1. \[I_0 = \int_0^{\pi/\omega} I_1 \, d\theta \]

\[= \omega \int_0^{\pi/\omega} I_0 \sin \theta \, d\theta \]

\[= \frac{\omega}{\pi} \left[-\cos \theta \right]_0^{\pi/\omega} \]

\[= -\frac{\omega}{\pi} \left[-1 - 1 \right] = \frac{2I_0}{\pi} \]

2. The velocity \(v \) acquired by the parachutist after 10 sec. is:

\[v = u + gt = 0 + 10 \times 10 = 100 \text{ m/s} \]

Let \(s_1 \) be height of fall for 10 sec. Then,

\[s_1 = ut + \frac{1}{2}gt^2 = 0 + \frac{1}{2} \times 10 \times 100 = 500 \text{ m} \]

The distance travelled by the parachutist under retardation,

\[s_2 = 2495 - 500 = 1995 \text{ m} \]

Let \(v' \) be his velocity on reaching the ground

then \(v'^2 - v^2 = -2as_2 \)

or \(v'^2 - (100)^2 = -2 \times 2.5 \times 1995 \)

Solving, we get, \(v' = 5 \text{ m/sec} \)

Kx = 3mg

after cut the string

\[a = \frac{F_{net}}{2m} = \frac{kx - 2mg}{2m} \]

\[a = \frac{3mg - 2mg}{2m} = \frac{g}{2} \]
4. \(\mathbf{w} = \int_{(0,0)}^{(2,3)} (2x \mathbf{i} + y^2 \mathbf{j}) \cdot (dx \mathbf{i} + dy \mathbf{j}) = 3 \)

6. \(y = \sqrt{3^2 + 4^2} = 5 \)

7. In the portion OA, slope (= velocity) of the curve is +ve; at the point A, slope of the curve is zero; while in the portion AB, slope of the curve is –ve. Hence \((v - t)\) curve will be as shown in fig.

8. \[F_{\text{max}} = \frac{\mu mg}{(\cos \theta - \mu \sin \theta)} \]

\[F_{\text{max}} = \frac{1}{2\sqrt{3}} \times \frac{3 \times 10}{\frac{1}{2} - \frac{1}{2\sqrt{3}} \times \frac{\sqrt{3}}{2}} = 20 \text{ N} \]

9. \[F_c = N - mg \cos \theta \]

10. \[N = mg \cos \theta - \frac{mv^2}{R} \]

as \(\theta \downarrow \cos \theta \uparrow N \uparrow \)

11. Here \((2\pi \Delta t/\lambda)\) as well as \((2\pi x/\lambda)\) are dimensionless. So, unit of \(\Delta t \) is same as that of \(\lambda \). Unit of \(x \) is same as that as \(\lambda \).

Since, \[\left[\frac{2\pi \Delta t}{\lambda} \right] = \left[\frac{2\pi x}{\lambda} \right] = [\text{M}^0 \text{L}^0 \text{T}^0] \]

Hence, \[\frac{2\pi c}{\lambda} = \frac{2\pi r}{\lambda t} \]

In the option (d) is unitless. It is not the case with \(c/\lambda \).

12. \[H = \frac{1}{2} gt^2 \]

\[\left(H - \frac{g}{16} H \right) = \frac{1}{2} g(t - 1)^2 \]

\[\frac{9}{16} H = \frac{1}{2} g(t - 1)^2 \]

Eqn. (1)/(2)

13. \[t = \sqrt{\frac{2S_{\text{rel}}}{a_{\text{rel}}}} = \sqrt{\frac{2 \times 6}{a_{\text{rel}}}} \]

\[a_{\text{rel}} = 2a = \frac{2(m_2 - m_1)}{m_1 + m_2} - g \]

\[= \frac{2 \times 3}{5} \times 10 = 12 \text{ m/s}^2 \]

\[t = 1 \text{ sec} \]

14. \[a_c = \frac{4}{r^2} \]

\[v^2 = \frac{4}{r} \]

\[v = \frac{2}{\sqrt{r}} \]

\[P = mv = \frac{2m}{\sqrt{r}} \]

15. Moment of inertia of solid sphere of mass \(M \) and radius \(R \) about an axis passing through the centre of mass is: \(I = \frac{2}{5} MR^2 \). Let the radius of the disc is \(r \).

Moment of inertia of circular disc of radius \(r \) and mass \(M \) about an axis passing through the centre of mass and perpendicular to its plane is \(\frac{1}{2} Mr^2 \).

