(4) 20%, 14% and 0%.
	Column I	Column II	Column III	Ans	. 4	a ana alan di asa avatan	the langest newslation in
	(P)Auxin	(i) Zeatin	(A)Barley	100.	in a	vramid of number is	that of
			Endosperm		(1)	Producers	that of
			assay		(1) (2)	Primary consumers	
	(Q) Gibberellin	(ii) Dormin	(B) Avena		(2) (3)	Secondary consume	pro
			curvature		(3) (4)	Tertiary consumers	20
	(R) Cytokinin	(iii) Tryptophan	(C) Stomatal	Ang	· 1	Tertiary consumers	
		() 11) poopulari	closure	101	. I Fin	d the incorrect states	nents
	(S)Abscisic acid	(iv) Mevalonic	(D) Tobacco	101.	(a)	Drones (male hones	v bees) have grandfathers
		acid	pith culture		(u) (b)	but no fathers.	is spacios sharestoristics
	(1) P-(iii)-B, Q-(i	iv)-A, R-(i)-D, S-(ii)-C	(b) Maximum file span is species characteristics			
	(2) P-(iv)-C, Q-(i	ii)-B, R-(iii)-A, S-((i)-D	(c) in partnenogenesis genetic variations are			
	(3) P-(i)-A, Q-(ii))-D, R-(iv)-C, S-(i	ii)-B	(d) Menstrual cycle is absent in Gorilla			
	(4) P-(ii)-D, Q-(i	v)-A, R-(iii)-C, S-	(i)-B	(e) Ovinarity always need water medium for			
Ans	: 1 The store in DNA	A finaarprinting or	a giyan halayy	fertilization			
90.	arrange them in t	the correct sequen	ce	(f) Life span has absolutely no relation with the size of an organism.			
	(1) Transfer of se	eparated DNA fra	igments to		(1)	a, b, c & d	(2) c, d & e
	(ii) Isolation of D	memorane			(3)	a, e & f	(4) b, c & e
	(II) Isolation of L	VNA	TD weaks	Ans	. 2		
	(iii) Hybridisation	E using labelled VN	i k probe	102.	Fo	the birth of 100 ba	bies minimum how many
	(iv) Separation of electrophores	is	бу		me	iotic divisions require	ed ?
	(v) Detection of l	hybridised DNA f	ragments by		(1)	100	(2) 125
	autoradiograp	bhy	ruginents by		(3)	200	(4) 250
	(vi) Digestion of E	DNA by restriction	endonucleases	Ans	.2		
	(1) (i),(iii),(ii),(v),	(vi),(iv)		103.	Wh	hat will be the day of c	$\frac{1}{10000000000000000000000000000000000$
	(2) (ii),(vi),(iv),(i),(iii),(v)				(1)	10th day	(2) 6th day
	(3) (iii),(ii),(v),(i),	(iv),(vi)			(1)	1/th day	(Δ) Our day
	(4) (iv). (iii). (ii).	(v), (i). (vi)		And	(3)	1-til uay	(¬) 2011 uay
Ans	:2			71115	. 4		