Using theorem of parallel axes, moment of inertia of disc about its edge is:

\[I' = \frac{1}{2} Mr^2 + Mr^2 = \frac{3}{2} Mr^2 \]

Given: \(I = \Gamma \)

or \(\frac{2}{5} MR^2 = \frac{3}{2} Mr^2 \)

or \(r^2 = \frac{4}{15} R^2 \)

or \(r = \frac{2R}{\sqrt{15}} \)
16. \[[v] = [T^{-1}] \\
[\ell] = [L] \\
[F] = [M^1L^1T^{-2}] \\
m = \frac{\rho^2 F}{4v^2\ell^2} \\
[m] = \frac{[F]}{[v^2][\ell^2]} = \frac{[M^1L^1T^{-2}]}{[T^{-2}][L^1]} \\
[m] = [M^1L^{-1}] \\
18. \text{When a spring is cut into two parts each part has spring constant more than that of original spring. If } k \text{ is spring constant & } \ell_0 \text{ is natural length, then for cut parts} \\
\begin{align*}
\frac{2\ell_0^3}{3k/2} & \quad \frac{\ell_0^3}{3k} \\
\text{If they are stretched by same amount then work done in shorter part will be double than that in the case of longer part.}
\end{align*}
19. \text{For equilibrium} \\
\mu \geq \tan \theta \\
\mu \geq \tan \alpha \\
\frac{1}{3} \geq \tan \alpha \\
\frac{1}{3} \geq \frac{1}{\cot \alpha} \\
\cot \alpha \leq 3 \\
20. \text{TE}_i = \text{TE}_f \\
\frac{1}{2} \ell \omega^2 = mgh \\
\begin{align*}
\frac{1}{2} \times \frac{1}{3} m \ell^2 \omega^2 = mgh \\
or \quad h = \frac{\ell^2 \omega^2}{6g}
\end{align*}
21. \text{Percentage error} \\
= \frac{\Delta V}{V} \times 100 = \left(\frac{\Delta L}{L} + \frac{2\Delta d}{d} \right) \times 100 \\
= \left[\frac{0.1}{5.0} + \frac{2 \times 0.01}{2.00} \right] \times 100 = 3\% \\
23. \text{W} = F \cdot \hat{S} \\
W = R \cdot S \cdot \cos 0^\circ \\
= M(g + a) \times S \times 1 \\
= M(g + a) \times \left(\frac{1}{2} a T^2 \right) \\
24. a_1 = 3 \text{ m/s}^2 \\
a_x = \frac{v^2}{r} = \frac{1600}{400} = 4 \\
a = \sqrt{a_x^2 + a_y^2} = 5 \text{ m/s}^2 \\
25. \text{Total mass} = M, \text{total length} = L \text{ Moment of inertia of OA = OB about Q} \\
= MI_{\text{total}} = 2 \times \left(\frac{M}{2} \right) \times \left(\frac{L}{2} \right)^2 \times \frac{1}{3} = \frac{ML^2}{12} \\
26. \text{Let } \vec{\omega} = 3 \hat{i} + 4 \hat{j} \text{ Now,} \\
(3\lambda)^2 + (4\lambda)^2 = 7^2 + 24^2 \\
\Rightarrow \lambda = 5 \\
\therefore \quad \vec{\omega} = 15 \hat{i} + 20 \hat{j} \\
27. y = 16x \left(1 - \frac{5x}{64} \right) \\
so, \quad R = \frac{64}{5} = 12.8m \\
28. \therefore \quad W = \vec{F} \cdot \vec{S} \\
\Rightarrow \quad (S) = \frac{W}{F} = \frac{300}{50} = 6 \\
\Rightarrow \quad S = |x| + |y| + |z| \\
& \therefore \quad |x| = |y| = |z| \\
\Rightarrow \quad \text{Final coordinate of point is } (2, 2, 2)
30. For pure translationary motion of object, the force should act at the centre of mass.

\[Y_{\text{CM}} = \frac{m \times 2\ell + 2m \times \ell}{3m} = \frac{4\ell}{3}. \]

31. \[\vec{v} = |\vec{v}| \hat{v} \]
\[= 6 \left(\frac{2\hat{i} + 2\hat{j} - \hat{k}}{3} \right) \]
\[= 4\hat{i} + 4\hat{j} - 2\hat{k} \]

33. \[W = (\text{Area})_1 - (\text{Area})_2 \]
\[W = \frac{1}{2} \times (3 + 1) \times 10 - \frac{1}{2} \times (2 + 1) \times 10 \]
\[= 5 \text{ J} \]

34. \[
\begin{align*}
m &= 3 \text{ m} \\
v &= 15 \text{ m/s} \\
15 \text{ m/s} &\rightarrow 3 \text{ m}
\end{align*}
\]

\[mv = \sqrt{(3m \times 15)^2 + (3m \times 15)^2} \]
\[mv = 45m\sqrt{2} \]
\[v = 45\sqrt{2} \text{ m/s} \]

\[a = \frac{g \sin \theta}{\beta} = \frac{g \sin \theta}{1 + \frac{1}{MR^2}} \]

For a solid sphere : \[I = \frac{2}{5} MR^2 \]

\[a = \frac{g \sin 30^\circ}{1 + \frac{1}{MR^2}} = \frac{10 \times \frac{1}{2}}{\frac{7}{5}} \]
\[= \frac{5}{7} \times 5 = \frac{25}{7} \text{ m/s}^2. \]

35. The only force which can provide horizontal acceleration to m block is normal force. \[W = \text{AKE} \]
\[W = \frac{1}{2}mv^2 = \frac{1}{2}(at)^2 = 50\text{ J} \]

39. \[\vec{r}_{\text{cm}} = \frac{m_1\vec{r}_1 + m_2\vec{r}_2}{m_1 + m_2} \]

40. Required fraction

\[\frac{K_R}{K_R + K_T} = \frac{1}{2} \left(I_o^2 + \frac{1}{2} MV^2 \right) \]
\[= \frac{1}{2} \left(MR^2 \omega^2 + \frac{1}{2} MV^2 \right) \]
\[= \frac{MR^2 \left(\frac{v^2}{R^2} \right)}{MR^2 \left(\frac{v^2}{R^2} \right) + MV^2} \]
\[= \frac{MV^2}{MV^2 + MV^2} = \frac{1}{2} \]

41. \[s = kt^{1/2} \]
\[\frac{d^2s}{dt^2} = -\frac{1}{4} kt^{-3/2} \]
As \(t \) increases, the retardation decreases.

42. 2T \((a_A)_x = T (a_B)_y \)
\((a_B)_y = 10 \text{ m/s}^2 \)

\[\begin{array}{c}
\text{B} \\
\downarrow 5\text{ m/s}^2 \\
10\text{ m/s}^2 \\
\end{array} \]
\[a_B = \sqrt{5^2 + 10^2} = 5\sqrt{5} \text{ m/s}^2 \]

43. \[\frac{1}{2} MV^2 - M\frac{L}{2} = -\frac{M}{2} g \frac{L}{4} \text{ (energy conservation)} \]

44. \[\vec{v}_{\text{cm}} = \frac{m_1\vec{v}_1 + m_2\vec{v}_2}{m_1 + m_2} \]
48. For ideal solution
\[\Delta H_{\text{mix}} = 0, \Delta V_{\text{mix}} = 0 \]

52. \[K_p = \frac{\alpha^2}{1 - \alpha^2} P \approx \alpha^2 P. \]

so, \[\alpha \approx \sqrt{\frac{K_p}{P}}. \]

53. \[\text{pH} = 2 \]
\[(H^+) = 0.01 \text{ M} = C\alpha = 0.1 \times \alpha \]
\[\alpha = 0.1 \]
\[i = 1 - \alpha + n\alpha \]
\[= 1 - 0.1 + 2 \times 0.1 \]
\[= 1.1 \]
\[\pi = i \times \text{CRT} \]

54. \[M_1 V_1 + M_2 V_2 = M_3 (V_1 + V_1) \]
\[0.1V + 0.5 \times 200 = 0.25(200 + V) \]
\[V = 333.33 \text{ ml} \]

61. \[\overset{-5^\text{th}}{\rightarrow} \text{Excited state} \]
\[\downarrow \]
\[\downarrow \]
\[\downarrow \]
\[\downarrow \]
\[6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1 \quad \text{Ground state} \]

62. \[K_p = K_c (RT)^{\Delta n} \quad \Delta n = -1 \quad \therefore K_p = \frac{K_c}{RT} \]

65. For tetrahedral void \[\frac{r^t}{r} = 0.225 \]
For octahedral void \[\frac{r^o}{r} = 0.414 \]

67. \[K_c = [H_2O]^2. \] Solid phases are not to be reported.