Patk to S BENG	CARLERN CAREERINSTITUTE COTAVEZUASTEAN BALURU, KARNATAKA	Ν	иос	K TEST/CO	DE-B/26-	11-2017	CAREER utsov '17 careers after +2 Premier Educational Fair
104.	What is the similarity b	etween Darwin & Mendel?	110.	Which of the	following d	isease never	affect genital/
	(1) Both believed in ge	enes controlling a character	reproductive structures?				
	(2) Both believed in t	narents to offspring		(1) Mumps (2) Conorrho		(2) AIDS (4) Suphi	lia
	(3) Both worked on na	tural selection	Ans	(5) Conorria 2	Jea	(4) Sypin	115
A	(4) Both believed on co	ontinuous variation.	111.	Which of the f	following co clusively in	onditions lea	ds to infertility
Ans.	. 2 . II 1 1 1	f f		(a) Klinefelte	er syndrom	e	
105.	how lamarck would	explain the reason for		(b) Down's s	syndrome		
	experiment conducted	by Lederberg"?		(c) Turner's	syndrome		
	(1) The antibiotic resis	tance property was present		(d) Haemoph	ilia		
	in bacteria from b	egining. They got selected		(1) a		(2) a, b	
	by	nature when antibiotic		(3) a, b & c		(4) a, b, c	c & d
	was applied to the cult	are medium.	Ans	.1			
	(2) Few bacteria devel when antibiotic was	applied and would survived	112.	The confirma of symptoms	of AIDS	or HIV befo	ore appearance
	(3) Application of anti	biotic in medium caused		(1) ELISA		(2) Weste	ern blot
	sudden change in the	e genetic system of bacteria,	1.000	(3) PCR		(4) Both	2 & 3
	(4) A un liestion of out		Ans 113	. J Which of the	following	is an examr	le of artificial
	(4) Application of anti species of bacteria	that continued to live while	115.	passive immu	inity?	is an examp	
	pre existing bacte plate.	ria perished from culture	(1) Administration of Anti Tetanus Serum (ATS) after inury				
Ans	.2		(2) Administration of polio vaccine				
106.	Haversian systems are	found in the bones of	(3) Transmission of antibodies via placenta from mother to foetus				
	 Scollodon and Baitt 	agula		(4) Administr	ration of an	tibodies to ir	nfant via breast
	(2) Scollouoli and FSIU(2) Dabbit and man	acula	I dns 1				
	(3) Rabbit and main (4) Ponther Duthen on	d Mon	114 Which of the following blood vessel contains				
Ang	(4) I anther, I ython an		heighest amount of urea ?				
107	Amniocentesis helps in		(1) Hepatic portal vein (2) Hepatic vein				
107.	(1) Determination of a	enetic disorder	(3) Renal vein (4) Renal artery				
	 Determination of g Determination of s 	energy of foetus	Ans. 2				
	(2) Determination of s(3) Determination of m	etabolic disorder	115.	What would	be the cons	sequence of	SA node fails
	(3) Determination of Π		(1) Ventriales step contracting				
Ang	(4) All of these		(1) Ventricles stop contracting (2) Ventricles continue contraction at slower rate				
108	. IVE technique includes			(3) Heart rat	e would be	normal	
100.	(1) GIFT	$(2) \Lambda I$		(4) Immediat	te cardiac a	arrest leadin	g to death.
	$(1) \cup (1) $	(2) All of these	Ans	.2			C
Ans	.3	(4) An of these	116.	How many of in animals?	f the follow	ing charact	ers are present
109.	Which of the following	g is not a part of human		(a) Bilateral	Symmetry		
	evolution?		(b) Cellular g	grade of org	ganization		
	(1) Bipedal locomotion		(c) Binary fis	ssion			
	(2) Loss of tail		(d) Amoeboi	d movemen	nt		
	(3) Reduction of jaw b	one		(e) Anaerobi	c respiratio	on	
	(4) All are the parts of	human evolution		(1) Metagen	esis	(2) 5	
Ans	. 2		Ans	(1) <i>2</i> .4	(2) 4	(3) 5	(4) 0

117.	Find	the	incorrect	statements

- (a) Mother's milk is rich in iron and IgA.
- (b) Foetal ejection reflex results in release of oxytocin from foetal pituitary.
- (c) Major contributor of seminal plasma is seminal vesicle
- (d) Primary oocyte & WBC contain same number of chromosomes.
- (e) Removal of ovaries during 5th month of pregnancy may lead to abortion

(1) a, b & e	(2) b & d
(3) b, d & e	(4) a, b & c

Ans.1

118. Which of the following dental formula, represent(s) human milk set ?

(a) $\frac{2123}{2123}$	(b) $\frac{2102}{2102}$
(c) $\frac{212}{212}$	(d) $\frac{0012}{0012}$
(1) a	(2) b
(3) b & c	(4) a & d

Ans.3

119. Which of the followings are not the components of DNA? (a) Uracil (b) Thiamine B_1 (c) Pentose sugar (d) Double hydrogen bonds (e) Glycosidic bonds (2) a & b (1) a (3) a, d & e (4) a, c & e Ans.2 120. How many of the following structures are found in female cockroach only? (a) Spermatheca (b) Anal style (d) Common oviduct (c) Anal cerci (1) 0 (2) 1 (4) 3 (3) 2

Ans.3