68. \[H_2O = 2 \text{ mole}; CO = 1 \text{ mole}, \]
\[C_2H_5OH = 1 \text{ mole}, N_2O_5 = 1/2 \text{ mole} \]

70. for X, \[6 \times \frac{1}{8} = \frac{3}{4} \]
for Y, \[6 \times \frac{1}{2} = 3 \]
so \[X_{3/4} Y_{3/4} \quad \text{or} \quad X_3 Y_{12} \quad \text{or} \quad X Y_4 \]

73. \[A + 2B \longrightarrow C \]
\[5 \quad 8 \quad 0 \]
\[(5 - 4) \quad 0 \quad 4 \]

75. Equal number of cations and anions are missing.

78. Meq. of \[HNO_3 = 25 \times 3 = 75; \]
Meq. of \[HNO_3 = 75 \times 4 = 300 \]
\[\therefore \text{Total Meq.} = 375 \]
Thus \[375 = N \times 100 \]
\[\therefore N = 3.75 \]

83. Meq. of metal = Meq. of oxygen
\[\frac{60}{E} = \frac{40}{8}; \quad \therefore E = 12 \]

85. For f.c.c. structure.
\[\text{radius of atom} = \frac{a}{2\sqrt{2}} = \frac{361}{2\sqrt{2}} = 127.56 \text{ pm} \]

87. \[P_{N_2} = 0.8 \times 5 = 4 \text{ atm} = K_N \times X_{N_2} \]

88. Given that, mass % of \[H_2SO_4 = 29\% \]
i.e., 100 g solution contains 29 g \[H_2SO_4 \]

Let the density of solution (in g/mL) is \[d \]
\[\therefore \text{Molarity of solution} \]
\[\text{Moles of } H_2SO_4 = \frac{29/98}{100/d} \times 1000 \]
\[= \frac{360}{d} \quad (\therefore M = 3.60) \]
or \[d = 1.22 \text{ g mL}^{-1} \]

90. \[r_c + r_a = \sqrt[3]{\frac{3a}{2}} \]
\[\therefore r_c + r_a = \sqrt[3]{\frac{3 \times 4.3}{2}} = 3.72 \text{ Å} \]
<table>
<thead>
<tr>
<th>No.</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>92</td>
<td>NCERT XI page # 56</td>
</tr>
<tr>
<td>93</td>
<td>NCERT XI page # 48</td>
</tr>
<tr>
<td>98</td>
<td>NCERT-XI / Pag. No. 132</td>
</tr>
<tr>
<td>102</td>
<td>NCERT XI Page # 49</td>
</tr>
<tr>
<td>103</td>
<td>NCERT XI page # 54</td>
</tr>
<tr>
<td>113</td>
<td>NCERT XI Page # 53</td>
</tr>
<tr>
<td>114</td>
<td>NCERT Page-38 Para -1</td>
</tr>
<tr>
<td>119</td>
<td>NCERT page # 96</td>
</tr>
<tr>
<td>123</td>
<td>NCERT XI page # 50</td>
</tr>
<tr>
<td>127</td>
<td>NCERT - XI / Pag. No. 165-166</td>
</tr>
<tr>
<td>129</td>
<td>NCERT page # 87</td>
</tr>
<tr>
<td>132</td>
<td>NCERT XI page # 57</td>
</tr>
<tr>
<td>139</td>
<td>NCERT page # 85</td>
</tr>
<tr>
<td>142</td>
<td>NCERT XI page # 55</td>
</tr>
<tr>
<td>144</td>
<td>NCERT Page-32, Para -3.1.2</td>
</tr>
<tr>
<td>147</td>
<td>Tight junctions limits the lateral movements of proteins on the membrane.</td>
</tr>
<tr>
<td>148</td>
<td>NCERT Page - 76</td>
</tr>
<tr>
<td>149</td>
<td>NCERT page # 85</td>
</tr>
<tr>
<td>152</td>
<td>NCERT XI page # 47</td>
</tr>
<tr>
<td>157</td>
<td>NCERT-XI / Pag. No. 165</td>
</tr>
<tr>
<td>159</td>
<td>NCERT page # 86</td>
</tr>
<tr>
<td>162</td>
<td>NCERT XI page # 57</td>
</tr>
<tr>
<td>167</td>
<td>NCERT-XI / Pag. No. 170 (Summary)</td>
</tr>
<tr>
<td>169</td>
<td>NCERT page # 93</td>
</tr>
<tr>
<td>171</td>
<td>NCERT XI Page # 58</td>
</tr>
<tr>
<td>173</td>
<td>NCERT Page-13 Para -1.4.5</td>
</tr>
<tr>
<td>176</td>
<td>NCERT XI page # 50</td>
</tr>
<tr>
<td>180</td>
<td>NCERT XI Page # 107</td>
</tr>
</tbody>
</table>